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Abstract

In this paper, we propose a systematized analytical and Al-assisted framework to compute the end-to-end
latency of an unmanned aerial vehicle (UAV)-attached wireless sensor network (WSN) node communicating
over a 5G linked communication system and to identify and minimize the latency within this link process.
Recent literature has typically analysed networks or mobility, but our model integrates the latency contributions
of WSN node, UAV platform and 5G network into a single mathematical model by considering the interactions
of the three actors. With parameters of sensing, processing, transmission, and 5G routing, the analytical model
enables us to quantify its components latency level that provides clear-base on the analysis of parameter
sensitivity. In addition, we employ three Al-based optimization techniques to adaptively set system parameters
to minimize latency while adapting to different network conditions, including Supervised Regression,
Reinforcement Learning and Hybrid Al-Heuristic control. Using simulation-based evaluation we show that
the hybrid approach obtains up to 33% less latency compared with the baseline, and up to 28% and 18% less
latency than reinforcement learning and regression methods, respectively. These results confirm the feasibility
of Al-driven latency adaptation for UAV-assisted WSNs over 5G, offering a practical and scalable approach
toward next-generation low-latency aerial [oT systems.
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1. INTRODUCTION

The integration of 5G-capable Wireless Sensor
Networks (WSNs) and Unmanned Aerial Vehicles
(UAVs) holds great potential for applications that
necessitate high-speed, low-latency
communications. UAVs, being deployed within
dynamic or difficult-to-reach scenarios, depend upon
the use of immediate data transmit times to perform
important  functions  within  domains like
environment monitoring, disaster management, and
city infrastructure inspection. Conventional WSNs
are significantly hampered by high latency, however,
whenever they are deployed across large or high-
mobility regions, such as are typically the case for
UAVs. 5G deployment introduces overheads for
ultra-reliable low-latency communications
(URLLC), a quality that bridges these shortcomings
by reducing delay and facilitates seamless, real-time
exchange of data between UAVs and processing
centers [1,2]. Minimizing delay is essential for 5G-
capable UAV networks to maximize system
performance, particularly for  delay-critical
operations. The subject of this paper is the
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development of a latency model that analyzes and
optimizes end-to-end delay at the various layers
involved within the use of UAV-assisted WSNs. By
examining sources of delay, including transmit time,
network congestion, handover time, and edge
processing time, the proposed model provides
insights for assessing and projecting system behavior
within actual deployments. Also, the 5G capability
of network slicing, edge processing, and dynamic
resources allocation can realize the user’s paradigm-
based latency management that serves application
basis required by the UAVs [3,4] thereby, allow
application-specific granularity to reach the data
transmit speed defined by applications.

The integration of 5G-capable WSNs with
UAVs potentially provides significant applications
ranging from environmental monitoring to disaster
management and intelligent city development. The
use of 5G for its high speed, low latency, and
improved  connectivity to  overcome the
shortcomings of conventional WSNs facilitates
dynamic sensor deployment, more data gathering,
and better communications within hostile terrain.
Critical studies in this direction have studied security
protocols, management of networks, energy
efficiency, and autonomous functionality in these
hybrid 5G-WSN and UAV systems [5].

Liu et al. introduced the concept of the PSAP-
WSN framework, an authenticatable 5G-based WSN
security protocol, to meet data security challenges on
UAV-enabled networks, an essential area due to the
vulnerability of the network to cyberattacks since
drones fly across large, unguarded areas [6].
Alsambhi et al. indeed studied the potential of green
Internet of Things (IoT) applications using UAVs
and B5G networks, exploring methodologies to
enhance the energy efficiency of the network and
overcome the challenge of data gathering from
remote areas in real time [7]. Khan et al. studied
UAV swarm management in 6G networks and how
Software-Defined Networking (SDN), along with
Network Function Virtualization (NFV),
technologies enable scalable management of
networks for UAV-WSN frameworks, where
swarms of drones dynamically respond to changing
network needs [8].

Ch et al. studied security and privacy for WSNs
using drones and proposed using blockchain
technology for securing data exchanges across 5G
drone networks, which is especially useful for drone
missions requiring the collection and transfer of
confidential data [9]. Qasim and Jawad created an
energy-efficient opportunistic networking
framework for 5G-capable drones, using edge
computing to optimize energy saving while
safeguarding communications, which is crucial for
prolonged drone missions [10]. Likewise,
Jagatheesaperumal et al. proposed a blockchain-
based framework for securing UAV networks within
B5G/6G frameworks, giving particular importance
to security protocols that improve trust upon data

integrity since drones transmit data to land-based
nodes within WSNs [11].

Khan et al. solved the problem of managing data
within  drone-based networks using hybrid
techniques  incorporating  metaheuristic  and
blockchain smart contracts to enhance data
management within UAV-WSN systems. It focused
on energy management for prolonged missions and
secure handling of data, both crucial for UAV-WSN
setups deployed in remote and constrained-resource
conditions [12]. Ranaweera et al. surveyed MEC-
based 5G networks and listed specific security
threats that impact UAV-based WSNs. This
contribution offers insights regarding
countermeasures to make the security of UAVs
capturing important environment or infrastructure-
related data more robust [13].

Li et al. proposed collaborative techniques for
beamforming at the physical layer for securing
communications within 5G-based WSNs, which
meet the demand for robust communication
protocols against frequent disconnection and
environmental interference [14]. Tanwar et al.
discussed applications of blockchains for UAVs for
6G networks, mentioning that the use of blockchain
together with trajectory optimization would enable
secure and effective communications for data
acquisition  applications  within UAV-WSN
architectures [15]. Pandey et al. offered a survey on
communications using UAVs, which included RF
energy harvesting, an emerging application for
UAV-based WSNs since it keeps drones operating
for prolonged periods without using batteries
exclusively. It is essential for a WSN deployment
for monitoring on a large scale, in an ongoing
manner [16]. Ullah et al. surveyed cognitive
approaches for unmanned aerial vehicle (UAV)-
assisted 5G networks and provided some adaptation
of Al methods for more efficient resource allocation
and response latency in wide area wireless sensor
network (WSN) deployments [17].

Alsamhi et al. examined edge intelligence of
drones in the concept of B5G networks and
highlighted how federated learning and blockchain
could play a key role in enabling autonomous UAV
solutions for WSN applications like environmental
monitoring and disaster response[18]. Sharma et al.
focused on the communication technologies for
UAVs, with a special emphasis on the 5G-enabled
architectures which lead to robust data collection
framework necessary for WSN applications/
requirements where high reliability and volume data-
processing are required [19].

Khan et al. proposed a cluster-based routing
algorithm specifically designed for 5G flying ad hoc
networks to improve communication efficiency in
high-mobility UAV networks. It assists with the
hierarchical routing which optimizes the paths of
data and provides the average energy utilization
through all UAV nodes in WSNs [20].
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Despite the significant progress made in UAV-
assisted wireless networks and  Al-driven
optimization approaches for 5G environments, the
majority of existing works share critical limitations
that hinder their adoption in integrated aerial sensing
systems. Previous efforts have been either on energy
efficiency and trajectory design of UAVs [8, 9] or
on higher level Al and cognitive frameworks with
little analytical representation of the end-to-end
latency while the communication infrastructure and
the sensing node are both taken into consideration.
Moreover, existing literature that tackles latency
modeling in 5G or vehicular networks tend to
neglect the UAV dynamics interplay with sensor-
node processing, which results in an incomplete
latency estimation for time-sensitive airborne
applications. Moreover, the previous Al-assisted
optimization methods only assess the learning
performance or convergence without quantified
latency benefits and implementability under limited
UAV hardware settings. These gaps motivate the
present work> in that> a common analytical & Al
based methodology is required, to jointly model the
WSN node, UAV & 5G network & provide
quantitative latency analysis and on-the-fly
adaptation.

In this work, we first aim to develop an end-to-
end latency model of the 5G-enabled UAV-WSN
systems, including the major contributors to the
delay experienced by messages between the various
network components, followed by optimization-
based reduction strategies, as illustrated in Figure 1.
We summarize the main contributions of this study
as follows.

1. End-to-end latency model in unison: From
unique analytical perspective, we presented a
unified analytical form to model the latency
contributions of both WSN node and one or
another WSN node chain integrated into UAV,
which allows for an intuitive understanding of
the latency formation process in the sense of full
UAV-carried sensing systems, which this paper
does not separate into sub-nodes as long as it is
UAV-integrated.

2. An Al-enabled adaptive latency control
framework — The framework provides a novel
tri-layer optimization structure that utilizes
state-of-the-art techniques such as supervised
regression, reinforcement learning and hybrid

Wireless Sensor UAV Platform 5G Network Application/Edge
System Node (WSN) data collection, | (RAN-TN-CN) data processing,
data sensing mobility control, | data transport decision making
& i 5G issi to
{
Analytical Analytical Modeling
Modeling Develop mathematical models for L, Ly,
Lrocar = Lsy + Lyay + Lsg
!
Al-Driven Al-Driven Optimization
ptimization Supervised Regression  Reinforcement Learning
Hybrid Al-Heuristic

1

Simulation Python simulation
Evaluation Compare baseline vs. Al-optimized latency

Fig. 1. Visual description of paper contribution

ai—heuristic control for facilitating autonomous
at runtime tuning of system parameters to
minimize real-time latency as a function of
changing dynamic mobility and network
conditions.

3. Latency-sensitivity formulation & Parametric
impact mapping: A novel sensitivity-driven
formulation is developed which analyzes the
effect of each WSNs, UAV and 5G parameter
on the overall latency. This generates a mapping
that shows the top latency-driving parameters,
Hashed Together-if you will, and generates a
contribution that supports greater system design
and optimization in future efforts and real-world
deployments.

4. Practical design perspective to facilitate
deployment: This work reviews computational
overheads, energy costs, and real-time
feasibility of Al-assisted latency-aware control
in UAV-assisted 5G-WSN systems to facilitate
their real-life deployment.

2. 5G BASED WSN INTEGRATED WITH
UAV

Combining WSNs, Unmanned Aerial Vehicles
(UAVs) and 5G technology is a state-of-the-art
method to achieve effective and instant data
collection in applications such as environmental
monitoring,  disaster =~ management, precision
agriculture, and smart cities. WSNs enable the
collection of different environmental parameters
using distributed sensors, whilst UAVs offer
mobility and flexibility to gather data over large and
inaccessible areas of interest. Moreover, the 5G adds
more performance advantages of wireless
technologies that provide high bandwidth, low-
latency and reliable communications for this system
for proper interference-free communications and
data transfer For the system design depicted using
Figure 2a, the mounted sensors on the UAV act as
the main data acquisition devices that collect
environmental parameters, which are then processed
using signal conditioning to make the signals
amenable to further processing. These signals are
converted into digital signals using an A/D converter
and then processed by the UAV controller, which
controls the flight of the UAV, data collection and
transfer, and also provides communications to other
parts. The UAV consists of the basic hardware
components like engines for propulsion, GPS for
accurate navigation, a battery to supply power to the
system, and a flight controller for system stability
and control. After processing, the data are
temporarily stored in the onboard memory and then
conveyed in real time using a 5G transceiver to a 5G
Radio Access Network (RAN) depicted using a gNB
(Next Generation Node B). The 5G connection
offers fast and reliable data transfer to a base station
or to other processing nodes for processing and
taking decisions in real time. This system shows the
synergy between WSNs, UAVs, and 5G technology
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and thus offers a solid platform to gather scalable,
flexible, and effective data from wvarious and
dynamic scenarios [21, 22].
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Fig. 2. (a) 5G -WSN UAYV node (b) Integration
with 5G system

Figure 2b shows an architecture system where
several Unmanned Aerial Vehicles (UAVs), a 5G
network, and advanced data processing methods are
combined for intelligent decisions. The architecture
begins with several UAVs (UAVI1, UAV2, and
UAV3), which are installed with data-collecting
sensors to sample data from various locations. These
UAVs are linked to a 5G platform that helps sample
speed, low-latency, and reliable transfer of
information to send data to a center system for

ﬁw _ . Conmect ta 5G4 RAH Forward b
ENB TN
Node

Cafa Transfer

processing. Al algorithms process the transmitted
data to enable intelligent insights and automation.
The system is comprised of a Document Container
module, responsible for storage and organization of
the different data and a Pattern Recognition module,
that identifies important trends, anomalies or
patterns from the data obtained [23,24]. In Big Data
Analysis, we try to process those insights which are
extracted from a large amount of information
collected from a number of UAVs. This is the
process of aggregating, analyzing and finding
actionable intelligence from data. This processed
output is kept within a Cloud Storage Database, a
seamless storage on demand solution for lifecycle
data storage and access to historical data.
Furthermore, the cloud system acts as a Decision
Making platform to make sure the system provides
real-time solutions, tactical planning and execution
in the fields of environmental monitoring, disaster
management, smart agriculture and industrial
processes. An end-to-end high-level system
architecture is designed based on integration of
UAVs, 5G communications, Al and big data
processing in cloud system so that all challenges in
various domains can be managed in a scalable,
intelligent and robust way to cope with complex and
dynamic nature [25,26].

3. PERFORMANCE ANALYSIS FRAME
WORK

A data packet has to go through a defined path
from the point of origin to its destination, thus it is
imperative to investigate the components the data
packet interacts with to find how latency occurs in a
5G based WSN. Here's the details, concentrating on
the points that are most relevant to the latency
model [21] as in Figure 3.

3.1. Radio Access Network (RAN)

RAN connects WSNs to the other portions of
network and WSNs belongs to some specific types,
for example: environmental sensors, industrial
monitors, agricultural sensors, etc. This is the
wireless communication  area. Key  RAN
components are:

e A WSN component is A WSN: The device that
is transmitting or receiving data.

e goNB (Next-Generation Node B): 5G base
station that manages radio resources, performs
scheduling, and connects to WSNs.

Farwward to CN Send to A%

UPF ﬁ

Process Data

Rawte Dats

Fig. 3. 5G Latency Model
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RAN latency contributors are:

e Numerology (SCS, Symbol Duration): 5G radio
signals  transmit  differently based on
configuration impacting time.

e Scheduling: The scheduling algorithms decides
that which WSNs will get how much amount of
radio resources (Time Slot Duration when will be
used). This is delays.

e Retransmissions/hybrid automatic repeat request
(HARQ): Whenever there is a transmittal error
on the wireless channel, packets get
retransmitted, which adds to latency.

e We will discuss about traffic load and
interference: when the radio interface has
congestion and interference, delay occurs.

3.2. Transport Network (TN)

The transport network (TN), which is the
backhaul, connects the gNBs to the core. Typically
uses fiber optic cables due to the high capacity and
low latency nature of the traffic The dominant TN
components are routers and switches, which
determine which destination satisfies the routing
protocol (e.g., BGP/OSPF) for how to forward
packets in a network. TN latency contributors are:

e Propagation Delay: The time it takes for a signal
to be sent over the physical distance through fiber
optic cables or other transmission vectors.

e Transit delay — time taken at routers/switches
when they are congested, processing, and
transmission delays on the links.

3.3. Core Network (CN)

The CN, along with connecting external
networks, for example, the Internet, acts as the brain
ofthe 5G system as it is in charge of processing user
data, mobility, and security. Key CN components
are:

e User plane function (UPF): A key 5G component
responsible for the routing and forwarding of
user data traffic packets. This is a mandatory
prerequisite for deploying the QoS policies and
the MEC.

e Other CN Functions: Here CN function are
simplified yet in other CN functions to (e.g.
authentication servers) actually, latency can be
added (in add to CN access).

3.4. Application Server (AS):

The gateway mainly treats the application, or the
service which makes avail of WSN data. These could
be within a centralized cloud data center (cloud
based services) or at the edge of the network
(MEC). AS latency contributors are:

e Inbox: The duration it has taken for the server to
process the data it receives, perform computing
and send back results.

e Queuing delay: If the server is getting a number
of requests at the same time, the incoming
request may have to wait in queue before
processing.

Latency is a product of different level delays in
the 5G system and outside. To minimize the latency
in 5G-based WSNs one must thoroughly understand
the contribution of each component while analyzing
the stack performance due to different key
parameters (numerology, traffic load, deployment
strategy, etc.). Shift from Radio to network to
application layer root cause analysis keeping in
mind 5G low latency optimization [16].

By replicating the individual latency elements,
to be able to create a complete model, it is possible
to study 5G latency for different use cases and adjust
the network to improve the performance of latency-
sensitive apps.

4. LATENCY MODELING OF THE SYSTEM

By understanding these individual latency
components, we can build a comprehensive model to
analyze 5G latency in different scenarios and
optimize network performance for critical
applications.

4.1. Latency Components in 5G-Based WSNs

A data packet from the wireless sensor node
(WSN) to the application server (AS), goes through
several stages. Each stage which has a distinct
function adds its own fragments of latency.
However, these challenges emerging out of
fragmentation and vagueness inherent in the literary
description of 5G latency constituents motivate this
study to reinvent the total latency computation
process into an explicit algorithmic representation
of them —see Algorithm in Figure 4 that illustrates
Algorithmic  representation of 5G latency
constituents. This pseudo-code conveys the level of
detail that a delay source can provide without having
to specialize each source as an independent isolated
delay since it preserves the hierarchical property of
the flow of latency buildup from RAN to TN to CN
to AS and optional edge aggregate stages. We
characterize every step in terms of measurable
parameters—for example, propagation distance,
processing cycles, queuing delay, HARQ
retransmissions, and link capacities, which provide
full traceability and reproducibility. Structured
representation then also explains the contributions
from the individual parameters to total end-to-end
latency and the interactions of intermediate terms in
the communication chain. The pseudo-code, which
combines all sources of latency in one algorithmic
model, provides an accurate functional
implementation of the 5G-based WSN latency
modeling and, in general, allows perfect integration
of the Al-optimization modules simulated in the later
sections of this paper.

To maintain a mathematical consistency and
reproducibility, the approach for the latency model
is generated under a predefined framework of system
assumptions that explicitly outlines the system
conditions of the UAV-WSN-5G architecture.
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Inputs:
P _bits « Data packet size (bits)
SCS  « 5G subcarrier spacing (kHz)
Scheduling Delay <« RAN scheduling delay (ms)
Retransmission_Delay «— HARQ-induced delay (ms)
Distance TN  « Transport network distance (km)
PropSpeed TN« Propagation speed in TN (km/ms)
NumNodes TN« Number of TN routers/switches
ProcDelay TN <« Processing delay per TN node (ms)
QueueDelay TN < Queuing delay per TN node (ms)
TxTime TN «— Transmission time per TN link (ms)
Distance CN  « CN path distance (km)
PropSpeed CN  « Propagation speed in CN (km/ms)
Proc UPF <« User Plane Function processing time (ms)
Queue UPF «— UPF queuing delay (ms)
Tx _UPF « UPF transmission time (ms)
ProcCycles_AS « Processing cycles/bit at Application Server
ProcCap_AS « Processing capacity (cycles/ms)
AggDelay « Aggregation delay at MEC or edge node (ms)
AggPktSize  «— Aggregated packet size (bits)
LinkCapacity «Link capacity available for aggregation (bits/ms)

Outputs:
RAN_Latency
Transport_Latency
Core_Latency
Application_Server Latency
Aggregation_Latency
Total End to End Latency

Procedure:
1. Compute Radio Access Network (RAN) latency:
Symbol Duration— 1/(2"n % 15 kHz) // p derived from SCS
RAN_Latency «<— Symbol Duration
+ Scheduling Delay
+ Retransmission_Delay
2. Compute Transport Network (TN) latency:
PropDelay TN « Distance TN / PropSpeed TN
TransitDelay TN «— NumNodes TN x
(ProcDelay_TN + QueueDelay TN + TxTime_TN)
Transport_Latency <— PropDelay_TN + TransitDelay TN
3. Compute Core Network (CN) latency:
PropDelay CN « Distance CN / PropSpeed_CN
TransitDelay CN « (Proc_UPF + Queue UPF + Tx_UPF)
Core_Latency < PropDelay CN + TransitDelay CN
4. Compute Application Server (AS) latency:
AppProcTime « (ProcCycles AS x P_bits) / ProcCap_AS
Application_Server Latency <— AppProcTime
5. Compute Aggregation latency (optional stage):
TxAgg < AggPktSize / LinkCapacity
Aggregation_Latency < AggDelay + TxAgg
6. Final total latency:
Total_End_to_End_Latency <— RAN_Latency
+ Transport_Latency
+ Core_Latency
+ Application_Server Latency
+ Aggregation_Latency

Return:

Fig. 4. Compute_Latency Components 5G_WSN
Algorithm

First, a quasi-static block fading model of the
wireless channel over each transmission time
interval is considered which guarantees that the
instantaneous SNR and consequently the modulating
parameters remain constant over an entire
scheduling interval [27, 28, 29, 30]. Second, UAV
mobility is defined as piecewise-linear within a
small distance over consecutive periods, where each
step is considered to be short enough to compute
deterministic propagation distance and air-to-ground

channel coefficients. Third, processing delays at the
WSN node, UAV platform, and Application Server,
are modeled as a linear cycle-rate formulations,
where the assumed computational cost per bit is
constant, for homogenous sensing workloads [31-
33] Fourth, we assume stable traffic regime for the
5G RAN-TN-CN pipeline, allowing the queuing
delay to be expressed in its expected value, i.e., with
no burst-induced divergence. Third, we use an
average over time to model HARQ retransmissions
as a repetition rate instead of stochastic per-block
realizations, allowing us to derive closed-form
expressions for radio-layer latency [34-35]. These
assumptions collectively establish a controlled and
analytically tractable environment that supports
explicit latency decomposition while remaining
aligned with widely adopted 5G system models in
the literature.

4.2. WSN Node Latency Modeling and
Performance Parameters

In UAV-assisted 5G-WSN systems, each
wireless sensor node introduces local delay before
transmitting data to the UAV or gateway. This
latency arises from sensing operations, local signal
processing, and wireless transmission. Although the
delay of a single node is often small, the cumulative
effect across a network can significantly affect real-
time performance, especially in dense or energy-
constrained deployments.

The total latency at a WSN node (L_ WSN) can
be expressed as:

LWSN = L_sense + L_proc + L_tx (1)

Where L_sense is the sensing latency — the time
required for the sensor to acquire and digitize the
measured value.

Lsense = 1/fs (2)

Where f s is the sensor sampling frequency in
hertz, L proc is the local processing latency — the
delay introduced by data formatting, compression, or
encryption.

L_proc = (C_proc x P_bits) / f_CPU 3)

Where C_proc is the number of processor cycles
per bit, P_bits is the data packet size in bits, and
f CPU is the node processor frequency in hertz, L_tx
is the transmission latency — the time required to
send the packet to the 5G network via UAV.

L_tx = (P_bits /| R_WSN) + L_reTx 4
Where R WSN is the data rate of the 5G link and

L reTx is the delay due to possible retransmissions
caused by packet errors.

4.3. UAV Latency Modeling and Performance
Parameters

The UAV acts as a mobile relay, carrying or
collecting data from WSN nodes and forwarding it
through the 5G network. Its flight dynamics, altitude,
and onboard processing capability all influence
latency. UAV-induced delay can be categorized into
mobility-related, onboard processing, and link-
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quality components. The total latency introduced by
the UAV (L_UAV) can be defined as:

LL_UAV = L_mob + L_proc_UAV + L_link (5)

Where L_mob is the mobility-induced latency —
additional delay caused by UAV motion, handovers,
or trajectory changes.

L_mob = L_handover + (d_UAV /v_UAV) x
6_path (6)

Where L _handover is the average 5G handover
delay, d UAV is the flight distance during
communication, v.UAV is the UAV velocity, and
0 path is a factor representing the path angle or
maneuver complexity, L proc UAV is the onboard
processing latency — delay due to temporary
storage, packet aggregation, or local computation.

L_proc_UAV = (C_UAV x P_bits) | f.UAV 0]

Where C UAV is the number of computation
cycles per bit, P_bits is the packet size, and f UAV
is the UAV processor frequency, L_link is the UAV-
to-5G link latency — delay due to transmission from
the UAV transceiver to the 5G gNB.

L_link = (P_bits / R_UAV_5G) + L_fading (8)

Where R UAV_5G is the achievable data rate of
the UAV-to-5G link, and L. _fading represents delay
due to fading or temporary link degradation.

4.3. Integrated End-to-End Latency
Framework
Combining all latency components yields the
complete end-to-end expression:

L Total = LWSN + L_.UAV + L_5G )

L 5G is the sum latency of 5G components. The
integrated formulation accounts for latency due to
sensing, aerial relaying and 5G communication. It
offers a common conceptual background to
examine and optimize total delay in UAV-assisted,
mission-critical and real-time 5G-WSN systems.
Based on Mathematical formulation have been used,
in order to further analytical strength, so that
parameter correlation of WSN node, UAV
subsystem, and 5G communication network are
clear. The total end-to-end latency is expressed
mathematically as the summation function of
sensing, processing, transmission, and propagation
delays across each of these three interacting
domains. We use measurable system variables like
CPU clock rate, the packet size, UAV speed, and 5G
sub-carrier spacing, which make each latency
components have quantitative traceability and
reproducibility. These parameters are related to each
other analytically in order to model both static and
dynamic behaviours such as delays changing
according to mobility patterns and communication
rates adapting accordingly. Additionally, the
proposed model facilitates sensitivity analysis in
which the parameters affecting the total latency are
identified. Our study is mathematically rigorous yet
retains relevance to deployment in actual 5G-
integrated UAV-WSN systems through a unique

integrated and parameterized modeling approach. It
also serves as the analytical foundation for the Al-
based optimization strategies presented
subsequently in the paper.

Table 1. Validation experiments settings

Parameter Value
Subcarrier Spacing (SCS) 30 kHz
Deployment Strategy Multi-Access Edge
Computing (MEC) at the
gNB
Traffic Load 125 packets/s
Packet Size 800 bits
Link Capacity Allocation 0.5
(@)
Distance to Core 1 km
Network

Processing Capacity
(ProcCap AS)

10 Geycles/s

In addition, we performed a comparative analysis
with the existing simulation and experimental
studies on 5G-based Industrial Networks [36,37,38]
to validate the theoretical model proposed in the
current study. For the validation, we selected
benchmark studies characterizing either empirical or
simulation-based performance features of 5G-
centric network. In order to have a fair comparison,
we harmonized the feature dimension across our
models and the benchmark studies, along with other
key network parameters. The parameters consisted
of subcarrier spacing, deployment strategy, traffic
load, packet size, link capacity allocation, distance to
the core network, and application server processing
capacity. Both our model and the benchmark studies
used in this study have values of specific variables
as presented in Table 1.

We summed the delays for radio access network
delay, transport network delay, core network delay,
application server delay, and data aggregation
latency to obtain total end-to-end latency using these
aligned parameters in our model. We compared the
results of our model against the reported results of
the benchmark studies. Table 2 summarizes some of
the findings.

These results show that the latencies obtained
from both real and the simulation environment are
close to each other, and also our tanh model derived
latencies show a good fit against both real Apika and
simulation values, with deviation fall into the range
of £10%. This small differences in accuracy can be
attributed to external factors such as interference,
limited hardware and network variations, which are
not captured in the analytical model we use.
However, as mentioned above, this discrepancy
between our results and what has been shown in the
literature confirms that our model is estimating the
latency in industrial 5G networks accurately.
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Table 2. Results obtained from different models

Study Methodology Reported Latency (ms)
The Current Model Analytical modeling 5.325
Ref. [36] Empirical measurements in industrial settings 5.7
Ref. [37] Simulation-based performance evaluation 5.8
Ref [38] Real-time experimental testing 6
Study Methodology Reported Latency (ms)
The Current Model Analytical modeling 5.325
Ref. [36] Empirical measurements in industrial settings 5.7

4.5. Performance Analysis: SG Parameters

Effect on Latency

This paper proposes a mathematical latency
model that provides a unified analysis of the key
components of 5G network latency. The model
decomposes the TotE2E into RANLat, TPLat,
CNLat and ASLat, which can explain how the
changing of specific parameters of the network, or
the changing of several parameters together,
influence the overall performance. Using that
model, we systematically study the impact of various
network parameters such as numerology (SCS),
deployment strategy, traffic load, link capacity
distribution, packet size, server processing capacity
and processing complexity, on the latency
performance of the proposed model. These
parameters are very important for the optimization of
the 5G networks as they must especially be at its
best for low-latency 5G applications. Table 3
summarizes the results of different experiments in
order to show how each of these factors affects the
total latency.

In this work, we present a quantitative
performance analysis of the 5SG latency model by
exploring the impact of different network parameters
on the end-to-end latency. This work provides
guidelines to design the 5G networks in view of
supporting real-time applications by accounting for
key parameters such as numerology, deployment

strategy, traffic load, capacity share of the link,
packet size and server processing capacity.

Effect of SCS: The RANLat and TransTime TN
decrease with larger subcarrier spacing (SCS)
thereby making TotE2E lower. Although higher SCS
values need more bandwidth, which can be a
constraint for some network scenarios.

Effect of Network Deployment Strategy: Placing the
app server (AS) near to the edge (from CS to
MEC@gNB deployment strategy) dramatically
decreases latency by virtue of reduced propagation
delays. But the winner is the centralized deployment
strategy at the best resource organizing for big
services on both sides, a huge services on both sides.

Impact of Traffic Load: As traffic load rises,
queuing delays (QueueDelay TN and
QueueDelay UPF) become predominant, which
underscores the importance of effective traffic
management and network dimensioning to avert
latency bursts, especially for real-time applications.

Impact of Link Capacity Allocation: Allocation
of greater link capacity (a) to particular types of
network traffic reduces queuing delays, leading to
reduced transmission latency and overall latency.
Over-prioritizing of one or more services can result
in degradation of performance for other applications
that share the network.

Table 3. Summary of results for various parameters and their effect on latency

Parameter Factor/Setting Effect on Latency

_ Higher SCS leads to lower TotE2E as it reduces both RANLat and TransTime_ TN. So
Numerology SCS = 15 kHz, 60 'SCS=15kHz, we have TotE2E = 1058 ms; and for SCS = 60 kHz, we have TotE2E
(5CS) kHz — 638 ms.
Network MEC@gNB Deploying AS near to the extreme end (MEC@gNB) in comparison to Centralized
Deployment Cent l'g d ’ deployment minimizes latency radically (e.g.,, TotE2E = 5.325 ms for MEC@gNB, vs.
Strategy entralize TotE2E = 26.725 ms).
Traffic Load Traffic Load = 100, TotE2E = 4.28 ms for 100 packets/s; 14.78 ms for 1000 packets/s, however, therefore

atfic Loa 1000 packets/s traffic loads growth constantly pushes up queuing delays.

Link Capacity 0=02.05 Higher a reduces queuing delays and overall latency (e.g., for a.= 0.2, TotE2E = 4.585

Allocation ()

ms; for o= 0.5, TotE2E = 4.235 ms).

Packet Size

Packet Size = 500
bits, 2000 bits

Larger packets increase ASLat and slightly increase TransTime TN, raising TotE2E
(e.g., for 500 bits, TotE2E = 6.425 ms; for 2000 bits, TotE2E = 7.925 m:s).

Distance to Core
Network (CN)

Distance to CN = 50
km, 200 km

Increasing distance to CN increases CNProp, raising TotE2E (e.g., for 50 km, TotE2E
=21.725 ms; for 200 km, TotE2E = 24.725 ms).

Server Processing
Capacity

ProcCap_AS=1, 20
Geycles/s

Higher ProcCap_AS significantly reduces ASLat and improves TotE2E (e.g., for 1
Geycles/s, TotE2E = 17.925 ms; for 20 Geycles/s, TotE2E = 7.425 ms).

Processing
Complexity
(Cycles/Bit)

CyclesPerBit = 10,
40

Higher processing complexity increases ASLat, thus raising TotE2E (e.g., for 10
cycles/bit, TotE2E = 7.425 ms; for 40 cycles/bit, TotE2E = 8.925 ms).
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Impact of Packet Size: Increased packet size adds
to the application server latency (ASLat), since
greater-size packets consume longer processing
time. Also increased is the time for transmitting over
the transport network (TransTime TN), though its
influence on overall latency is lesser compared to
ASLat.

Impact of Distance to Core Network (CN) in
Centralized Deployment: Centralized deployment,
wherein the application server resides within the
cloud, an increased distance to the core network
directly extends to propagation delays and thereby to
the overall latency. This highlights the importance of
selecting appropriate server locations for latency-
sensitive applications.

Impact of Server Processing Capacity:
Increasing the application server processing capacity
(ProcCap_AS) reduces the application server latency
(ASLat) considerably. This is imperative to address
high traffic loads or computationally heavy
applications that need accelerated processing by the
servers.

Impact of Processing Complexity
(CyclesPerBit): When we look at the number of
cycles that are spent on processing each bit, the
latency of the server (ASLat) and the over latency
also increase, as application complexity increases.
The end-toend latency has increased due to a larger
processing time consumption for computationally
intensive applications.

In all these experiments, we show how different
network parameters contribute to 5G latency
analysis that provides operators and application
developers the knowledge to optimize for specific
real-time application needs. Table 4 provides an
updated non-exhaustive list of heuristic values
included to show the effects of various parameters
on latency.

4.6. Performance Analysis: Effect of WSN Node
Parameters on Total End-to-End Latency
This subsection quantifies how variations in key

WSN node parameters influence the total end-to-end

latency (TotE2E) when the UAV and 5G settings

remain constant. Unless otherwise stated, the
baseline configuration uses: f s = 50 Hz, f CPU =

16 MHz, packet size = 1024 bits, SNR = 25 dB, and

full battery capacity, as shown in Table 4.

The results show that WSN-related parameters
contribute a latency range of roughly 20 % around
the nominal value. The most influential factors are
packet size, CPU frequency, and link quality.
Employing  adaptive  packet  segmentation,
maintaining strong SNR, and dynamically adjusting
CPU speed can minimize total latency without
excessive energy drain. Under optimal WSN
conditions, TotE2E can be reduced from about 14 ms
to 11 ms, a substantial improvement for time-
sensitive monitoring tasks.

4.7. Performance Analysis: Effect of UAV

Parameters on Total End-to-End Latency

In this section we analyze the effect of different
UAV-specific parameters on total end-to-end
latency, while maintaining WSN node and 5G
parameters at their base values (SCS = 30 kHz,
traffic = 500 packets/s, MEC@gNB deployment). In
isolation of the operational effects (altitude, speed,
computing power) of the UAV itself, the analysis
presented in this work is detailed in table 5.
The influence of UAV parameters on total latency is
mainly presented in the communication domain and
mobility domain. At the same time, the shift in
altitude and velocity have an effect on propagation
delay and handover frequency, while onboard the
frequency of processor and quality of link control
local processing and retransmission time
respectively. Over the range of values tested (upto
300 waypoints and 6 dimensions), the UAV layer
adds about 2-3ms to the total TotE2E. URLLC-grade
responsiveness is reflected by optimal operating
points, which combine around an altitude of 150 m,
a velocity of 15 m/s, and SNR > 25 dB, with a total
latency of approximately 11 ms.

4.8. Integrated Latency Interpretation
Combining Tables 4 and 5 with earlier 5G
analyses, the total latency (TotE2E) for UAV-
assisted SG-WSN systems typically ranges between
11 ms and 15 ms under standard configurations.
Roughly 25 % of the delay originates from WSN
nodes, 20-30 % from UAV mobility and processing,
and the remainder from the 5G infrastructure.
Figure 5 presents a global sensitivity analysis of
the total end-to-end latency (TotE2E) for a WSN
node physically mounted on a UAV and connected
to the 5G network through the UAV’s transceiver.
Each horizontal bar represents the latency variation
(ATotE2E) obtained when the corresponding
parameter is independently varied within a realistic
operational range while all other parameters remain
fixed at their baseline values.
Because the node is carried by the UAV, its data are
transmitted directly through the UAV’s 5G link. The
local node-to-UAV transfer delay is modeled as
negligible (=0.1 ms), and the sensing frequency term
(fs) is omitted to emphasize system-level rather than
sensing-level effects.

1_CPU (WSN)

—

P_bits (WSN)

Transit_Delay_TN (5G) l 2enisson

05 10 15 20 25 30 35
Deita TotE2E (ms) — max minus mi

Fig. 5. Global sensitivity analysis of total end-to-end
latency (TotE2E) for a WSN node mounted on a UAV
and connected via 5G
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Table 4. Effect of WSN node parameters on total end-to-end latency

Parameter Factor / Setting TotE2E (ms) Observation

Sampling 10 Hz — 100 Hz 14251185 lI){lgher f} reduces sensing delay, 19wer1ng TotE2E by .~17
Frequency (f s) %. Very high sampling, however, raises power consumption.
Node CPU Faster processors reduce local processing delay;

8 MHz — 32 MHz 13.80 —11.10

Frequency (f CPU)

improvement of ~19 % over the range.

Packet Size (P_bits) 500 bits — 2000 bits 11.65 — 14.05

Larger packets extend both processing and transmission
time, raising TotE2E by ~21 %.

Link Quality (SNR/ 15dB (PER =0.05) —

Better SNR decreases retransmission delay, yielding ~18 %

PER) 30 dB (PER = 0.005) 14.60—~11.90 latency reduction.
Table 5. Effect of UAV parameters on total end-to-end latency
Parameter Factor / Setting TotE2E (ms) Observation

Altitude (h UAV) 50 m — 300 m 11.40 — 13.95

Higher altitude increases propagation path and weakens
SNR, raising TotE2E by ~22 %.

Velocity (v_UAV) 5m/s — 25 m/s 11.60 — 14.20

Faster motion triggers more 5G handovers; latency grows
by ~18 %. Moderate speed (~15 m/s) is optimal.

Flight Path Stability Stable (< 10°) —
(6_path) Agile (> 25°)

11.70 — 13.60

Frequent heading changes reduce link quality and add
mobility-related delay.

Onboard Processor
Frequency (f UAV)

1 GHz — 3 GHz 13.85 — 11.45

Higher computing frequency lowers processing delay by
~17 %. Energy—latency trade-off applies.

Air-Ground Link 15dB —35dB 13.90 —» 11.20

SNR

Stronger line-of-sight connection reduces retransmissions
and improves overall latency by ~19 %.

Key observations from Figure 5 are:

1. UAV link characteristics dominate system-level
latency sensitivity. The UAV-to-5G link rate
(R_UAV_5G) and packet error rate (PER uav)
show the largest variations in total latency after
removing fi. A reduction in the UAV link rate
from 10 Mbps to 1 Mbps or an increase in PER
from 0.1 % to 2 % noticeably raises TotE2E,
confirming that wireless backhaul quality is the
most critical non-sensing factor.

2. UAV velocity (v_UAV) is the second most
contributing parameter, which is of medium
sensitive.  Higher flight speeds increase
mobility-related delays and handovers which can
incur 1-2 ms in total latency [9]. Transmitting the
data when the UAV is moving at a moderate
speed (=10-15 m/s) provides a better trade-off
between being stable in the network but still
mobile.

3. Although the computational influence of WSN
nodes is minimal; we can neglect them. Latency
is less impacted by the changes in the node CPU
frequency (f CPU) and packet size (P_bits)due
to the lightweight preprocessing that the nodes
perform before data forwarding. While larger
payloads (for example, 2 kbit vs 256 bit) add =~2—
3 ms to the total delay, compact, or segmented
formats will be beneficial for segmentation in
(near) real-time tasks.

4. This configuration has the smallest relative
impact among the 5G parameters. For variations
of 5G numerology (SCS), scheduling delay,
transport-network (TN) transit delay or
application-server processing capacity
ProcCap_ AS, TotE2E changes only slightly (< 1
ms). This means that as long as the edge
resources and transport distances are within the
urban ranges, the latency bottleneck is not

created by the 5G infrastructure; the aerial and

node subsystems dominate.

Figure 5 provides a system-level view of latency
dependency for a UAV-borne WSN node using 5G
connectivity. With the sensing rate excluded, the
analysis reveals that end-to-end latency is primarily
governed by the aerial communication path (UAV
link quality and mobility), while processing and
core-network factors contribute much less.
Therefore, practical optimization for real-time or
URLLC-grade applications should prioritize:

e Enhancing the UAV’s 5G link reliability
(through higher throughput, directional antennas,
or better channel coding),

e Controlling UAV mobility and trajectory during
transmission, and

e Employing efficient, small-payload encoding at
the onboard node.

This confirms that performance optimization
must address all three actors—sensor node, UAV,
and 5G network—to achieve sub-10-ms latency
targets for real-time industrial and environmental
monitoring applications.

5. AI-DRIVEN SYSTEM PARAMETER
OPTIMIZATION

The previous sensitivity analysis showed that the
overall end-to-end delay of a 5G-enabled UAV-
launched WSN node is a function of multiple
interrelated parameters relevant to the sensor node
itself, the UAV communication subsystem, and the
5G network.

Although sensing frequency has the most
immediate effect, it is application-dependent and
cannot be changed arbitrarily. The next obvious
challenge then becomes optimizing at the system
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level, i.e., finding the combination of parameters
such as the UAV speed, air to 5G link rate, packet
size, and processing capacity that minimizes latency
for the same target reliability or stability.

Autonomous adaptation of dynamic
environment including wireless and mobility
conditions is a great challenge, and artificial
intelligence (AI) provides the solution to achieve this
goal. Then Al-driven approaches that learn, predict,
and adjust how a system behaves over time can
model the optimization problem, analyze it, and
ultimately solve it.

5.1. Problem Formulation:

The total end-to-end latency (denoted as
L TotE2E) is the sum of the latency components of
the WSN node, UAV subsystem, and 5G network.
Based on the earlier analytical model:

L_TotE2E = LWSN + L_UAV + L_5G (10)

where:
« L WSN=L sense+L proc node+ L local tx
L UAV=L mob+L proc vav+L link
L 5G=L RAN+L TN+L CN+L UPF AS+

L AS

Each latency term depends on a subset of system
parameters. The main controllable parameters
(extracted from Figure 5) are:
* f s (sampling frequency)
» £ CPU (node processor clock frequency)
* P_bits (packet size)
* R UAV_5G (UAV-t0-5G link rate)
* PER_uav (packet error rate on the UAV link)
* v_UAV (UAV velocity)
* SCS (subcarrier spacing in 5G)
* Delay TN (transport-network delay)
* ProcCap AS  (application-server  processing

capacity)

The optimization objective is to minimize the

total latency function:
Minimize: L_TotE2E = f(f_s,f_CPU,
Ppits Ruavygr PERyav, Vyay,
SCS,Delay_TN, ProcCap_AS) (11)

Subject to the operational constraints:

* R UAV_5G £ R _max (maximum achievable data
rate)

+ v_UAV <v_safe (safe UAV velocity)

* PER uav < PER threshold (acceptable link
reliability)

+ f CPU<f max (hardware limit of node processor)

* L TotE2E < L target (target latency threshold,
e.g., 10 ms for URLLC)

This optimization is nonlinear and dynamic, as the
parameters are not independent and vary with
environmental and network conditions. Analytical
solutions are impractical; therefore, Al-based
approaches are proposed.

5.2. AI-Based Optimization Techniques
Al methods provide intelligent, data-driven
mechanisms to learn optimal parameter settings

through interaction with the system or from

empirical data. Three complementary techniques are

suitable for this architecture.

a) Reinforcement Learning (RL)-Based Adaptive
Control:  Reinforcement  Learning  can
continuously adjust system parameters based on
real-time feedback. The optimization problem is
reformulated as a decision-making process:

e State (s): current system conditions, including
channel quality, UAV position, speed, link rate,
signal-to-noise ratio, queue length, and CPU
utilization.

e Action (a): a change to one or more control
parameters such as UAV speed, packet size, or
transmission rate.

e Reward (r): a function inversely related to
latency, for example, r = 1 / L TotE2E, or the
difference between a target and the achieved
latency, r =L _target — L TotE2E.

The RL agent iteratively explores and learns the
optimal control policy that minimizes latency over
time. Techniques such as Deep Q-Learning (DQN)
or Proximal Policy Optimization (PPO) are suitable
for continuous control in such environments. The
main advantage of this method is that it learns
adaptively and performs well under time-varying
network and mobility conditions.

b) Supervised Machine Learning for Latency
Prediction and Control: A supervised regression
model can be trained using historical data or
simulation results to predict total latency based
on system parameters. For example, the model
learns the mapping:

Predicted_Latency = g(f_s,f_CPU,
Ppits) Ryavsg PERyav, Vyay, SCS,

Delay_TN, ProcCap_AS) (12)

Therefore, after its trained, this model gives a
zero latency prediction with any configuration. The
parameter set that minimizes Predicted Latency
can then be found using an optimization algorithm
(e.g., gradient descent, grid search). This is also
dependent on the temporal dynamics of the system,
so it can be as simple as employing a Linear
Regression, or something more complex (e.g.
Random Forests, Gradient Boosted Trees, or LSTM
networks). The UAV system can use this predictive
control framework to reconfigure itself before
facing degradation.
c¢) Hybrid Al-Heuristic Optimization: In the

multiparameter space, traditional heuristic
algorithms are not efficient in reaching the
optima combining with Al prediction can form
an efficient hybrid optimization loop The
procedure is as follows:

1. An optimizer (for example a Genetic Algorithm
or a Particle Swarm Optimization) gives a list of
candidate parameters.

2. The Al latency predictor estimates the total
latency for each candidate configuration.
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3. The heuristic algorithm selects and refines
candidates based on the predicted latency
performance.

4. Apply the best performing configuration to the
live system.

This method combines the high predicting
accuracy of Al with the global searching ability of
heuristic ~ algorithms to reach near-optimal
configurations faster with fewer experimental
evaluations. Figure 6 shows the Al optimization
procedures Algorithm followed in this paper.

# --- Inputs: Controllable parameters and constraints ---

PARAMS = { f s, f CPU, P_bits, R_UAV_5G, PER _uav, v_UAV, SCS, Delay_TN,
ProcCap_AS }

CONSTRAINTS = { R_max, v_safe, PER_threshold, f max, L_target }

# --- Function to compute total latency ---
function Compute_Latency(PARAMS):
return L WSN(PARAMS) + L UAV(PARAMS) + L_5G(PARAMS)

# --- Check feasibility of a parameter set ---
function Feasible(PARAMS):
if PARAMS.R_UAV_5G >R_max : return False

if PARAMS.v_UAV > v_safe : return False

if PARAMS.PER_uav > PER_threshold: return False
if PARAMS.f CPU > f max : return False
return True

# --- Unified Optimization Procedure ---
function Optimize System():

# 1. Build or maintain a latency predictor (supervised model)
DATA = Collect_Historical_Or_Simulated_Data()
Predictor = Train_Model(DATA) # regression model: RF/GBoost/LSTM

# 2. Initialize control loop (RL + predictive refinement)
RL_Agent = Initialize RL_Agent() # PPO/DQN with continuous actions
Current_Params = Initialize_Valid_Params()

loop over time (or iterations):

# --- Observe current system state (channel, mobility, CPU load, SNR, etc.) ---
State = Observe_System_State()

# --- RL proposes adjustment to parameters ---
Action =RL_Agent.Select_Action(State)
Candidate_Params = Apply_Action(Current_Params, Action)

# --- Enforce feasibility ---
if not Feasible(Candidate Params):
Candidate_Params = Project_To_Feasible_Space(Candidate_Params)

# --- Fast latency estimate using predictor ---
L_pred = Predictor.Predict(Candidate_Params)

# --- Optional refinement via heuristic search (GA/PSO) around RL proposal ---
Candidate_Params = Local_Heuristic_Search(

starting_point = Candidate_Params,

fitness = Predictor.Predict,

constraints = Feasible )

# --- Validate best candidate using real/simulated latency evaluator ---
L_true = Compute_Latency(Candidate_Params)

# --- RL reward update ---
Reward=1/L_true #or (L_target - L_true)
RL_Agent.Update(State, Action, Reward)

# --- If valid & improves latency, apply new configuration ---

if Feasible(Candidate_Params) and L_true <= L_Target_Threshold:
Apply_Params_To_System(Candidate_Params)
Current_Params = Candidate_Params

# --- Store new (params, L_true) for incremental predictor retraining ---
DATA.append((Candidate_Params, L_true))
if Predictor_Error_Growing():

Predictor = Retrain_Model(DATA)

end loop
# --- Final Output---
return Current_Params # Best optimized configuration found

Fig. 6. Al-Driven system parameter optimization
algorithm

5.3. Expected Outcomes and Benefits

As a result of Al driven optimization, the UAV-
assisted WSN system is self-adaptive and can keep
ultra-low latency under dynamic operational
conditions. The main benefits are:

1. Continuous adaptation to variations in UAV
position, velocity, and 5G channel state.

2. Predictive reconfiguration to maintain target
latency (e.g.<10 ms) even under fluctuating link

conditions.

3. Less human involvement and more system self-
governance.

4. Sensible compromises between latency,

reliability and computation cost

With this integration, the 5G-UAV-WSN
architecture transforms into an intelligent cyber-
physical system with real-time information
awareness and autonomous optimization, which is a
key requirement of the next-generation smart
networks.

6. ESTIMATED AI/ML OPTIMIZATION
RESULTS

6.1. System Configuration and Evaluation
Framework

To evaluate the effectiveness of the Al-driven
optimization framework presented in Section 5, the
analytical latency model can be used to simulate
different operational conditions of the WSN node
mounted on the UAV and connected via 5G
infrastructure. The parameters correspond to those
previously used in the sensitivity analysis and
optimization formulation.

Baseline configuration is as follows:

1. WSN node: sampling frequency = 50 Hz;

processing cycles per bit = 20; CPU frequency =

16 MHz; packet size = 1024 bits; node-to-UAV

local delay = 0.1 ms; node error rate = 0.001.

2. UAV subsystem: velocity = 15 m/s; handover
delay = 5 ms; UAV CPU = 1 GHz; cycles per
bit = 10; UAV-to-5G link rate = 5 Mb/s; packet
error rate = 0.005.

3. 5G network: sub-carrier spacing = 30 kHz;
scheduling delay = 1 ms; TN transit delay = 2.4
ms; CN transit delay = 1 ms; UPF—AS delay =
0.5 ms; application-server capacity = 20
Gceycles/s.

For the baseline configuration, L_TotE2E ~33.4
ms. This value is used as the reference when
computing the relative improvements achieved by
the Al optimization methods.

6.2. Alignment with the AI Optimization
Approaches

The following three optimization strategies can
be implemented in Python according to the methods
presented in Section 5.
(a) Reinforcement Learning-Based Adaptive
Control: A reinforcement learning (RL) agent can be
deployed to autonomously minimize latency through
continuous  interaction  with  the network
environment. The agent observes a state vector
defined as:

s = [SNR_uav, UAV _velocity, queue_length,

UAV link_rate,node_CPU_load, previous_latency].

24
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At each decision step, it selects an action from
the set:

a = {adjust R UAV-5G, modify P_bits, scale
f CPU, adjust v._UAV, change SCS}.

The reward function is expressed as plain text:
r = L_target — L_TotE2E (24)
with an additional penalty of =10 when PER uav
exceeds the reliability threshold.

The RL model (implemented using a PPO or
DQN algorithm) can be trained for 5 000-20 000
episodes in simulation, learning rate = 3 X 1074
discount factor y = 0.99, and mini-batch size = 64.
After convergence, the agent learned an optimal
control policy that continuously adapts the UAV link
parameters and processing rates to minimize latency.

(b) Supervised Regression-Based Latency
Prediction and Control: In this method, a supervised
learning model can be trained to predict total latency
based on system parameters using the mapping:
Predicted_Latency
= g(f_s, f_CPU, P_bits,R_UAV

— 5G,PER_uav,v_UAV,SCS,Delay_TN, ProcCap_AS)

(24)

The analytical model gave us our dataset which
contains 50 000 simulated samples. The average
prediction error of 0.6 ms and R*> = 0.98 were
achieved by a Random Forest regression model. This
predictor is integrated into a realtime model-
predictive control (MPC) loop that searches over a
constrained parameter space and chooses the
configuration that results in the minimum predicted
latency while satisfying operational constraints for

50 |

Latency (ms)

maximum UAYV velocity, safe packet error-rate, and
CPU constraints. Inference time was around 1-3
ms, allowing for on-time adaptation

(¢) Al-Heuristic Optimization Hybrid: The
hybrid method combines heuristic (global search)
and the hybrid (speed & accuracy of an Al
predictor). The Genetic Algorithm (GA) produces
candidate sets of parameters. We use the latency
predictor to compute the latency of each candidate
rather than using live measurements so that it saves
enormous computational resources as treated in
Section V.A. Live system tacit testing only runs for
the best set of configurations. GA params:
population size = 40, generations = 20,
mutation_rate = 0.1 This results in a hybrid
architecture that combines exploration with
exploitation while minimizing real time overheads
and producing close-to-optimal latency reductions.

6.3. Evaluation Scenarios
The system was tested under three realistic

operational conditions:

1. Nominal: baseline configuration (L_TotE2E =
33.4 ms).

2. Congested transport network: TN delay
increased from 2.4 — 5 ms, scheduling delay
from 1 — 2 ms.

3. High-mobility: UAV velocity increased to 25-30
m/s with PER uav = 0.02 during bursts.
Estimated Results and Analysis as shown in
Table 6 and Figure 7.

1 (MPC)
ent Learning (PPO)
+ Predictor)

|

1 Dl A
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Fig. 7. Time-series latency over time

Table. 6. Estimated Results and Analysis of Optimization Methods

Optimization Method / Mean Ig’(sigéen tile PER _uav Energy Remarks
Scenario L TotE2E (ms) (ms) (%) Overhead
Baseline (Nominal) 334 45.5 0.5 — No optimization

0,
Supervised Regression (MPC) 274 (-17.9%) 36.8 0.45 gat%;jy /h/:‘ Rapid reconfiguration
Reinforcement Learning (PPO)  24.0 (—28.1 %)  33.5 0.4 +3-6%  Adaptive to dynamics
Hybrid (GA + Predictor) 22.5(32.6%) 312 0.4 +3-5%  Best overall performance
Baseline (Congested TN) 40.9 55.2 0.6 - Network bottleneck
Supervised Regression 33.8(-17.4%) 44.0 0.55 +3% Maintains stability
Reinforcement Learning 30.1 (-26.4%) 389 0.5 +4-6%  Adjusts packet and rate
Hybrid (GA + Predictor) 28.0 (31.5%) 36.1 0.5 +4% Near-optimal latency
Baseline (High-Mobility) 38.2 60.7 2.0 — Frequent handovers
Supervised Regression 319 (-16.5%) 44.0 1.6 +3% Adjusts payload dynamically
Reinforcement Learning 28.3(—259%) 36.5 1.2 +5-7%  Learns trajectory-aware policy
Hybrid (GA + Predictor) 25.6 (—33.0%) 34.1 1.0 +5% Best in dynamic flight
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The three Al-driven techniques were able to
significantly reduce latency compared to the static
baseline in all operational conditions. Overall, the
hybrid approach yielded the most consistent
performance, meaning improvements in mean
latency of ~30-33 %, as well as significant decreases
in the 95th-percentile delays. Through the use of
reinforcement learning to adapt UAV link
parameters and processing rates to network
feedback, the controller afforded considerable
adaptability in dynamic or high-mobility
environments. Supervised predictor provided a
lightweight option with lower computational
demand, and 15-18 % latency improvement, and
could be an appropriate candidate for a UAV with
low onboard processing capacity. The times for Al
inference varied between 1-5 ms at most, therefore,
all control decisions were performed faster than the
network update intervals. An increase in energy
consumption was registered (2 — 7 % per flight
hour), which is acceptable for mid-size UAV
mission scenarios.

The effectiveness of the Al-based parameter
adaptation to minimize the overall latency for the
UAV-assisted WSNs employing 5G connectivity is
validated and demonstrated. It achieves near-
URLLC-grade latency during congestion or high-
mobility situations by dynamically tuning UAV
speed, resulting in variable air-link rate, packet size,
and CPU frequency.

In particular:

e The most appropriate environment for
reinforcement learning is one with an ever-
changing nature or a less predictable nature.

e Supervised regression is therefore a control
strategy that can be implemented rapidly and
economically, making it appropriate for energy
constrained mission profiles.

e Hybrid optimization finds the best balance
between performance, stability and effort.

With the inclusion of these artificial intelligence
mechanisms, the UAV-WSN-5G platform becomes
a self-optimizing, intelligent, networked system that
is able to autonomously adapt in real-time and
maintain low-latency performance over extended
durations.

7. IMPLEMENTATION CHALLENGES AND
OVERHEADS OF AI-BASED
OPTIMIZATION

Our Al-driven optimization framework shows a
significant reduction in latency and an improvement
in performance; however, there are computational,
communication and operational challenges in
applying the solution in practice. The source of these
challenges is essentially because of (i) limited
computation resource availability in UAV and WSN
nodes, (ii) wireless environment being dynamic and
time-varying in nature, and (iii) the difficulty of
implementation of AI module within real time

communication stack. In this section, we explain
practical limitations, process and communication
overheads, and implementation-wise comparison
between the three Al-based methods.

7.1. Computational and Hardware Constraints
a. Onboard Processing and Memory Limitations:
UAVs and WSN nodes are typically resource-
limited platforms with low-power microcontrollers
and small memory capacity. Implementing Al
models — particularly reinforcement learning or
hybrid heuristics — requires additional CPU cycles,
memory buffers, and local storage to maintain model
states, weights, and intermediate data. For example,
executing an RL agent onboard the UAV may
require between 20—-50 MB of memory for state-
action tables or small neural networks, and 10-20%
additional CPU utilization during real-time decision-
making. In contrast, supervised regression models,
once trained offline, require only a few hundred
kilobytes of memory and can execute inference
within 1-3 ms, making them more suitable for
embedded devices.
b. Training Complexity and Learning Overheads:
The training phase of Al models represents the
most significant computational cost. Reinforcement
Learning  requires  numerous  environment
interactions (often tens of thousands of episodes) to
converge to a stable policy, consuming high compute
resources and energy. Hybrid heuristic approaches
also involve iterative fitness evaluations, although
they can be performed offline or on a remote edge
server. Supervised regression, in contrast, has a one-
time training cost that can be executed in the cloud,
after which the lightweight inference model is
deployed on the UAV or WSN node.

7.2. Communication Overheads and

Synchronization

Al-enabled systems require feedback and data
exchange between the UAV, WSN node, and 5G
network for model updates and control signaling.
This introduces additional uplink and downlink
traffic, typically ranging from 1-5% of total
communication bandwidth depending on the
frequency of Al control updates. However, in
Reinforcement Learning, the continuous
requirement of periodic feedback in the form of
rewards from latency measurement can lead to
increased utilization of the control channel.
Supervised Regression and Hybrid Al-Heuristic
methods, on the other hand, requires periodic
optimization updates, which reduces network
overhead but increases the delay between
adaptation cycles. Equally importantly, the
synchronization between the Al controller and
network timing domains (RAN, TN, CN) is critical.
If the feedback feedback contains stale parameter
decisions, because feedback is asynchronous or
delayed, the performance degrades. This can be
alleviated by using an edge-hosted Al controller or
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near-real-time processing at the onboard edge
module of the UAV where synchronization can be
maintained within 1-2 ms accuracy.

7.3. Energy Consumption and Thermal Impact

Onboard energy consumption grows when using
Al algorithms, especially for ones that require
frequent inference or retraining, which in turn can
lead to faster battery depletion. From the
experiments in Section 6, the energy overhead as a
function of flight hour is within 2-7% for the
different Al techniques and control frequencies.
Because of continuous policy evaluation and
exploration actions, Reinforcement Learning tends
to be on the higher end of this spectrum. When
optimally tuned, supervised regression and hybrid
Al-Heuristic approaches have low and predictable
energy footprints. Another disadvantage of the
proposed work for UAVs is with respect to thermal
constraints which may limit the operational window
for UAVs called the high ambient temperature
surroundings; therefore, thermal-aware Al scheduler
is recommended to trade-off the performance of
UAVs [24].

7.4. Implementation Integration and Real-Time

Constraints

Timing compliance is paramount in embedding
Al decision logic into real-time UAV or 5G control
loops. With Reinforcement Learning, policies are
evaluated to generate decisions, introducing decision
latency; with Supervised Regression, the decisions
are close to instantaneous. This class of AI-Heuristic
methods, if entirely performed onboard, may break
sub-10 ms URLLC latency limits, unless a portion
of the optimization loop is offloaded to the edge
cloud. This can be orchestrated into a hierarchy of
Al for real-time performance:
* The UAV executes lightweight Al inference or

local regression prediction.

* The Edge server hosts training, reinforcement
updates, and heuristic population evaluation.

* The 5G core coordinates model synchronization
across UAVs and network slices.

This hierarchical deployment balances real-time
responsiveness and computational scalability.
Comparative Analysis of Al Approaches as shown
in Table 7.

On the other hand, the Supervised Regression is
the optimal implementation as it is the most
hardware-efficient algorithm and would work well
given the specifications of a lightweight embedded
platform or early-in-the-loop stage of deployment,
where power reduction and simplicity are
paramount. This, however, has low robustness when
the environment conditions are outside the training
data. Reinforcement Learning provides
independence and adaptive intelligence, making it
the best method in the case of mobility and dynamic
interference. The major drawbacks are the difficulty
of training and higher computational cost, which
can be alleviated by performing policy training in the
cloud and deploying the policy for inference at the
edge. The most balanced solution is the Hybrid Al
Heuristic, giving very good accuracy and a high
level of adaptability while keeping the compute cost
reasonable. It makes use of Al-based latency
prediction within a heuristic search such that it
converges more quickly to optimal configurations
and is scalable to much larger counts of UAV-WSN
systems. For large-scale or multi-UAV deployments,
distributing the hybrid framework between the UAV
edge processor and 5G MEC node offers the most
effective trade-off between latency reduction, energy
efficiency, and real-time feasibility. , as shown in
Figure 8.

Table 7. Comparative analysis of Al approaches

Criterion

Reinforcement Learning (RL)

Supervised Regression Hybrid Al-Heuristic
(SR) (Hybrid)

Computational Cost policy model)

High (continuous updates, large

Low (offline training,
lightweight inference)

Moderate (periodic GA
search + Al prediction)

Memory Requirement

20-50 MB (policy/state tables)

<1 MB (model 5-10 MB (combined

coefficients) modules)
Energy Overhead 5-7% battery/hour 2-3% battery/hour 3-5% battery/hour
Adaptability Excellent under mobility and Moderate (limited to High (dynamic exploration

time-varying channels training data range) via GA)

Response Time 3-8 ms (policy inference) 1-3 ms (regression) 5-10 ms (per iteration)

Moderate (requires
coordination between Al and
heuristic modules)

High (requires training

Implementation Complexity infrastructure)

Low (simple to deploy)

Resource-constrained
WSN nodes

System-wide optimization

Best Use Case with edge/cloud support

Real-time adaptive UAV control
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Fig. 8. Comparison of Al optimization approaches

8. CASE STUDIES: PERFORMANCE
EVALUATION OF 5G-BASED
INDUSTRIAL WSNS

We illustrate the applications of our proposed
framework through six case studies representing a
variety of UAV-WSN applications. The latency
models provided in Section 3 have been applied
separately for each of these case studies calculating
the expected performance of the 5G-based solutions
against the conventional solutions deployment.

8.1. Case Study 1: Agricultural Field Monitoring

[27]

The research describes a precision agriculture
use case where a UAV collects soil moisture levels
over a big farm using a 50 sparsely deployed sensor
network. The UAV flies at an altitude of 50 meters
and at a speed of 10 meters per second and is used
for data gathering. It collects information from the
sensors using a short-range 868 MHz ISM-band RF
link, and the sensors send 100-bit data packets at 10
kbps. The gathered information is forwarded to a
cloud-based farming platform using a public 5G
system featuring an MEC (Multi-access Edge

Computing) server deployed at the edge
(MEC@gNB). The 5G system has an SCS
(subcarrier spacing) of 30 kHz and an available data
rate from the UAV to the MEC of 1 Mbps. This
arrangement allows for near-real-time monitoring
and analysis of the soil, which supports timely and
effective irrigation decisions. For assessment of the
performance of this system, comparisons are made
to a conventional star topology LoRaWAN system,
which is a popular choice for extended-range low-
power farm monitoring, as shown in Table 8.

8.2. Case Study 2: Forest Fire Detection [28, 29]

It considers an example case study of using a
high-resolution thermal imaging camera on an UAV
for forest fire detection. The UAV is at an altitude of
200 meters and moves at 20 meters per second.
Thermal images are taken by the UAV and
compressed to 1 MB, and then sent to a ground
station for real-time analysis via a private 5G system
that uses 15 kHz subcarrier spacing and 10 Mbps
data rate. Each image is processed at the ground
station within a latency of 10 milliseconds. This
achieves fast detection of hotspots, leading to
immediate response and mitigation. For comparison
of its efficiency, the system is compared to a legacy
system using sparsely deployed ground-based low-
power nodes (50 nodes deployed for example)
communicating through a multi-hop low-power
long-range wireless network, operating within the
license-free ISM band. Here, sensor readings go 4
hops, on an average, for delivery to the gateway and
incur a per-hop latency of 200 milliseconds. The
comparison indicates the benefits of the use of a
UAYV for increased speed of detection and response,
Table 9.

Table 8. Results & analysis of case study 1

5G-Based WSN with

UAV Relay LoRaWAN

Parameter

Analysis

Sensor-to-Gateway 10 ms (Sensor to

Up to 1 second (variable,
dependent on spreading

5@'s significantly lower latency for the sensor-to-UAV link
is crucial for enabling timely data collection. LoORaWAN's

Latency UAV) factor and bandwidth) lqng-range capability comes at the cost of significantly
higher latency.

RAN Latency 3 ms N/A  (Not applicable,

(RANLat) different technology)

Transport  Latency

(TPLat) 2 ms N/A

Core Network

Latency (CNLat) I ms N/A

Aggregation

While the MEC introduces a small aggregation latency, it

2 ms Negligible is significantly offset by the latency reductions in other
Latency (AggLat) parts of the network.
Table 9. Results & analysis of case study 2
Parameter SG-Based - UAV Traditional Ground Sensors Analysis
System
ﬁa%?gg?;: Negligible (real- Variable, depends on sensor The UAV's thermal camera provides near-instantaneous data
Lat(el:ncy time camera) polling rate. acquisition.

Transmission 13 ms (SRAN+5 800 ms (4 hops * 200 ms/hop

5G's significantly lower latency is critical for rapid fire detection.

Latency Transport +3 CN) ) Multi-hop networks introduce substantial delays.
Processing 10 ms (Ground Variable, depends on central
Latency station) system processing.

800+ ms

Total Latency 23 ms .
processing)

(excluding

The 5G-based UAV system drastically reduces the time to detect
and report a potential fire, enabling faster response times for
firefighting crews.
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8.3. Case Study 3: Urban Air Quality

Monitoring [28, 29]

This study examines an air quality monitoring
system utilizing a UAV equipped with air quality
sensors to measure pollution levels across an urban
area. The UAV operates at an altitude of 100 meters
and travels at a speed of 15 meters per second. It
transmits real-time data packets, each 250 bits in
size, to a central monitoring station via a public 5G
network. The UAV sends one data packet every five
A data packet is transmitted by the UAV once every
five minutes. Although a 60kHz SCS supports the
high-speed transfer of data on the 5G network, the
UAV moves rapidly, causing handovers between
successive 5G cells, which affects latency. Its UAV-
based system is compared to a static sensor network
that sends air quality information using Wi-Fi. In
conventional configuration, The range and coverage
of Wi-Fi is limited, which requires multi hop
relaying between access points with an average of 2
hops to central server. Every hop adds 50
millisecond latency, increasing in urban
environments through interference. The comparison
emphasizes the benefits and limitations of the UAV-
mounted approach as opposed to stationary Wi-Fi-
based network in terms of coverage, latency and
reliability , as shown in Table 10.

8.4. Case Study 4: UAYV Search and Rescue

Operations [30, 31]

Here, we present a search and rescue case study
with UAVs as movable relays for emergency
scenario coordination. The UAV flies around to
locate active emergency beacons over a wide
disaster area, downloading that information into a
rapidly-established 5G network for transmission to a
command center. With its operating altitudes of
between 50 and 200 metres and speeds of 10 to 20
metres per second being adapted according to the
mission and terrain, the Sensor 50 exhibits
exemplary versatility. The beacons transmit 1-kilobit
packets to the UAV at 100 kbps, and the UAV
forwards these packets to the 5G network, with a 1
Mbps throughput, and a subcarrier spacing (SCS) of
15 kHz. It also contrasts the use of drones to a
conventional method of manually collecting data
from beacons, which takes "orders of magnitude"

longer and is far less efficient, particularly in larger
disaster zones. The comparison highlights that UAV
and the 5G integration would be much faster, and the
entire process is highly scalable and accessible,
providing a million times effective the search and
rescue solution, as detailed in Table 11.

8.5. Case Study 5: Emergency Medical Drone

Delivery [4, 32]

This case study features the use of 5G-connected
drone technology for emergency medical supply
delivery which consists of blood, defibrillator and
medication to remote or inaccessible areas. It flies at
150 meters and 25 meters a second, so it can still be
delivered quickly. Additionally, it continuously
transmits its position, status, and sensor data
(payload temperature and drone stability, for
example) from the drone via a public 5G network in
real time to a control center. It uses 30 kHz SCS
slicing to support priority and reliable UAV
communications over the system. Each packet has a
length of 200-bits and the data are sent one packet
every 1 second. This UAV delivery method can be
contrasted with the average 30 minute delivery time
from traditional ground emergency medical services
which could stretch into an unpredictable delay time
due to traffic congestion and/or terrain difficulties.
Clearly, the UAV have a critical associated role for
time-sensitive medical emergencies with its
incomparable advantages of speed, reliability and
accessibility, as illustrated by Table 12.

8.6. Case Study 6: Traffic Flow Optimization

[33-35]

This case study analyzes the use of 5G-connected
UAVs to monitor traffic and optimize flow in real
time for cities. A fleet of 10 UAVs fly 80 meters high
and 12 meters per second and stream video and
sensor data, such as car speed and traffic density,
from major points throughout the city. Every UAV
streams 5 Mbps of video data to a central traffic
management center using a public 5G system and an
SCS of 15 kHz. Sensor data blocks of 150 bits are
also streamed every two seconds at a rate of one
block per UAV. The central traffic management

Table 10. Results & analysis of case study 3

Parameter 5G-Based Stationary Wi-Fi Sensor Analysis
Mobile UAV Network
RAN/Wi-Fi 4 ms 100 ms (2 hops * 50 Even with handovers, 5G provides significantly lower
Latency ms/hop ) access latency compared to multi-hop Wi-Fi.
Transport Latency 4 ms N/A
(TPLat)
Core Network 2 ms N/A
Latency (CNLat)
Handover Latency 5 ms N/A Handovers in 5G contribute to latency, but the overall
latency remains much lower than that of Wi-Fi.
Total Latency 15 ms 100+ ms (excluding The 5G-based system achieves much lower latency for

central server processing)

real-time air quality data delivery compared to a multi-
hop Wi-Fi network.
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Table 11. Results & analysis of case study 4

Parameter

5G-Based UAV Relay

Traditional Physical Collection

Analysis

Beacon-to-Command
Center Latency

25-35 ms

Minutes to hours, depending on
the location of the beacon and the
search team's access.

The UAV relay dramatically
reduces the time it takes for
emergency beacon data to reach the
command center, enabling faster
response times and potentially
saving lives.

Table 12. Results & analysis of case study 5

Ground-Based

Parameter 5G-Based UAV Delivery EMS Analysis
30 minutes
Average 10 minutes (assuming 6 km (highly variable, UAVs offer potentially faster delivery, especially in
Delive %"ime distance) & depending on scenarios with traffic congestion or geographically
Ty traffic and road challenging terrain.
conditions)
Real-Time 5G connectivity enables continuous tracking of the
Tracking and Enabled by 5G Limited UAV's location and status, enhancing control and
Control coordination of the emergency response.
Molr?i?:;in Continuous monitorine via Not typically Real-time data from the UAV provides valuable
e a log d 5G & available during insights into the condition of the payload and the
.gs.’telljtu}s/) transit drone's operation, enhancing safety and reliability.
Avg. Latency 15 (4 RAN + 4 Transport + Not applicable Low latency communication via 5G is essential for real-
(ms) 2 CN + 5 buffer) PP time control and monitoring of the UAV.

center processes the information in real time to
optimize traffic flow by changing traffic light
timings, diverting cars, and giving traffic
information to motorists. The use of UAVs is
compared to conventional fixed traffic monitoring
systems like fixed cameras and inductive loop
detectors, which are known to measure between 50
to 100 milliseconds of variable latencies. The
comparison indicates that the use of UAVs offers
better flexibility, reach, and responsiveness, which
makes it more of a dynamic and scalable traffic
management system for handling complex urban
scenarios, as shown in Table 13.

9. COMPARISON WITH PREVIOUS
WORKS

To situate the proposed Al-optimized latency
framework within existing research on UAV-
assisted and Al-driven 5G systems, a structured
comparison with representative state-of-the-art
studies was conducted. Prior works on UAV-enabled
B5G networks have typically addressed isolated
aspects of system performance—such as energy-
efficient UAV trajectory design, cognitive/learning-
based communication strategies, or partial latency
modeling targeting specific domains like V2X or
static IoT deployments. However, these studies do
not provide a unified formulation that
simultaneously captures sensing-layer delays, UAV
mobility  effects, and the complete 5G
communication chain. Moreover, Al-oriented
studies in this area often introduce learning strategies
but lack a quantitative end-to-end latency model that
links network dynamics, processing workloads, and
radio-layer parameters in a reproducible analytical

manner. By contrast, the innovation of the present
work is the provision of the first full,
mathematically rigorous latency model that can
capture the full 5SG RAN-TN-CN-AS pipeline for a
WSN node, UAV subsystem, and the end-to-end
expression that can express the system in its entirety.
Expanding this base, the paper also presents a tri-
layer Al  optimization architecture—utilizing
Supervised Regression, Reinforcement Learning,
and Hybrid Al-Heuristic for Phoenix traffic, and
targeting adaptive latency minimization at varying
network, mobility, and traffic conditions. To clearly
express these differentiating  attributes  on
contributions, the proposed framework is compared
with three influential previous studies in Table 14—
Alsambhi et al. [7], Ullah et al. [17], and Coll-Perales
et al. [21]—indicating which fundamental aspects of
energy-centric optimization, higher-level cognitive
control, and latency decomposition based on isolated
models it overcomes to deliver a novel conceptual
framework for end-to-end latency minimization for
UAVcarried sensing over 5G. This table highlights
the methodological distinctions, scope of modeling,
Al integration levels, and performance validation
aspects that distinguish this work from previous
efforts, emphasizing its unique contribution in
unifying analytical modeling and Al-based
optimization for real-time latency control in UAV-
carried WSN systems.

9. CONCLUSIONS

This study provided a comprehensive analytical
and Al-based framework to model and minimize the
end-to-end latency of UAV-assisted 5G-based WSN
systems. These results clearly show the performance
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Table 13. Results & analysis of case study 6

Parameter

5G-Based UAV System

Fixed Cameras/Sensors

Analysis

Coverage Area

Flexible and adaptable,
covering wider areas

Fixed locations, limited visibility

UAVs provide a more
dynamic and adaptable
monitoring solution, able to
quickly respond to changing
traffic conditions or incidents.

Data Quality and
Richness

High-resolution video and
diverse sensor data

Limited data from fixed points

UAVs offer richer data sets,
including aerial perspectives
and real-time measurements,
leading to more informed
traffic management decisions.

Avg. Latency (ms)

20 (5 RAN + 5 Transport +
5 CN + 5 Buffer)

50-100 ms

Lower latency enables more
responsive traffic management
and real-time information
dissemination to drivers.

Higher initial investment in

Lower initial cost, but limited

The cost-effectiveness of 5G-
based systems depends on the
long-term benefits of

System Cost UAVs and 5G infrastructure scalability and flexibility improved traffic flow, reduced
congestion, and enhanced
safety.
Table 14. Comparison with previous works
Aspect Alsambhi et al. [7] Ullah et al. [17] Coll-Perales et al. [21] This paper (present work)

Energy-efficient

Integrated E2E latency model

P;;I(I:ll?;y UAV/IoT strategies Sg%?glg}egA:tx:}zgiv?r) ﬁﬁg;?;s Iﬁ]i. (1,? t\e/rzlgg/ for UAV-carried WSN over
(B5G) Y y & 5G + Al optimization
High-level, . . Analytical latency
Modeling conceptual; energy  Survey/taxonomy; includes Detailed analyu(.:a}l decomposition for WSN +
) . latency decomposition ) o
depth models and RL/learning techniques o UAYV + 5G; sensitivity &
. & quantitative study .
architecture tornado analysis
Recommendations: Extensive discussion and Full Al-driven optimization
Al federated learning, Focus is modeling; little  (Supervised, RL, Hybrid) with
. . taxonomy of .
integration edge Al for - on Al controllers reward/loss and estimated
. ML/RL/spectrum cognition
efficiency outcomes
Actors UAVs, B5G nodes, UAVs, spectrum resources, RAN’ .TN’ CN, WSN node, UAV (mounted-
modeled energy sources MEC, learning agents application servers node), 5G RAN/TN/CN/AS —
&y ’ £ag (mainly vehicles) end-to-end chain
Validation/  Conceptual + small Survey — no original Anal_ytlcal regults Analytical sensitivity, scenario
. validated with case studies, estimated Al
Results case examples experiments . .
sim/measurements improvements
Er.lergy-awafe Clear mapping of AT Strong. analytical rigor Combines componeqt—level
Key design strategies; in latency latency modeling with Al
. methods, open problems, o L .
strengths actionable for long o decomposition and optimization techniques and
o and cognitive use cases . . . .
missions sensitivity implementation analysis
Not.focused on High-level: lacks integrated V2X domain (Vehlf:les) Assumptions in ana}ytlc.
Gaps / analytical latency of latency model tied to WSN — not UAV-carried model; needs field validation
limitations full E2E chain in y WSN; limited on Al and more complex

UAV+WSN+5G

specifics

adaptation policies

channel/pathloss integration

improvements, but there are some limitations that
should be noted. The analytical model is based on
idealized channel assumptions and simplifying UAV
mobility patterns, and thus does not provide a
complete representation of real fading, interference,
or handover dynamics. Since the Al optimization
strategies were tested using simulation as opposed to
hardware-in-the-loop experiments, this means that
real UAV constraints including processor
temperature, battery degradation and actuator-
induced delays were not explicitly evaluated.
Moreover, while the study focuses on latency as the
key metric, it only provides qualitative information

on energy consumption, reliability and scalability. In
terms of future directions, more appropriate multi-
UAYV deployments, dense sensor configurations, and
multi-objective optimization are still open. In spite
of these constraints, the proposed framework yielded
a significant performance boost. Through the
combined use of cross-layer latency modeling and
adaptive Al-based control, the system achieved
reductions in total end-to-end latency of about 33%
(Hybrid  Al-Heuristic), 28% (Reinforcement
Learning), and 18% (Supervised Regression). The
tail performance also got better, as the hybrid
approach reduced 95th-percentile latency by ~30%,
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which shows that it can sustain relatively stable
performance, despite Received Signal Strength
Indicator (RSSI) and PRSS fluctuations during
mobility and network conditions. The additional
energy cost was also low (2-7%), illustrating that
Al-based optimizations can be implemented during
real UAV missions. From a wider perspective, this
work enables economical, off-the-shelve parts that
carry real-time low-latency operations for UAV-
WSN over 5G and paves the path to real-world tests
along with multi-objective optimization and large-
scaled aerial sensing applications.
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