On the problem of vibration protection of rotor systems with elastic adaptive elements of quasi-zero stiffness
 
More details
Hide details
1
National Technical University «Kharkiv Polytechnic Institute»
CORRESPONDING AUTHOR
Volodymyr Klitnoi   

National Technical University «Kharkiv Polytechnic Institute»
Online publication date: 2020-05-19
Submission date: 2020-03-15
Final revision date: 2020-05-06
Acceptance date: 2020-05-18
 
Diagnostyka 2020;21(2):69–75
KEYWORDS
TOPICS
ABSTRACT
The analysis of scientific publications for rotor systems on the elastic supports made it possible to develop a basic version of the design scheme of active elastic support with controlled quasi-zero stiffness based on adaptive piezoceramic elements. The main components of the mathematical model of the functioning of active elastic supports with controlled quasi-zero stiffness based on adaptive piezoceramic elements are substantiated, which will help create the foundations of a theory for solving the problem of effective vibration protection.
 
REFERENCES (28)
1.
Zachwieja J. The effectiveness of modal balancing of flexible rotors. Diagnostyka. 2015;16(3):79-87.
 
2.
Amroune S, Belaadi A, Menasri N, Zaoui M, Mohamad B, Amin H. New approach for computer-aided static balancing of turbines rotors. Diagnostyka. 2019;20(4):95-101. https://doi.org/10.29354/diag/....
 
3.
Zeidan FY, Andres LS, Vance JM. Design and application of squeeze film dampers in rotating machinery. Texas A&M University. Turbomachinery Laboratories. 1996;169-188. https://doi.org/10.21423/R1694....
 
4.
Zhifei H, Qian D, Wei Z. Dynamical analysis of an elastic ring squeeze film damper-rotor system. Mechanism and Machine Theory. 2019;131: 406-419. https://doi.org/10.1016/j.mech....
 
5.
Xiao K, Palazzolo A, Wan Z. Auxiliary bearing squeeze film dampers for magnetic bearing supported rotors. Tribology International. 2020;146,106181. https://doi.org/10.1016/j.trib....
 
6.
Qingkai H, Yugang C, Hao Z, Lingli J, Xuejun L. Vibrations of rigid rotor systems with misalignment on squirrel cage supports. Journal of Vibroengineering. 2016;18,7: 4329‑4339. https://doi.org/10.21595/jve.2....
 
7.
Mao Y, Wang L, Zhang C. Study on the load distribution and dynamic characteristics of a thin-walled integrated squirrel-cage supporting roller bearing. Appl. Sci. 2016;6,415. https://doi.org/10.3390/app612....
 
8.
Wei Z, Bingbing H, Xiang L, Jianqiao S, Qian D. Multiple-objective design optimization of squirrel cage for squeeze film damper by using cell mapping method and experimental validation. Mechanism and Machine Theory. 2019;132: 66-79. https://doi.org/10.1016/j.mech....
 
9.
Voltolini, DR, Kluthcovsky S, Filho FD, Lopes E, Bavastri C. Optimal design of a viscoelastic vibration neutralizer for rotating systems: Flexural control by slope degree of freedom. Journal of Vibration and Control. 2018;24: 3525-3537. https://doi.org/10.1177/107754....
 
10.
Ribeiro EA, Pereira JT, Bavastri CA. Passive vibration control in rotor dynamics: Optimization of composed support using viscoelastic materials. Journal of Sound and Vibration. 2015;351: 43-56. https://doi.org/10.1016/j.jsv.....
 
11.
Alabuzhev P, Gritchin A, Kim L, Migirenko G, Chon V, Stepanov P. Vibration protecting and measuring systems with quasi-zero stiffness. Hemisphere Publishing, Taylor & Francis Group, New York; 1989.
 
12.
Gaponov VS, Gaydamaka AV, Naumov OI. Vibration protection system with controlled quasi-zero stiffness. Ukraine, Patent number 69042, 2012. Ukrainian.
 
13.
Heindel S, Becker F, Rinderknecht S. Unbalance and resonance elimination with active bearings on a Jeffcott Rotor. Mechanical Systems and Signal Processing. 2017;85: 339-353. https://doi.org/10.1016/j.ymss....
 
14.
Zhao J, Zhang H, Fan M, Wu Y, Zhao H. Control of a constrained flexible rotor on active magnetic bearings. IFAC-PapersOnLine. 2015;48(28): 156–161. https://dx.doi.org/10.1016/j.i....
 
15.
Yao X, Chen Z, Jiao Y. Unbalance vibration compensation control using deep network for rotor system with active magnetic bearings. Mechanisms and Machine Science 2019;60: 72-81. https://doi.org/10.1007/978-3-....
 
16.
Ferfecki P, Zapoměl J, Kozánek J. Analysis of the vibration attenuation of rotors supported by magnetorheological squeeze film dampers as a multiphysical finite element problem. Advances in Engineering Software. 2017;104: 1-11. https://doi.org/10.1016/j.adve....
 
17.
Gaponov VS, Gaydamaka AV, Naumov OI. Active vibration protection system with automatic bearing supports control. Ukraine, Patent number 80416, 2013. Ukrainian.
 
18.
Tang P, Palazzolo AB, Kascak AF, Montague GT. Active vibration control of rotating machinery with a hybrid piezohydraulic actuator system. J. Eng. Gas Turbines Power. 1995;117(4): 767-776. http://dx.doi.org/10.1115/1.28....
 
19.
Heindel S, Müller PC, Rinderknecht S. Unbalance and resonance elimination with active bearings on general rotors. Journal of Sound and Vibration. 2018;431: 422-440. https://doi.org/10.1016/j.jsv.....
 
20.
Hasch B, Lindenborn O, Nordmann R, Ulbrich H, Ginzinger L. Model-based fault detection on a rotor in an actively supported bearing using piezoelectric actuators and the fxlms-algorithm. Motion and Vibration Control. 2009; 123–132. https://doi.org/10.1007/978-1-....
 
21.
Tuma J, Šimek J, Škuta J, Los J. Active vibrations control of journal bearings with the use of piezoactuators. Mechanical Systems and Signal Processing. 2013;36,2: 618-629. https://doi.org/10.1016/j.ymss....
 
22.
Huan H, Xing T, Jincheng H, Fang Z, Guoping C. A novel ring-shaped vibration damper based on piezoelectric shunt damping: Theoretical analysis and experiments. Journal of Sound and Vibration. 2020; 468,115125. https://doi.org/10.1016/j.jsv.....
 
23.
Gaydamaka AV, Klitnoi VV. Active vibration protection system with adaptive quasi-zero stiffness for rotor system bearing supports. Ukraine, Patent number 125538, 2017. Ukrainian.
 
24.
Gaponov VS, Naumov OI, Ostapchuk YO. A mathematical model of an elastic support with controlled quasi-zero stiffness for high-speed rotary bearing systems. Bulletin of NTU "KhPI". Series: Energy and thermal processes and equipment. 2012;8: 131-136. Russian.
 
25.
Ikeda T. Fundamentals of piezoelectricity. Oxford University Press, New York; 1996.
 
26.
Aronov BS. Electromechanical transducers of piezoelectric ceramics. Leningrad, Energoatomizdat; 1990. Russian.
 
27.
Klitnoi VV. Numerical studies of vibration control of the on-board equipment printed unit. Bulletin of NTU "KhPI". 2008; 31: 77-83. Russian.
 
28.
Preumont A. Vibration Control of Active Structures. Springer, Netherlands; 2011. https://doi.org/10.1007/978-94....
 
eISSN:2449-5220
ISSN:1641-6414