Latency optimization in 5G-enabled UAV-assisted wireless sensor networks: Modeling, analysis, and adaptive strategies
 
More details
Hide details
1
Computer Engineering Department, University of Mosul, Iraq
 
2
Electronics Engineering College, Ninevah University, Mosul, Iraq
 
These authors had equal contribution to this work
 
 
Submission date: 2025-07-19
 
 
Final revision date: 2025-11-29
 
 
Acceptance date: 2026-01-20
 
 
Online publication date: 2026-01-22
 
 
Publication date: 2026-01-22
 
 
Corresponding author
Zeina Ali Shareif   

Electronics Engineering College, Ninevah University, Mosul
 
 
 
KEYWORDS
TOPICS
ABSTRACT
In this paper, we propose a systematized analytical and AI-assisted framework to compute the end-to-end latency of an unmanned aerial vehicle (UAV)-attached wireless sensor network (WSN) node communicating over a 5G linked communication system and to identify and minimize the latency within this link process. Recent literature has typically analysed networks or mobility, but our model integrates the latency contributions of WSN node, UAV platform and 5G network into a single mathematical model by considering the interactions of the three actors. With parameters of sensing, processing, transmission, and 5G routing, the analytical model enables us to quantify its components latency level that provides clear-base on the analysis of parameter sensitivity. In addition, we employ three AI-based optimization techniques to adaptively set system parameters to minimize latency while adapting to different network conditions, including Supervised Regression, Reinforcement Learning and Hybrid AI–Heuristic control. Using simulation-based evaluation we show that the hybrid approach obtains up to 33% less latency compared with the baseline, and up to 28% and 18% less latency than reinforcement learning and regression methods, respectively. These results confirm the feasibility of AI-driven latency adaptation for UAV-assisted WSNs over 5G, offering a practical and scalable approach toward next-generation low-latency aerial IoT systems.
FUNDING
This research received no external funding.
REFERENCES (38)
1.
Mirzaei S, Hosseinzadeh MA, Afzali-Kusha A. Low-power and low-latency hardware implementation of approximate hyperbolic and exponential functions for embedded system applications. IEEE Trans Very Large Scale Integr (VLSI) Syst. 2022;30(11):1620–1632. https://doi.org/10.1109/TVLSI.....
 
2.
Hasan AF, et al. Fractional order extended state observer enhances the performance of controlled tri-copter UAV based on active disturbance rejection control. In: Mobile Robot: Motion Control and Path Planning. Stud Comput Intell. 2023;1090. Springer, Cham. https://doi.org/10.1007/978-3-....
 
3.
Al-Qassar AA, Al-Dujaili AQ, Hasan AF, Humaidi AJ, Ibraheem IK, Azar AT. Stabilization of single-axis propeller-powered system for aircraft applications based on optimal adaptive control design. J Eng Sci Technol. 2021;16(3):1851–1869.
 
4.
Shafique A, Hafiz R, Henkel J. Approximate computing: concepts, architectures, challenges, applications, and future directions. IEEE Trans Comput Aided Des Integr Circuits Syst. 2018;37(8):1595–1608. https://doi.org/10.1109/TCAD.2....
 
5.
Qassab M, Ali QI. A UAV-based portable health clinic system for coronavirus hotspot areas. Healthc Technol Lett. 2022;9(4–5):77–90. https://doi.org/10.1049/htl2.1....
 
6.
Liu S, Kumari S, Chen CM. PSAP-WSN: a provably secure authentication protocol for 5G-based wireless sensor networks. CMES Comput Model Eng Sci. 2023;135(1):143–161. https://doi.org/10.32604/cmes.....
 
7.
Alsamhi SH, Afghah F, Sahal R, Hawbani A. Green Internet of Things using UAVs in B5G networks: applications and strategies. Ad Hoc Netw. 2021;107:102305. https://doi.org/10.1016/j.adho....
 
8.
Khan MA, Kumar N, Mohsan SAH. Swarm of UAVs for network management in 6G: a technical review. IEEE Trans Netw Serv Manag. 2022. https://doi.org/10.1109/TNSM.2....
 
9.
Ch R, Srivastava G, Gadekallu TR. Security and privacy of UAV data using blockchain technology. J Inf Secur Appl. 2020;53:102670. https://doi.org/10.1016/j.jisa....
 
10.
Qasim NH, Jawad AM. 5G-enabled UAVs for energy-efficient opportunistic networking. Heliyon. 2024; 10:e08691. https://doi.org/10.1016/j.heli....
 
11.
Jagatheesaperumal SK, Rahouti M, Xiong K. Blockchain-based security architecture for UAVs in B5G/6G networks. arXiv [Preprint]. 2023. arXiv:2312.06928. https://doi.org/10.48550/arXiv....
 
12.
Khan AA, Laghari AA, Gadekallu TR, Shaikh ZA. Drone-based data management using metaheuristic algorithms and blockchain in secure fog environments. Comput Secur. 2022;117:102569. https://doi.org/10.1016/j.comp....
 
13.
Ranaweera P, Jurcut A, Liyanage M. MEC-enabled 5G use cases: a survey on security vulnerabilities and countermeasures. ACM Comput Surv. 2021;54(6):114. https://doi.org/10.1145/347455....
 
14.
Li J, Kang H, Sun G. Physical layer secure communications using collaborative beamforming for UAV networks. In: Proc IEEE INFOCOM; 2021. p. 1774–1783. https://doi.org/10.1109/INFOCO....
 
15.
Tanwar S, Aggarwal S, Kumar N. Blockchain-envisioned UAV communication in 6G networks: use cases and future directions. IEEE Internet Things J. 2020;8(9):6952–6967. https://doi.org/10.1109/JIOT.2....
 
16.
Pandey GK, Gurjar DS, Yadav S. UAV-assisted communications with RF energy harvesting. IEEE Commun Surv Tutor. 2024;26(1):123–145. https://doi.org/10.1109/COMST.....
 
17.
Ullah Z, Al-Turjman F, Mostarda L. Cognition in UAV-aided 5G and beyond communications: a survey. IEEE Trans Wireless Commun. 2020;20(2):906–923. https://doi.org/10.1109/TCCN.2....
 
18.
Alsamhi SH, Almalki FA, Afghah F. Drones' edge intelligence in B5G networks with blockchain and federated learning. IEEE Internet Things J. 2021;8(9):7393–7407. https://doi.org/10.1109/TGCN.2....
 
19.
Sharma A, Vanjani P, Paliwal N. Communication and networking technologies for UAVs: a survey. J Netw Comput Appl. 2020;168:102713. https://doi.org/10.1016/j.jnca....
 
20.
Khan MF, Yau KLA, Ling MH, Chong YW. Intelligent cluster-based routing for 5G flying ad hoc networks. Appl Sci. 2022;12(7):3665. https://doi.org/10.3390/app120....
 
21.
Coll-Perales B, et al. End-to-end V2X latency modeling and analysis in 5G networks. IEEE Trans Veh Technol. 2023;72(4):5094–5109. https://doi.org/10.1109/TVT.20....
 
22.
Ali QI, Lazim S. Design and implementation of an embedded intrusion detection system for wireless applications. IET Inf Secur. 2012;6(3):171–182. https://doi.org/10.1049/iet-if....
 
23.
Ali QI. Securing solar energy-harvesting road-side unit using an embedded cooperative-hybrid intrusion detection system. IET Inf Secur. 2016;10(6):386–402. https://doi.org/10.1049/iet-if....
 
24.
Mishra S. Artificial intelligence-assisted enhanced energy-efficient model for device-to-device communication in 5G networks. Hum Cent Intell Syst. 2023;3(2):45–58. https://doi.org/10.1007/s44230....
 
25.
Farooqi AM, Alam MA, Hassan SI. A fog computing model for VANET to reduce latency and delay using 5G network in smart city transportation. Appl Sci. 2022;12(5):2506. https://doi.org/10.3390/app120....
 
26.
Arya G, Bagwari A, Chauhan DS. Performance analysis of deep learning-based routing protocol for efficient data transmission in 5G WSN communication. IEEE Access. 2022;10:9340–9356. https://doi.org/10.1109/ACCESS....
 
27.
Mohammad MT, Mahmood HA, Ali QI. A self-powered IoT platform with security mechanisms for smart agriculture. Ingénierie des Systèmes d’Information. 2023;28(6):1525–1532. https://doi.org/10.18280/isi.2....
 
28.
Ibraheem FN, Abdulrazzaq SN, Fathi I, Ali QI. High-resolution and secure IoT-based weather station design. Int J Saf Secur Eng. 2024;14(1):249–258. https://doi.org/10.18280/ijsse....
 
29.
Ali QI. Design and implementation of a mobile phone charging system based on solar energy harvesting. In: Proc EPC-IQ01; 2010. p. 264–267. https://doi.org/10.33762/eeej.....
 
30.
Ali QI. Enhanced power management scheme for embedded road side units. IET Comput Digit Tech. 2016;10(4):174–185. https://doi.org/10.1049/iet-cd....
 
31.
Ali QI. Green communication infrastructure for vehicular ad hoc network (VANET). J Electr Eng. 2016;16(2):10–10.
 
32.
Lazim SQ, Ali QI. An embedded and intelligent anomaly power consumption detection system based on smart metering. IET Wirel Sens Syst. 2023;13(2):75–90. https://doi.org/10.1049/wss2.1....
 
33.
Merza ME, Hussein SH, Ali QI. Identification scheme of false data injection attack based on deep learning algorithms for smart grids. Indones J Electr Eng Comput Sci. 2023;30(1):219–228. https://doi.org/10.11591/ijeec...,.
 
34.
Alhabib MH, Ali QI. Internet of autonomous vehicles communication infrastructure: a short review. 2023;24(3). https://doi.org/10.29354/diag/....
 
35.
Ali QI. Realization of a robust fog-based green VANET infrastructure. IEEE Syst J. 2023;17(2):2465–2476. https://doi.org/10.1109/JSYST.....
 
36.
Ansari J, Andersson C, de Bruin P, et al. Performance of 5G trials for industrial automation. Electronics. 2022;11:412. https://doi.org/10.3390/electr....
 
37.
Siriwardhana Y, Porambage P, Ylianttila M, Liyanage M. Performance analysis of local 5G operator architectures for industrial Internet. IEEE Internet Things J. 2020;7(12):11559–11575. https://doi.org/10.1109/JIOT.2....
 
38.
Rekoputra N, Tseng C, Wang J, et al. Implementation and evaluation of 5G MEC-enabled smart factory. Electronics. 2023;12(6):1310. https://doi.org/10.3390/electr....
 
eISSN:2449-5220
Journals System - logo
Scroll to top