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Abstract  

In this paper, we propose a systematized analytical and AI-assisted framework to compute the end-to-end 

latency of an unmanned aerial vehicle (UAV)-attached wireless sensor network (WSN) node communicating 

over a 5G linked communication system and to identify and minimize the latency within this link process. 

Recent literature has typically analysed networks or mobility, but our model integrates the latency contributions 

of WSN node, UAV platform and 5G network into a single mathematical model by considering the interactions 

of the three actors. With parameters of sensing, processing, transmission, and 5G routing, the analytical model 

enables us to quantify its components latency level that provides clear-base on the analysis of parameter 

sensitivity. In addition, we employ three AI-based optimization techniques to adaptively set system parameters 

to minimize latency while adapting to different network conditions, including Supervised Regression, 

Reinforcement Learning and Hybrid AI–Heuristic control. Using simulation-based evaluation we show that 

the hybrid approach obtains up to 33% less latency compared with the baseline, and up to 28% and 18% less 

latency than reinforcement learning and regression methods, respectively. These results confirm the feasibility 

of AI-driven latency adaptation for UAV-assisted WSNs over 5G, offering a practical and scalable approach 

toward next-generation low-latency aerial IoT systems. 
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1. INTRODUCTION 
 

The integration of 5G-capable Wireless Sensor 

Networks (WSNs) and Unmanned Aerial Vehicles 

(UAVs) holds great potential for applications that 

necessitate high-speed, low-latency 

communications. UAVs, being deployed within 

dynamic or difficult-to-reach scenarios, depend upon 

the use of immediate data transmit times to perform 

important functions within domains like 

environment monitoring, disaster management, and 

city infrastructure inspection. Conventional WSNs 

are significantly hampered by high latency, however, 

whenever they are deployed across large or high-

mobility regions, such as are typically the case for 

UAVs. 5G deployment introduces overheads for 

ultra-reliable low-latency communications 

(URLLC), a quality that bridges these shortcomings 

by reducing delay and facilitates seamless, real-time 

exchange of data between UAVs and processing 

centers [1,2]. Minimizing delay is essential for 5G-

capable UAV networks to maximize system 

performance, particularly for delay-critical 

operations. The subject of this paper is the 
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development of a latency model that analyzes and 

optimizes end-to-end delay at the various layers 

involved within the use of UAV-assisted WSNs. By 

examining sources of delay, including transmit time, 

network congestion, handover time, and edge 

processing time, the proposed model provides 

insights for assessing and projecting system behavior 

within actual deployments. Also, the 5G capability 

of network slicing, edge processing, and dynamic 

resources allocation can realize the user’s paradigm-

based latency management that serves application 

basis required by the UAVs [3,4] thereby, allow 

application-specific granularity to reach the data 

transmit speed defined by applications. 

The integration of 5G-capable WSNs with 

UAVs potentially provides significant applications 

ranging from environmental monitoring to disaster 

management and intelligent city development.  The 

use of 5G for its high speed, low latency, and 

improved connectivity to overcome the 

shortcomings of conventional WSNs facilitates 

dynamic sensor deployment, more data gathering, 

and better communications within hostile terrain. 

Critical studies in this direction have studied security 

protocols, management of networks, energy 

efficiency, and autonomous functionality in these 

hybrid 5G-WSN and UAV systems [5]. 

Liu et al. introduced the concept of the PSAP-

WSN framework, an authenticatable 5G-based WSN 

security protocol, to meet data security challenges on 

UAV-enabled networks, an essential area due to the 

vulnerability of the network to cyberattacks since 

drones fly across large, unguarded areas [6]. 

Alsamhi et al. indeed studied the potential of green 

Internet of Things (IoT) applications using UAVs 

and B5G networks, exploring methodologies to 

enhance the energy efficiency of the network and 

overcome the challenge of data gathering from 

remote areas in real time [7]. Khan et al. studied 

UAV swarm management in 6G networks and how 

Software-Defined Networking (SDN), along with 

Network Function Virtualization (NFV), 

technologies enable scalable management of 

networks for UAV-WSN frameworks, where 

swarms of drones dynamically respond to changing 

network needs [8]. 

Ch et al. studied security and privacy for WSNs 

using drones and proposed using blockchain 

technology for securing data exchanges across 5G 

drone networks, which is especially useful for drone 

missions requiring the collection and transfer of 

confidential data [9]. Qasim and Jawad created an 

energy-efficient opportunistic networking 

framework for 5G-capable drones, using edge 

computing to optimize energy saving while 

safeguarding communications, which is crucial for 

prolonged drone missions [10]. Likewise, 

Jagatheesaperumal et al. proposed a blockchain-

based framework for securing UAV networks within 

B5G/6G frameworks, giving particular importance 

to security protocols that improve trust upon data 

integrity since drones transmit data to land-based 

nodes within WSNs [11]. 

Khan et al. solved the problem of managing data 

within drone-based networks using hybrid 

techniques incorporating metaheuristic and 

blockchain smart contracts to enhance data 

management within UAV-WSN systems. It focused 

on energy management for prolonged missions and 

secure handling of data, both crucial for UAV-WSN 

setups deployed in remote and constrained-resource 

conditions [12]. Ranaweera et al. surveyed MEC-

based 5G networks and listed specific security 

threats that impact UAV-based WSNs. This 

contribution offers insights regarding 

countermeasures to make the security of UAVs 

capturing important environment or infrastructure-

related data more robust [13]. 

Li et al. proposed collaborative techniques for 

beamforming at the physical layer for securing 

communications within 5G-based WSNs, which 

meet the demand for robust communication 

protocols against frequent disconnection and 

environmental interference [14]. Tanwar et al. 

discussed applications of blockchains for UAVs for 

6G networks, mentioning that the use of blockchain 

together with trajectory optimization would enable 

secure and effective communications for data 

acquisition applications within UAV-WSN 

architectures [15]. Pandey et al. offered a survey on 

communications using UAVs, which included RF 

energy harvesting, an emerging application for 

UAV-based WSNs since it keeps drones operating 

for prolonged periods without using batteries 

exclusively. It is essential for a WSN deployment 

for monitoring on a large scale, in an ongoing 

manner [16]. Ullah et al. surveyed cognitive 

approaches for unmanned aerial vehicle (UAV)-

assisted 5G networks and provided some adaptation 

of AI methods for more efficient resource allocation 

and response latency in wide area wireless sensor 

network (WSN) deployments [17]. 

Alsamhi et al. examined edge intelligence of 

drones in the concept of B5G networks and 

highlighted how federated learning and blockchain 

could play a key role in enabling autonomous UAV 

solutions for WSN applications like environmental 

monitoring and disaster response[18]. Sharma et al. 

focused on the communication technologies for 

UAVs, with a special emphasis on the 5G-enabled 

architectures which lead to robust data collection 

framework necessary for WSN applications/ 

requirements where high reliability and volume data-

processing are required [19]. 

Khan et al. proposed a cluster-based routing 

algorithm specifically designed for 5G flying ad hoc 

networks to improve communication efficiency in 

high-mobility UAV networks. It assists with the 

hierarchical routing which optimizes the paths of 

data and provides the average energy utilization 

through all UAV nodes in WSNs [20]. 
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Despite the significant progress made in UAV-

assisted wireless networks and AI-driven 

optimization approaches for 5G environments, the 

majority of existing works share critical limitations 

that hinder their adoption in integrated aerial sensing 

systems. Previous efforts have been either on energy 

efficiency and trajectory design of UAVs [8, 9] or 

on higher level AI and cognitive frameworks with 

little analytical representation of the end-to-end 

latency while the communication infrastructure and 

the sensing node are both taken into consideration. 

Moreover, existing literature that tackles latency 

modeling in 5G or vehicular networks tend to 

neglect the UAV dynamics interplay with sensor-

node processing, which results in an incomplete 

latency estimation for time-sensitive airborne 

applications. Moreover, the previous AI-assisted 

optimization methods only assess the learning 

performance or convergence without quantified 

latency benefits and implementability under limited 

UAV hardware settings. These gaps motivate the 

present work> in that> a common analytical & AI 

based methodology is required, to jointly model the 

WSN node, UAV & 5G network & provide 

quantitative latency analysis and on-the-fly 

adaptation. 

In this work, we first aim to develop an end-to-

end latency model of the 5G-enabled UAV-WSN 

systems, including the major contributors to the 

delay experienced by messages between the various 

network components, followed by optimization-

based reduction strategies, as illustrated in Figure 1. 

We summarize the main contributions of this study 

as follows. 

1. End-to-end latency model in unison: From 

unique analytical perspective, we presented a 

unified analytical form to model the latency 

contributions of both WSN node and one or 

another WSN node chain integrated into UAV, 

which allows for an intuitive understanding of 

the latency formation process in the sense of full 

UAV-carried sensing systems, which this paper 

does not separate into sub-nodes as long as it is 

UAV-integrated. 

2. An AI-enabled adaptive latency control 

framework – The framework provides a novel 

tri-layer optimization structure that utilizes 

state-of-the-art techniques such as supervised 

regression, reinforcement learning and hybrid 

Fig. 1. Visual description of paper contribution 

ai–heuristic control for facilitating autonomous 

at runtime tuning of system parameters to 

minimize real-time latency as a function of 

changing dynamic mobility and network 

conditions. 

3. Latency-sensitivity formulation & Parametric 

impact mapping: A novel sensitivity-driven 

formulation is developed which analyzes the 

effect of each WSNs, UAV and 5G parameter 

on the overall latency. This generates a mapping 

that shows the top latency-driving parameters, 

Hashed Together-if you will, and generates a 

contribution that supports greater system design 

and optimization in future efforts and real-world 

deployments. 

4. Practical design perspective to facilitate 

deployment: This work reviews computational 

overheads, energy costs, and real-time 

feasibility of AI-assisted latency-aware control 

in UAV-assisted 5G-WSN systems to facilitate 

their real-life deployment. 

 

2. 5G BASED WSN INTEGRATED WITH 

UAV 

 

Combining WSNs, Unmanned Aerial Vehicles 

(UAVs) and 5G technology is a state-of-the-art 

method to achieve effective and instant data 

collection in applications such as environmental 

monitoring, disaster management, precision 

agriculture, and smart cities. WSNs enable the 

collection of different environmental parameters 

using distributed sensors, whilst UAVs offer 

mobility and flexibility to gather data over large and 

inaccessible areas of interest. Moreover, the 5G adds 

more performance advantages of wireless 

technologies that provide high bandwidth, low-

latency and reliable communications for this system 

for proper interference-free communications and 

data transfer For the system design depicted using 

Figure 2a, the mounted sensors on the UAV act as 

the main data acquisition devices that collect 

environmental parameters, which are then processed 

using signal conditioning to make the signals 

amenable to further processing. These signals are 

converted into digital signals using an A/D converter 

and then processed by the UAV controller, which 

controls the flight of the UAV, data collection and 

transfer, and also provides communications to other 

parts. The UAV consists of the basic hardware 

components like engines for propulsion, GPS for 

accurate navigation, a battery to supply power to the 

system, and a flight controller for system stability 

and control. After processing, the data are 

temporarily stored in the onboard memory and then 

conveyed in real time using a 5G transceiver to a 5G 

Radio Access Network (RAN) depicted using a gNB 

(Next Generation Node B). The 5G connection 

offers fast and reliable data transfer to a base station 

or to other processing nodes for processing and 

taking decisions in real time. This system shows the 

synergy between WSNs, UAVs, and 5G technology 
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and thus offers a solid platform to gather scalable, 

flexible, and effective data from various and 

dynamic scenarios [21, 22]. 

 
(2a) 

 
(2b) 

Fig. 2. (a) 5G -WSN UAV node (b) Integration  

with 5G system 

 

Figure 2b shows an architecture system where 

several Unmanned Aerial Vehicles (UAVs), a 5G 

network, and advanced data processing methods are 

combined for intelligent decisions. The architecture 

begins with several UAVs (UAV1, UAV2, and 

UAV3), which are installed with data-collecting 

sensors to sample data from various locations.  These 

UAVs are linked to a 5G platform that helps sample 

speed, low-latency, and reliable transfer of 

information to send data to a center system for 

processing. AI algorithms process the transmitted 

data to enable intelligent insights and automation. 

The system is comprised of a Document Container 

module, responsible for storage and organization of 

the different data and a Pattern Recognition module, 

that identifies important trends, anomalies or 

patterns from the data obtained [23,24]. In Big Data 

Analysis, we try to process those insights which are 

extracted from a large amount of information 

collected from a number of UAVs. This is the 

process of aggregating, analyzing and finding 

actionable intelligence from data. This processed 

output is kept within a Cloud Storage Database, a 

seamless storage on demand solution for lifecycle 

data storage and access to historical data. 

Furthermore, the cloud system acts as a Decision 

Making platform to make sure the system provides 

real-time solutions, tactical planning and execution 

in the fields of environmental monitoring, disaster 

management, smart agriculture and industrial 

processes. An end-to-end high-level system 

architecture is designed based on integration of 

UAVs, 5G communications, AI and big data 

processing in cloud system so that all challenges in 

various domains can be managed in a scalable, 

intelligent and robust way to cope with complex and 

dynamic nature [25,26]. 

 

3. PERFORMANCE ANALYSIS FRAME 

WORK 

 

A data packet has to go through a defined path 

from the point of origin to its destination, thus it is 

imperative to investigate the components the data 

packet interacts with to find how latency occurs in a 

5G based WSN. Here's the details, concentrating on 

the points that are most relevant to the latency 

model [21] as in Figure  3. 

 
3.1. Radio Access Network (RAN) 

RAN connects WSNs to the other portions of 

network and WSNs belongs to some specific types, 

for example: environmental sensors, industrial 

monitors, agricultural sensors, etc. This is the 

wireless communication area. Key RAN 

components are: 

• A WSN component is A WSN: The device that 

is transmitting or receiving data. 

• gNB (Next-Generation Node B): 5G base 

station that manages radio resources, performs 

scheduling, and connects to WSNs. 

 
Fig. 3. 5G Latency Model
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RAN latency contributors are: 

• Numerology (SCS, Symbol Duration): 5G radio 

signals transmit differently based on 

configuration impacting time. 

• Scheduling: The scheduling algorithms decides 

that which WSNs will get how much amount of 

radio resources (Time Slot Duration when will be 

used). This is delays. 

• Retransmissions/hybrid automatic repeat request 

(HARQ): Whenever there is a transmittal error 

on the wireless channel, packets get 

retransmitted, which adds to latency. 

• We will discuss about traffic load and 

interference: when the radio interface has 

congestion and interference, delay occurs. 

 

3.2. Transport Network (TN) 

The transport network (TN), which is the 

backhaul, connects the gNBs to the core. Typically 

uses fiber optic cables due to the high capacity and 

low latency nature of the traffic The dominant TN 

components are routers and switches, which 

determine which destination satisfies the routing 

protocol (e.g., BGP/OSPF) for how to forward 

packets in a network. TN latency contributors are: 

• Propagation Delay: The time it takes for a signal 

to be sent over the physical distance through fiber 

optic cables or other transmission vectors. 

• Transit delay — time taken at routers/switches 

when they are congested, processing, and 

transmission delays on the links. 

 
3.3. Core Network (CN) 

The CN, along with connecting external 

networks, for example, the Internet, acts as the brain 

of the 5G system as it is in charge of processing user 

data, mobility, and security. Key CN components 

are: 

• User plane function (UPF): A key 5G component 

responsible for the routing and forwarding of 

user data traffic packets. This is a mandatory 

prerequisite for deploying the QoS policies and 

the MEC. 

• Other CN Functions: Here CN function are 

simplified yet in other CN functions to (e.g. 

authentication servers) actually, latency can be 

added (in add to CN access). 

 
3.4. Application Server (AS):  

The gateway mainly treats the application, or the 

service which makes avail of WSN data. These could 

be within a centralized cloud data center (cloud 

based services) or at the edge of the network 

(MEC). AS latency contributors are: 

• Inbox: The duration it has taken for the server to 

process the data it receives, perform computing 

and send back results. 

• Queuing delay: If the server is getting a number 

of requests at the same time, the incoming 

request may have to wait in queue before 

processing. 

Latency is a product of different level delays in 

the 5G system and outside. To minimize the latency 

in 5G-based WSNs one must thoroughly understand 

the contribution of each component while analyzing 

the stack performance due to different key 

parameters (numerology, traffic load, deployment 

strategy, etc.). Shift from Radio to network to 

application layer root cause analysis keeping in 

mind 5G low latency optimization [16]. 

By replicating the individual latency elements, 

to be able to create a complete model, it is possible 

to study 5G latency for different use cases and adjust 

the network to improve the performance of latency-

sensitive apps. 

 

4. LATENCY MODELING OF THE SYSTEM 

 

By understanding these individual latency 

components, we can build a comprehensive model to 

analyze 5G latency in different scenarios and 

optimize network performance for critical 

applications. 

 

4.1. Latency Components in 5G-Based WSNs 

A data packet from the wireless sensor node 

(WSN) to the application server (AS), goes through 

several stages. Each stage which has a distinct 

function adds its own fragments of latency. 

However, these challenges emerging out of 

fragmentation and vagueness inherent in the literary 

description of 5G latency constituents motivate this 

study to reinvent the total latency computation 

process into an explicit algorithmic representation 

of them —see Algorithm in Figure 4 that illustrates 

Algorithmic representation of 5G latency 

constituents. This pseudo-code conveys the level of 

detail that a delay source can provide without having 

to specialize each source as an independent isolated 

delay since it preserves the hierarchical property of 

the flow of latency buildup from RAN to TN to CN 

to AS and optional edge aggregate stages. We 

characterize every step in terms of measurable 

parameters–for example, propagation distance, 

processing cycles, queuing delay, HARQ 

retransmissions, and link capacities, which provide 

full traceability and reproducibility. Structured 

representation then also explains the contributions 

from the individual parameters to total end-to-end 

latency and the interactions of intermediate terms in 

the communication chain. The pseudo-code, which 

combines all sources of latency in one algorithmic 

model, provides an accurate functional 

implementation of the 5G-based WSN latency 

modeling and, in general, allows perfect integration 

of the AI-optimization modules simulated in the later 

sections of this paper. 

To maintain a mathematical consistency and 

reproducibility, the approach for the latency model 

is generated under a predefined framework of system 

assumptions that explicitly outlines the system 

conditions of the UAV–WSN–5G architecture.  
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Inputs: 
    P_bits  ←  Data packet size (bits) 
    SCS     ←  5G subcarrier spacing (kHz) 

    Scheduling_Delay  ← RAN scheduling delay (ms) 

    Retransmission_Delay ← HARQ-induced delay (ms) 
    Distance_TN      ←  Transport network distance (km) 

    PropSpeed_TN     ←  Propagation speed in TN (km/ms) 

    NumNodes_TN      ←  Number of TN routers/switches 
    ProcDelay_TN     ←  Processing delay per TN node (ms) 

    QueueDelay_TN    ←  Queuing delay per TN node (ms) 

    TxTime_TN        ←  Transmission time per TN link (ms) 
    Distance_CN      ←  CN path distance (km) 

    PropSpeed_CN     ←  Propagation speed in CN (km/ms) 

    Proc_UPF   ← User Plane Function processing time (ms) 
    Queue_UPF        ←  UPF queuing delay (ms) 

    Tx_UPF   ← UPF transmission time (ms) 

    ProcCycles_AS ← Processing cycles/bit at Application Server 
    ProcCap_AS       ←  Processing capacity (cycles/ms) 

    AggDelay   ← Aggregation delay at MEC or edge node (ms) 

    AggPktSize       ←  Aggregated packet size (bits) 

    LinkCapacity ←Link capacity available for aggregation (bits/ms) 

 

Outputs: 
    RAN_Latency 

    Transport_Latency 
    Core_Latency 

    Application_Server_Latency 

    Aggregation_Latency 
    Total_End_to_End_Latency 

 

Procedure: 
1. Compute Radio Access Network (RAN) latency: 

     Symbol_Duration← 1/(2^μ × 15 kHz)  // μ derived from SCS 

        RAN_Latency ← Symbol_Duration 
                       + Scheduling_Delay 

                       + Retransmission_Delay 

2. Compute Transport Network (TN) latency: 
        PropDelay_TN ← Distance_TN / PropSpeed_TN 

        TransitDelay_TN ← NumNodes_TN × 

        (ProcDelay_TN +  QueueDelay_TN + TxTime_TN) 
        Transport_Latency ← PropDelay_TN + TransitDelay_TN 

3. Compute Core Network (CN) latency: 

        PropDelay_CN ← Distance_CN / PropSpeed_CN 
        TransitDelay_CN ← (Proc_UPF + Queue_UPF + Tx_UPF) 

        Core_Latency ← PropDelay_CN + TransitDelay_CN 

4. Compute Application Server (AS) latency: 
        AppProcTime ← (ProcCycles_AS × P_bits) / ProcCap_AS 

        Application_Server_Latency ← AppProcTime 

5. Compute Aggregation latency (optional stage): 
        TxAgg ← AggPktSize / LinkCapacity 

        Aggregation_Latency ← AggDelay + TxAgg 

6. Final total latency: 
        Total_End_to_End_Latency ← RAN_Latency 

                                   + Transport_Latency 

                                   + Core_Latency 
                                   + Application_Server_Latency 

                                   + Aggregation_Latency 

 

Return: 

Fig. 4. Compute_Latency_Components_5G_WSN 

Algorithm 

 

First, a quasi-static block fading model of the 

wireless channel over each transmission time 

interval is considered which guarantees that the 

instantaneous SNR and consequently the modulating 

parameters remain constant over an entire 

scheduling interval [27, 28, 29, 30]. Second, UAV 

mobility is defined as piecewise-linear within a 

small distance over consecutive periods, where each 

step is considered to be short enough to compute 

deterministic propagation distance and air-to-ground 

channel coefficients. Third, processing delays at the 

WSN node, UAV platform, and Application Server, 

are modeled as a linear cycle–rate formulations, 

where the assumed computational cost per bit is 

constant, for homogenous sensing workloads [31-

33] Fourth, we assume stable traffic regime for the 

5G RAN–TN–CN pipeline, allowing the queuing 

delay to be expressed in its expected value, i.e., with 

no burst-induced divergence. Third, we use an 

average over time to model HARQ retransmissions 

as a repetition rate instead of stochastic per-block 

realizations, allowing us to derive closed-form 

expressions for radio-layer latency [34-35]. These 

assumptions collectively establish a controlled and 

analytically tractable environment that supports 

explicit latency decomposition while remaining 

aligned with widely adopted 5G system models in 

the literature. 

 

4.2. WSN Node Latency Modeling and 

Performance Parameters 

In UAV-assisted 5G-WSN systems, each 

wireless sensor node introduces local delay before 

transmitting data to the UAV or gateway. This 

latency arises from sensing operations, local signal 

processing, and wireless transmission. Although the 

delay of a single node is often small, the cumulative 

effect across a network can significantly affect real-

time performance, especially in dense or energy-

constrained deployments. 

The total latency at a WSN node (L_WSN) can 

be expressed as: 

𝐿_𝑊𝑆𝑁 =  𝐿_𝑠𝑒𝑛𝑠𝑒 +  𝐿_𝑝𝑟𝑜𝑐 +  𝐿_𝑡𝑥    (1) 

Where L_sense is the sensing latency — the time 

required for the sensor to acquire and digitize the 

measured value. 

𝐿_𝑠𝑒𝑛𝑠𝑒 =  1 / 𝑓_𝑠       (2) 
Where f_s is the sensor sampling frequency in 

hertz, L_proc is the local processing latency — the 

delay introduced by data formatting, compression, or 

encryption. 

𝐿_𝑝𝑟𝑜𝑐 =  (𝐶_𝑝𝑟𝑜𝑐 ×  𝑃_𝑏𝑖𝑡𝑠) / 𝑓_𝐶𝑃𝑈    (3) 

Where C_proc is the number of processor cycles 

per bit, P_bits is the data packet size in bits, and 

f_CPU is the node processor frequency in hertz, L_tx 

is the transmission latency — the time required to 

send the packet to the  5G network via UAV. 

𝐿_𝑡𝑥 =  (𝑃_𝑏𝑖𝑡𝑠 / 𝑅_𝑊𝑆𝑁)  +  𝐿_𝑟𝑒𝑇𝑥    (4) 

Where R_WSN is the data rate of the 5G link and 

L_reTx is the delay due to possible retransmissions 

caused by packet errors. 

 

4.3. UAV Latency Modeling and Performance 

Parameters 

The UAV acts as a mobile relay, carrying or 

collecting data from WSN nodes and forwarding it 

through the 5G network. Its flight dynamics, altitude, 

and onboard processing capability all influence 

latency. UAV-induced delay can be categorized into 

mobility-related, onboard processing, and link-



DIAGNOSTYKA, Vol. 27, No. 1 (2026)  

Ali QI, Mohammed ZA.: Latency optimization in 5G-enabled UAV-assisted wireless sensor networks … 

7 

quality components. The total latency introduced by 

the UAV (L_UAV) can be defined as: 

𝐿𝐿_𝑈𝐴𝑉 =  𝐿_𝑚𝑜𝑏 +  𝐿_𝑝𝑟𝑜𝑐_𝑈𝐴𝑉 +  𝐿_𝑙𝑖𝑛𝑘 (5) 

Where L_mob is the mobility-induced latency — 

additional delay caused by UAV motion, handovers, 

or trajectory changes. 
𝐿_𝑚𝑜𝑏 =  𝐿_ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 +  (𝑑_𝑈𝐴𝑉 / 𝑣_𝑈𝐴𝑉) ×

 𝜃_𝑝𝑎𝑡ℎ            (6) 

Where L_handover is the average 5G handover 

delay, d_UAV is the flight distance during 

communication, v_UAV is the UAV velocity, and 

θ_path is a factor representing the path angle or 

maneuver complexity, L_proc_UAV is the onboard 

processing latency — delay due to temporary 

storage, packet aggregation, or local computation. 

𝐿_𝑝𝑟𝑜𝑐_𝑈𝐴𝑉 =  (𝐶_𝑈𝐴𝑉 ×  𝑃_𝑏𝑖𝑡𝑠) / 𝑓_𝑈𝐴𝑉    (7) 

Where C_UAV is the number of computation 

cycles per bit, P_bits is the packet size, and f_UAV 

is the UAV processor frequency, L_link is the UAV-

to-5G link latency — delay due to transmission from 

the UAV transceiver to the 5G gNB. 

𝐿_𝑙𝑖𝑛𝑘 =  (𝑃_𝑏𝑖𝑡𝑠 / 𝑅_𝑈𝐴𝑉_5𝐺)  +  𝐿_𝑓𝑎𝑑𝑖𝑛𝑔    (8) 

Where R_UAV_5G is the achievable data rate of 

the UAV-to-5G link, and L_fading represents delay 

due to fading or temporary link degradation. 

 

4.3. Integrated End-to-End Latency 

Framework 

Combining all latency components yields the 

complete end-to-end expression: 

𝐿_𝑇𝑜𝑡𝑎𝑙 =  𝐿_𝑊𝑆𝑁 +  𝐿_𝑈𝐴𝑉 +  𝐿_5𝐺    (9) 

L_5G is the sum latency of 5G components. The 

integrated formulation accounts for latency due to 

sensing, aerial relaying and 5G communication. It 

offers a common conceptual background to 

examine and optimize total delay in UAV-assisted, 

mission-critical and real-time 5G-WSN systems. 

Based on Mathematical formulation have been used, 

in order to further analytical strength, so that 

parameter correlation of WSN node, UAV 

subsystem, and 5G communication network are 

clear. The total end-to-end latency is expressed 

mathematically as the summation function of 

sensing, processing, transmission, and propagation 

delays across each of these three interacting 

domains. We use measurable system variables like 

CPU clock rate, the packet size, UAV speed, and 5G 

sub-carrier spacing, which make each latency 

components have quantitative traceability and 

reproducibility. These parameters are related to each 

other analytically in order to model both static and 

dynamic behaviours such as delays changing 

according to mobility patterns and communication 

rates adapting accordingly. Additionally, the 

proposed model facilitates sensitivity analysis in  

which the parameters affecting the total latency are 

identified. Our study is mathematically rigorous yet 

retains relevance to deployment in actual 5G-

integrated UAV–WSN systems through a unique 

integrated and parameterized modeling approach. It 

also serves as the analytical foundation for the AI-

based optimization strategies presented 

subsequently in the paper. 

 
Table 1. Validation experiments settings 

Parameter Value 

Subcarrier Spacing (SCS) 30 kHz 

Deployment Strategy Multi-Access Edge 

Computing (MEC) at the 

gNB 

Traffic Load 125 packets/s 

Packet Size 800 bits 

Link Capacity Allocation 

(α) 

0.5 

Distance to Core 

Network 

1 km 

Processing Capacity 

(ProcCap_AS) 

10 Gcycles/s 

 

In addition, we performed a comparative analysis 

with the existing simulation and experimental 

studies on 5G-based Industrial Networks [36,37,38] 

to validate the theoretical model proposed in the 

current study. For the validation, we selected 

benchmark studies characterizing either empirical or 

simulation-based performance features of 5G-

centric network. In order to have a fair comparison, 

we harmonized the feature dimension across our 

models and the benchmark studies, along with other 

key network parameters. The parameters consisted 

of subcarrier spacing, deployment strategy, traffic 

load, packet size, link capacity allocation, distance to 

the core network, and application server processing 

capacity. Both our model and the benchmark studies 

used in this study have values of specific variables 

as presented in Table 1 . 

We summed the delays for radio access network 

delay, transport network delay, core network delay, 

application server delay, and data aggregation 

latency to obtain total end-to-end latency using these 

aligned parameters in our model. We compared the 

results of our model against the reported results of 

the benchmark studies. Table 2 summarizes some of 

the findings. 

These results show that the latencies obtained 

from both real and the simulation environment are 

close to each other, and also our tanh model derived 

latencies show a good fit against both real Apika and 

simulation values, with deviation fall into the range 

of ±10%. This small differences in accuracy can be 

attributed to external factors such as interference, 

limited hardware and network variations, which are 

not captured in the analytical model we use. 

However, as mentioned above, this discrepancy 

between our results and what has been shown in the 

literature confirms that our model is estimating the 

latency in industrial 5G networks accurately. 
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Table 2. Results obtained from different models 

Study Methodology Reported Latency (ms) 

The Current Model Analytical modeling 5.325 

Ref. [36] Empirical measurements in industrial settings 5.7 

Ref. [37] Simulation-based performance evaluation 5.8 

Ref [38] Real-time experimental testing 6 

Study Methodology Reported Latency (ms) 

The Current Model Analytical modeling 5.325 

Ref. [36] Empirical measurements in industrial settings 5.7 

4.5. Performance Analysis: 5G Parameters 

Effect on Latency 

This paper proposes a mathematical latency 

model that provides a unified analysis of the key 

components of 5G network latency. The model 

decomposes the TotE2E into RANLat, TPLat, 

CNLat and ASLat, which can explain how the 

changing of specific parameters of the network, or 

the changing of several parameters together, 

influence the overall performance. Using that 

model, we systematically study the impact of various 

network parameters such as numerology (SCS), 

deployment strategy, traffic load, link capacity 

distribution, packet size, server processing capacity 

and processing complexity, on the latency 

performance of the proposed model. These 

parameters are very important for the optimization of 

the 5G networks as they must especially be at its 

best for low-latency 5G applications. Table 3 

summarizes the results of different experiments in 

order to show how each of these factors affects the 

total latency. 

In this work, we present a quantitative 

performance analysis of the 5G latency model by 

exploring the impact of different network parameters 

on the end-to-end latency. This work provides 

guidelines to design the 5G networks in view of 

supporting real-time applications by accounting for 

key parameters such as numerology, deployment 

strategy, traffic load, capacity share of the link, 

packet size and server processing capacity. 

Effect of SCS: The RANLat and TransTime_TN 

decrease with larger subcarrier spacing (SCS) 

thereby making TotE2E lower. Although higher SCS 

values need more bandwidth, which can be a 

constraint for some network scenarios. 

Effect of Network Deployment Strategy: Placing the 

app server (AS) near to the edge (from CS to 

MEC@gNB deployment strategy) dramatically 

decreases latency by virtue of reduced propagation 

delays. But the winner is the centralized deployment 

strategy at the best resource organizing for big 

services on both sides, a huge services on both sides. 

Impact of Traffic Load: As traffic load rises, 

queuing delays (QueueDelay_TN and 

QueueDelay_UPF) become predominant, which 

underscores the importance of effective traffic 

management and network dimensioning to avert 

latency bursts, especially for real-time applications. 

Impact of Link Capacity Allocation: Allocation 

of greater link capacity (α) to particular types of 

network traffic reduces queuing delays, leading to 

reduced transmission latency and overall latency. 

Over-prioritizing of one or more services can result 

in degradation of performance for other applications 

that share the network.  

 

 

 
Table 3. Summary of results for various parameters and their effect on latency 

Parameter Factor/Setting Effect on Latency 

Numerology 

(SCS) 

SCS = 15 kHz, 60 

kHz 

Higher SCS leads to lower TotE2E as it reduces both RANLat and TransTime_TN. So 

for SCS = 15 kHz, we have TotE2E = 10.58 ms; and for SCS = 60 kHz, we have TotE2E 
= 6.38 ms. 

Network 

Deployment 

Strategy 

MEC@gNB, 

Centralized 

Deploying AS near to the extreme end (MEC@gNB) in comparison to Centralized 

deployment minimizes latency radically (e.g.,, TotE2E = 5.325 ms for MEC@gNB, vs. 

TotE2E = 26.725 ms). 

Traffic Load 
Traffic Load = 100, 

1000 packets/s 

TotE2E = 4.28 ms for 100 packets/s; 14.78 ms for 1000 packets/s, however, therefore 
traffic loads growth constantly pushes up queuing delays. 

Link Capacity 

Allocation (α) 
α = 0.2, 0.5 

Higher α reduces queuing delays and overall latency (e.g., for α = 0.2, TotE2E = 4.585 

ms; for α = 0.5, TotE2E = 4.235 ms). 

Packet Size 
Packet Size = 500 

bits, 2000 bits 

Larger packets increase ASLat and slightly increase TransTime_TN, raising TotE2E 

(e.g., for 500 bits, TotE2E = 6.425 ms; for 2000 bits, TotE2E = 7.925 ms). 

Distance to Core 

Network (CN) 

Distance to CN = 50 

km, 200 km 

Increasing distance to CN increases CNProp, raising TotE2E (e.g., for 50 km, TotE2E 
= 21.725 ms; for 200 km, TotE2E = 24.725 ms). 

Server Processing 

Capacity 

ProcCap_AS = 1,  20 

Gcycles/s 

Higher ProcCap_AS significantly reduces ASLat and improves TotE2E (e.g., for 1 

Gcycles/s, TotE2E = 17.925 ms; for 20 Gcycles/s, TotE2E = 7.425 ms). 

Processing 

Complexity 

(Cycles/Bit) 

CyclesPerBit = 10, 

40 

Higher processing complexity increases ASLat, thus raising TotE2E (e.g., for 10 

cycles/bit, TotE2E = 7.425 ms; for 40 cycles/bit, TotE2E = 8.925 ms). 
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Impact of Packet Size: Increased packet size adds 

to the application server latency (ASLat), since 

greater-size packets consume longer processing 

time. Also increased is the time for transmitting over 

the transport network (TransTime_TN), though its 

influence on overall latency is lesser compared to 

ASLat. 

Impact of Distance to Core Network (CN) in 

Centralized Deployment: Centralized deployment, 

wherein the application server resides within the 

cloud, an increased distance to the core network 

directly extends to propagation delays and thereby to 

the overall latency. This highlights the importance of 

selecting appropriate server locations for latency-

sensitive applications. 

Impact of Server Processing Capacity: 

Increasing the application server processing capacity 

(ProcCap_AS) reduces the application server latency 

(ASLat) considerably. This is imperative to address 

high traffic loads or computationally heavy 

applications that need accelerated processing by the 

servers. 

 Impact of Processing Complexity 

(CyclesPerBit): When we look at the number of 

cycles that are spent on processing each bit, the 

latency of the server (ASLat) and the over latency 

also increase, as application complexity increases. 

The end-toend latency has increased due to a larger 

processing time consumption for computationally 

intensive applications. 

In all these experiments, we show how different 

network parameters contribute to 5G latency 

analysis that provides operators and application 

developers the knowledge to optimize for specific 

real-time application needs. Table 4 provides an 

updated non-exhaustive list of heuristic values 

included to show the effects of various parameters 

on latency. 

 

4.6. Performance Analysis: Effect of WSN Node 

Parameters on Total End-to-End Latency 

This subsection quantifies how variations in key 

WSN node parameters influence the total end-to-end 

latency (TotE2E) when the UAV and 5G settings 

remain constant. Unless otherwise stated, the  

baseline configuration uses: f_s = 50 Hz, f_CPU = 

16 MHz, packet size = 1024 bits, SNR = 25 dB, and 

full battery capacity, as shown in Table 4. 

The results show that WSN-related parameters 

contribute a latency range of roughly ±20 % around 

the nominal value. The most influential factors are 

packet size, CPU frequency, and link quality. 

Employing adaptive packet segmentation, 

maintaining strong SNR, and dynamically adjusting 

CPU speed can minimize total latency without 

excessive energy drain. Under optimal WSN 

conditions, TotE2E can be reduced from about 14 ms 

to 11 ms, a substantial improvement for time-

sensitive monitoring tasks. 

 

4.7. Performance Analysis: Effect of UAV 

Parameters on Total End-to-End Latency 

In this section we analyze the effect of different 

UAV-specific parameters on total end-to-end 

latency, while maintaining WSN node and 5G 

parameters at their base values (SCS = 30 kHz, 

traffic = 500 packets/s, MEC@gNB deployment). In 

isolation of the operational effects (altitude, speed, 

computing power) of the UAV itself, the analysis 

presented in this work is detailed in table 5. 

The influence of UAV parameters on total latency is 

mainly presented in the communication domain and 

mobility domain. At the same time, the shift in 

altitude and velocity have an effect on propagation 

delay and handover frequency, while onboard the 

frequency of processor and quality of link control 

local processing and retransmission time 

respectively. Over the range of values tested (upto 

300 waypoints and 6 dimensions), the UAV layer 

adds about 2-3ms to the total TotE2E. URLLC-grade 

responsiveness is reflected by optimal operating 

points, which combine around an altitude of 150 m, 

a velocity of 15 m/s, and SNR ≥ 25 dB, with a total 

latency of approximately 11 ms. 

 

4.8. Integrated Latency Interpretation 

Combining Tables 4 and 5 with earlier 5G 

analyses, the total latency (TotE2E) for UAV-

assisted 5G-WSN systems typically ranges between 

11 ms and 15 ms under standard configurations. 

Roughly 25 % of the delay originates from WSN 

nodes, 20–30 % from UAV mobility and processing, 

and the remainder from the 5G infrastructure.  

Figure 5 presents a global sensitivity analysis of 

the total end-to-end latency (TotE2E) for a WSN 

node physically mounted on a UAV and connected 

to the 5G network through the UAV’s transceiver. 

Each horizontal bar represents the latency variation 

(ΔTotE2E) obtained when the corresponding 

parameter is independently varied within a realistic 

operational range while all other parameters remain 

fixed at their baseline values.  

Because the node is carried by the UAV, its data are 

transmitted directly through the UAV’s 5G link. The 

local node-to-UAV transfer delay is modeled as 

negligible (≈0.1 ms), and the sensing frequency term 

(fₛ) is omitted to emphasize system-level rather than 

sensing-level effects.   

 
Fig. 5. Global sensitivity analysis of total end-to-end 

latency (TotE2E) for a WSN node mounted on a UAV 

and connected via 5G 
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Table 4. Effect of WSN node parameters on total end-to-end latency 

Parameter Factor / Setting TotE2E (ms) Observation 

Sampling 

Frequency (f_s) 
10 Hz → 100 Hz 14.25 → 11.85 

Higher f_s reduces sensing delay, lowering TotE2E by ~17 

%. Very high sampling, however, raises power consumption. 

Node CPU 

Frequency (f_CPU) 
8 MHz → 32 MHz 13.80 → 11.10 

Faster processors reduce local processing delay; 

improvement of ~19 % over the range. 

Packet Size (P_bits) 500 bits → 2000 bits 11.65 → 14.05 
Larger packets extend both processing and transmission 

time, raising TotE2E by ~21 %. 

Link Quality (SNR / 

PER) 

15 dB (PER = 0.05) → 

30 dB (PER = 0.005) 
14.60 → 11.90 

Better SNR decreases retransmission delay, yielding ~18 % 

latency reduction. 

 

Table 5. Effect of UAV parameters on total end-to-end latency 

Parameter Factor / Setting TotE2E (ms) Observation 

Altitude (h_UAV) 50 m → 300 m 11.40 → 13.95 
Higher altitude increases propagation path and weakens 

SNR, raising TotE2E by ~22 %. 

Velocity (v_UAV) 5 m/s → 25 m/s 11.60 → 14.20 
Faster motion triggers more 5G handovers; latency grows 

by ~18 %. Moderate speed (~15 m/s) is optimal. 

Flight Path Stability 

(θ_path) 

Stable (≤ 10°) → 

Agile (> 25°) 
11.70 → 13.60 

Frequent heading changes reduce link quality and add 

mobility-related delay. 

Onboard Processor 

Frequency (f_UAV) 
1 GHz → 3 GHz 13.85 → 11.45 

Higher computing frequency lowers processing delay by 

~17 %. Energy–latency trade-off applies. 

Air–Ground Link 

SNR 

15 dB → 35 dB 13.90 → 11.20 Stronger line-of-sight connection reduces retransmissions 

and improves overall latency by ~19 %. 

 

Key observations from Figure 5 are: 

1. UAV link characteristics dominate system-level 

latency sensitivity. The UAV-to-5G link rate 

(R_UAV_5G) and packet error rate (PER_uav) 

show the largest variations in total latency after 

removing fₛ. A reduction in the UAV link rate 

from 10 Mbps to 1 Mbps or an increase in PER 

from 0.1 % to 2 % noticeably raises TotE2E, 

confirming that wireless backhaul quality is the 

most critical non-sensing factor. 

2. UAV velocity (v_UAV) is the second most 

contributing parameter, which is of medium 

sensitive. Higher flight speeds increase 

mobility-related delays and handovers which can 

incur 1–2 ms in total latency [9]. Transmitting the 

data when the UAV is moving at a moderate 

speed (≈10–15 m/s) provides a better trade-off 

between being stable in the network but still 

mobile. 

3. Although the computational influence of WSN 

nodes is minimal; we can neglect them. Latency 

is less impacted by the changes in the node CPU 

frequency (f_CPU) and packet size (P_bits)due 

to the lightweight preprocessing that the nodes 

perform before data forwarding. While larger 

payloads (for example, 2 kbit vs 256 bit) add ≈2–

3 ms to the total delay, compact, or segmented 

formats will be beneficial for segmentation in 

(near) real-time tasks. 

4. This configuration has the smallest relative 

impact among the 5G parameters. For variations 

of 5G numerology (SCS), scheduling delay, 

transport-network (TN) transit delay or 

application-server processing capacity 

ProcCap_AS, TotE2E changes only slightly (< 1 

ms). This means that as long as the edge 

resources and transport distances are within the 

urban ranges, the latency bottleneck is not 

created by the 5G infrastructure; the aerial and 

node subsystems dominate. 

Figure 5 provides a system-level view of latency 

dependency for a UAV-borne WSN node using 5G 

connectivity. With the sensing rate excluded, the 

analysis reveals that end-to-end latency is primarily 

governed by the aerial communication path (UAV 

link quality and mobility), while processing and 

core-network factors contribute much less. 

Therefore, practical optimization for real-time or 

URLLC-grade applications should prioritize: 

• Enhancing the UAV’s 5G link reliability 

(through higher throughput, directional antennas, 

or better channel coding), 

• Controlling UAV mobility and trajectory during 

transmission, and 

• Employing efficient, small-payload encoding at 

the onboard node. 

This confirms that performance optimization 

must address all three actors—sensor node, UAV, 

and 5G network—to achieve sub-10-ms latency 

targets for real-time industrial and environmental 

monitoring applications. 

 

5. AI-DRIVEN SYSTEM PARAMETER 

OPTIMIZATION 
 

The previous sensitivity analysis showed that the 

overall end-to-end delay of a 5G-enabled UAV-

launched WSN node is a function of multiple 

interrelated parameters relevant to the sensor node 

itself, the UAV communication subsystem, and the 

5G network. 

Although sensing frequency has the most 

immediate effect, it is application-dependent and 

cannot be changed arbitrarily. The next obvious 

challenge then becomes optimizing at the system 
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level, i.e., finding the combination of parameters 

such as the UAV speed, air to 5G link rate, packet 

size, and processing capacity that minimizes latency 

for the same target reliability or stability. 

Autonomous adaptation of dynamic 

environment including wireless and mobility 

conditions is a great challenge, and artificial 

intelligence (AI) provides the solution to achieve this 

goal. Then AI-driven approaches that learn, predict, 

and adjust how a system behaves over time can 

model the optimization problem, analyze it, and 

ultimately solve it. 

 

5.1. Problem Formulation: 

 The total end-to-end latency (denoted as 

L_TotE2E) is the sum of the latency components of 

the WSN node, UAV subsystem, and 5G network. 

Based on the earlier analytical model: 

𝐿_𝑇𝑜𝑡𝐸2𝐸 =  𝐿_𝑊𝑆𝑁 +  𝐿_𝑈𝐴𝑉 +  𝐿_5𝐺 (10) 

where: 

• L_WSN = L_sense + L_proc_node + L_local_tx 

• L_UAV = L_mob + L_proc_uav + L_link 

• L_5G = L_RAN + L_TN + L_CN + L_UPF_AS + 

L_AS 

Each latency term depends on a subset of system 

parameters. The main controllable parameters 

(extracted from Figure 5) are: 

• f_s (sampling frequency) 

• f_CPU (node processor clock frequency) 

• P_bits (packet size) 

• R_UAV_5G (UAV-to-5G link rate) 

• PER_uav (packet error rate on the UAV link) 

• v_UAV (UAV velocity) 

• SCS (subcarrier spacing in 5G) 

• Delay_TN (transport-network delay) 

• ProcCap_AS (application-server processing 

capacity) 

The optimization objective is to minimize the 

total latency function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐿_𝑇𝑜𝑡𝐸2𝐸 =  𝑓(𝑓_𝑠, 𝑓_𝐶𝑃𝑈, 
 𝑃𝑏𝑖𝑡𝑠 , 𝑅𝑈𝐴𝑉5𝐺

, 𝑃𝐸𝑅𝑢𝑎𝑣 , 𝑣𝑈𝐴𝑉 , 

 𝑆𝐶𝑆, 𝐷𝑒𝑙𝑎𝑦_𝑇𝑁, 𝑃𝑟𝑜𝑐𝐶𝑎𝑝_𝐴𝑆) (11) 

Subject to the operational constraints: 

• R_UAV_5G ≤ R_max (maximum achievable data 

rate) 

• v_UAV ≤ v_safe (safe UAV velocity) 

• PER_uav ≤ PER_threshold (acceptable link 

reliability) 

• f_CPU ≤ f_max (hardware limit of node processor) 

• L_TotE2E ≤ L_target (target latency threshold, 

e.g., 10 ms for URLLC) 

This optimization is nonlinear and dynamic, as the 

parameters are not independent and vary with 

environmental and network conditions. Analytical 

solutions are impractical; therefore, AI-based 

approaches are proposed. 

 

5.2. AI-Based Optimization Techniques  

AI methods provide intelligent, data-driven 

mechanisms to learn optimal parameter settings 

through interaction with the system or from 

empirical data. Three complementary techniques are 

suitable for this architecture. 

a) Reinforcement Learning (RL)-Based Adaptive 

Control: Reinforcement Learning can 

continuously adjust system parameters based on 

real-time feedback. The optimization problem is 

reformulated as a decision-making process: 

• State (s): current system conditions, including 

channel quality, UAV position, speed, link rate, 

signal-to-noise ratio, queue length, and CPU 

utilization. 

• Action (a): a change to one or more control 

parameters such as UAV speed, packet size, or 

transmission rate. 

• Reward (r): a function inversely related to 

latency, for example, r = 1 / L_TotE2E, or the 

difference between a target and the achieved 

latency, r = L_target − L_TotE2E. 

The RL agent iteratively explores and learns the 

optimal control policy that minimizes latency over 

time. Techniques such as Deep Q-Learning (DQN) 

or Proximal Policy Optimization (PPO) are suitable 

for continuous control in such environments. The 

main advantage of this method is that it learns 

adaptively and performs well under time-varying 

network and mobility conditions. 

b) Supervised Machine Learning for Latency 

Prediction and Control: A supervised regression 

model can be trained using historical data or 

simulation results to predict total latency based 

on system parameters. For example, the model 

learns the mapping: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =  𝑔(𝑓_𝑠, 𝑓_𝐶𝑃𝑈, 
𝑃𝑏𝑖𝑡𝑠 , 𝑅𝑈𝐴𝑉5𝐺

, 𝑃𝐸𝑅𝑢𝑎𝑣 , 𝑣𝑈𝐴𝑉 , 𝑆𝐶𝑆, 

 𝐷𝑒𝑙𝑎𝑦_𝑇𝑁, 𝑃𝑟𝑜𝑐𝐶𝑎𝑝_𝐴𝑆)         (12) 

Therefore, after its trained, this model gives a 

zero latency prediction with any configuration. The 

parameter set that minimizes Predicted_Latency 

can then be found using an optimization algorithm 

(e.g., gradient descent, grid search). This is also 

dependent on the temporal dynamics of the system, 

so it can be as simple as employing a Linear 

Regression, or something more complex (e.g. 

Random Forests, Gradient Boosted Trees, or LSTM 

networks). The UAV system can use this predictive 

control framework to reconfigure itself before 

facing degradation. 

c) Hybrid AI–Heuristic Optimization: In the 

multiparameter space, traditional heuristic 

algorithms are not efficient in reaching the 

optima combining with AI prediction can form 

an efficient hybrid optimization loop The 

procedure is as follows: 

1. An optimizer (for example a Genetic Algorithm 

or a Particle Swarm Optimization) gives a list of 

candidate parameters. 

2. The AI latency predictor estimates the total 

latency for each candidate configuration.  
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3. The heuristic algorithm selects and refines 

candidates based on the predicted latency 

performance.  

4. Apply the best performing configuration to the 

live system. 

This method combines the high predicting 

accuracy of AI with the global searching ability of 

heuristic algorithms to reach near-optimal 

configurations faster with fewer experimental 

evaluations. Figure 6 shows the AI optimization 

procedures Algorithm followed in this paper.  
# --- Inputs: Controllable parameters and constraints --- 

PARAMS = { f_s, f_CPU, P_bits, R_UAV_5G, PER_uav, v_UAV, SCS, Delay_TN, 

ProcCap_AS } 

CONSTRAINTS = { R_max, v_safe, PER_threshold, f_max, L_target } 

 

# --- Function to compute total latency --- 

function Compute_Latency(PARAMS): 

    return L_WSN(PARAMS) + L_UAV(PARAMS) + L_5G(PARAMS) 

 

# --- Check feasibility of a parameter set --- 

function Feasible(PARAMS): 

    if PARAMS.R_UAV_5G > R_max       : return False 

    if PARAMS.v_UAV > v_safe         : return False 

    if PARAMS.PER_uav > PER_threshold: return False 

    if PARAMS.f_CPU > f_max          : return False 

    return True 

 

# --- Unified Optimization Procedure --- 

function Optimize_System(): 

 

    # 1. Build or maintain a latency predictor (supervised model) 

    DATA = Collect_Historical_Or_Simulated_Data() 

    Predictor = Train_Model(DATA)                 # regression model:  RF/GBoost/LSTM 

 

    # 2. Initialize control loop (RL + predictive refinement) 

    RL_Agent = Initialize_RL_Agent()              # PPO/DQN with continuous actions 

    Current_Params = Initialize_Valid_Params() 

 

    loop over time (or iterations): 

 

        # --- Observe current system state (channel, mobility, CPU load, SNR, etc.) --- 

        State = Observe_System_State() 

 

        # --- RL proposes adjustment to parameters --- 

        Action = RL_Agent.Select_Action(State) 

        Candidate_Params = Apply_Action(Current_Params, Action) 

 

        # --- Enforce feasibility --- 

        if not Feasible(Candidate_Params): 

            Candidate_Params = Project_To_Feasible_Space(Candidate_Params) 

 

        # --- Fast latency estimate using predictor --- 

        L_pred = Predictor.Predict(Candidate_Params) 

 

        # --- Optional refinement via heuristic search (GA/PSO) around RL proposal --- 

        Candidate_Params = Local_Heuristic_Search( 

                               starting_point = Candidate_Params, 

                               fitness = Predictor.Predict, 

                               constraints = Feasible ) 

 

        # --- Validate best candidate using real/simulated latency evaluator --- 

        L_true = Compute_Latency(Candidate_Params) 

 

        # --- RL reward update --- 

        Reward = 1 / L_true                              # or (L_target - L_true) 

        RL_Agent.Update(State, Action, Reward) 

 

        # --- If valid & improves latency, apply new configuration --- 

        if Feasible(Candidate_Params) and L_true <= L_Target_Threshold: 

            Apply_Params_To_System(Candidate_Params) 

            Current_Params = Candidate_Params 

 

        # --- Store new (params, L_true) for incremental predictor retraining --- 

        DATA.append((Candidate_Params, L_true)) 

        if Predictor_Error_Growing(): 

            Predictor = Retrain_Model(DATA) 

 

    end loop 

# --- Final Output--- 

return Current_Params   # Best optimized configuration found 

Fig. 6. AI-Driven system parameter optimization 

algorithm 

 

5.3. Expected Outcomes and Benefits 

As a result of AI driven optimization, the UAV-

assisted WSN system is self-adaptive and can keep 

ultra-low latency under dynamic operational 

conditions. The main benefits are: 

1. Continuous adaptation to variations in UAV 

position, velocity, and 5G channel state. 

2. Predictive reconfiguration to maintain target 

latency (e.g.<10 ms) even under fluctuating link 

conditions. 

3. Less human involvement and more system self-

governance. 

4. Sensible compromises between latency, 

reliability and computation cost 

With this integration, the 5G–UAV–WSN 

architecture transforms into an intelligent cyber-

physical system with real-time information 

awareness and autonomous optimization, which is a 

key requirement of the next-generation smart 

networks. 
 

6. ESTIMATED AI/ML OPTIMIZATION 

RESULTS 

 

6.1. System Configuration and Evaluation 

Framework 

To evaluate the effectiveness of the AI-driven 

optimization framework presented in Section 5, the 

analytical latency model can be used to simulate 

different operational conditions of the WSN node 

mounted on the UAV and connected via 5G 

infrastructure. The parameters correspond to those 

previously used in the sensitivity analysis and 

optimization formulation. 

Baseline configuration is as follows: 

1. WSN node: sampling frequency = 50 Hz; 

processing cycles per bit = 20; CPU frequency = 

16 MHz; packet size = 1024 bits; node-to-UAV 

local delay = 0.1 ms; node error rate = 0.001. 

2. UAV subsystem: velocity = 15 m/s; handover 

delay = 5 ms; UAV CPU = 1 GHz; cycles per 

bit = 10; UAV-to-5G link rate = 5 Mb/s; packet 

error rate = 0.005. 

3. 5G network: sub-carrier spacing = 30 kHz; 

scheduling delay = 1 ms; TN transit delay = 2.4 

ms; CN transit delay = 1 ms; UPF–AS delay = 

0.5 ms; application-server capacity = 20 

Gcycles/s. 

For the baseline configuration, L_TotE2E ≈ 33.4 

ms. This value is used as the reference when 

computing the relative improvements achieved by 

the AI optimization methods. 

 

6.2. Alignment with the AI Optimization 

Approaches  

The following three optimization strategies can 

be implemented in Python according to the methods 

presented in Section 5. 

(a) Reinforcement Learning-Based Adaptive 

Control: A reinforcement learning (RL) agent can be 

deployed to autonomously minimize latency through 

continuous interaction with the network 

environment. The agent observes a state vector 

defined as: 

𝑠 =  [𝑆𝑁𝑅_𝑢𝑎𝑣, 𝑈𝐴𝑉_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ, 
𝑈𝐴𝑉_𝑙𝑖𝑛𝑘_𝑟𝑎𝑡𝑒, 𝑛𝑜𝑑𝑒_𝐶𝑃𝑈_𝑙𝑜𝑎𝑑, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑙𝑎𝑡𝑒𝑛𝑐𝑦].

(24) 
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At each decision step, it selects an action from 

the set: 

a = {adjust R_UAV-5G, modify P_bits, scale 

f_CPU, adjust v_UAV, change SCS}. 

The reward function is expressed as plain text: 

𝑟 =  𝐿_𝑡𝑎𝑟𝑔𝑒𝑡 −  𝐿_𝑇𝑜𝑡𝐸2𝐸          (24) 

with an additional penalty of −10 when PER_uav 

exceeds the reliability threshold. 

 The RL model (implemented using a PPO or 

DQN algorithm) can be trained for 5 000–20 000 

episodes in simulation, learning rate = 3 × 10⁻⁴, 

discount factor γ = 0.99, and mini-batch size = 64. 

After convergence, the agent learned an optimal 

control policy that continuously adapts the UAV link 

parameters and processing rates to minimize latency. 

(b) Supervised Regression-Based Latency 

Prediction and Control: In this method, a supervised 

learning model can be trained to predict total latency 

based on system parameters using the mapping: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐿𝑎𝑡𝑒𝑛𝑐𝑦 
= 𝑔(𝑓_𝑠, 𝑓_𝐶𝑃𝑈, 𝑃_𝑏𝑖𝑡𝑠, 𝑅_𝑈𝐴𝑉
− 5𝐺, 𝑃𝐸𝑅_𝑢𝑎𝑣, 𝑣_𝑈𝐴𝑉, 𝑆𝐶𝑆, 𝐷𝑒𝑙𝑎𝑦_𝑇𝑁, 𝑃𝑟𝑜𝑐𝐶𝑎𝑝_𝐴𝑆) 

(24) 

The analytical model gave us our dataset which 

contains 50 000 simulated samples. The average 

prediction error of 0.6 ms and R² ≈ 0.98 were 

achieved by a Random Forest regression model. This 

predictor is integrated into a realtime model-

predictive control (MPC) loop that searches over a 

constrained parameter space and chooses the 

configuration that results in the minimum predicted 

latency while satisfying operational constraints for 

maximum UAV velocity, safe packet error-rate, and 

CPU constraints. Inference time was around 1–3 

ms, allowing for on-time adaptation 

(c) AI–Heuristic Optimization Hybrid: The 

hybrid method combines heuristic (global search) 

and the hybrid (speed & accuracy of an AI 

predictor). The Genetic Algorithm (GA) produces 

candidate sets of parameters. We use the latency 

predictor to compute the latency of each candidate 

rather than using live measurements so that it saves 

enormous computational resources as treated in 

Section V.A. Live system tacit testing only runs for 

the best set of configurations. GA params: 

population_size = 40, generations = 20, 

mutation_rate = 0.1 This results in a hybrid 

architecture that combines exploration with 

exploitation while minimizing real time overheads 

and producing close-to-optimal latency reductions. 

 

6.3. Evaluation Scenarios 

The system was tested under three realistic 

operational conditions: 

1. Nominal: baseline configuration (L_TotE2E ≈ 

33.4 ms). 

2. Congested transport network: TN delay 

increased from 2.4 → 5 ms, scheduling delay 

from 1 → 2 ms. 

3. High-mobility: UAV velocity increased to 25–30 

m/s with PER_uav = 0.02 during bursts. 
Estimated Results and Analysis as shown in 

Table 6 and Figure 7.  
 

 
Fig. 7. Time-series latency over time 

 
Table. 6. Estimated Results and Analysis of Optimization Methods 

Optimization Method / 

Scenario 

Mean 

L_TotE2E (ms) 

95th 

Percentile 

(ms) 

PER_uav 

(%) 

Energy 

Overhead 
Remarks 

Baseline (Nominal) 33.4 45.5 0.5 – No optimization 

Supervised Regression (MPC) 27.4 (−17.9 %) 36.8 0.45 
+ 2–4 % 

battery/hr 
Rapid reconfiguration 

Reinforcement Learning (PPO) 24.0 (−28.1 %) 33.5 0.4 + 3–6 % Adaptive to dynamics 

Hybrid (GA + Predictor) 22.5 (−32.6 %) 31.2 0.4 + 3–5 % Best overall performance 

Baseline (Congested TN) 40.9 55.2 0.6 – Network bottleneck 

Supervised Regression 33.8 (−17.4 %) 44.0 0.55 + 3 % Maintains stability 

Reinforcement Learning 30.1 (−26.4 %) 38.9 0.5 + 4–6 % Adjusts packet and rate 

Hybrid (GA + Predictor) 28.0 (−31.5 %) 36.1 0.5 + 4 % Near-optimal latency 

Baseline (High-Mobility) 38.2 60.7 2.0 – Frequent handovers 

Supervised Regression 31.9 (−16.5 %) 44.0 1.6 + 3 % Adjusts payload dynamically 

Reinforcement Learning 28.3 (−25.9 %) 36.5 1.2 + 5–7 % Learns trajectory-aware policy 

Hybrid (GA + Predictor) 25.6 (−33.0 %) 34.1 1.0 + 5 % Best in dynamic flight 
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The three AI-driven techniques were able to 

significantly reduce latency compared to the static 

baseline in all operational conditions. Overall, the 

hybrid approach yielded the most consistent 

performance, meaning improvements in mean 

latency of ~30-33 %, as well as significant decreases 

in the 95th-percentile delays. Through the use of 

reinforcement learning to adapt UAV link 

parameters and processing rates to network 

feedback, the controller afforded considerable 

adaptability in dynamic or high-mobility 

environments. Supervised predictor provided a 

lightweight option with lower computational 

demand, and 15–18 % latency improvement, and 

could be an appropriate candidate for a UAV with 

low onboard processing capacity. The times for AI 

inference varied between 1–5 ms at most, therefore, 

all control decisions were performed faster than the 

network update intervals. An increase in energy 

consumption was registered (2 − 7 % per flight 

hour), which is acceptable for mid-size UAV 

mission scenarios. 

The effectiveness of the AI-based parameter 

adaptation to minimize the overall latency for the 

UAV-assisted WSNs employing 5G connectivity is 

validated and demonstrated. It achieves near-

URLLC-grade latency during congestion or high-

mobility situations by dynamically tuning UAV 

speed, resulting in variable air-link rate, packet size, 

and CPU frequency. 

In particular: 

• The most appropriate environment for 

reinforcement learning is one with an ever-

changing nature or a less predictable nature. 

• Supervised regression is therefore a control 

strategy that can be implemented rapidly and 

economically, making it appropriate for energy 

constrained mission profiles. 

• Hybrid optimization finds the best balance 

between performance, stability and effort. 

With the inclusion of these artificial intelligence 

mechanisms, the UAV–WSN–5G platform becomes 

a self-optimizing, intelligent, networked system that 

is able to autonomously adapt in real-time and 

maintain low-latency performance over extended 

durations. 

 

7. IMPLEMENTATION CHALLENGES AND 

OVERHEADS OF AI-BASED 

OPTIMIZATION 

 

Our AI-driven optimization framework shows a 

significant reduction in latency and an improvement 

in performance; however, there are computational, 

communication and operational challenges in 

applying the solution in practice. The source of these 

challenges is essentially because of (i) limited 

computation resource availability in UAV and WSN 

nodes, (ii) wireless environment being dynamic and 

time-varying in nature, and (iii) the difficulty of 

implementation of AI module within real time 

communication stack. In this section, we explain 

practical limitations, process and communication 

overheads, and implementation-wise comparison 

between the three AI-based methods. 

 

7.1.  Computational and Hardware Constraints 

a. Onboard Processing and Memory Limitations:  

UAVs and WSN nodes are typically resource-

limited platforms with low-power microcontrollers 

and small memory capacity. Implementing AI 

models — particularly reinforcement learning or 

hybrid heuristics — requires additional CPU cycles,  

memory buffers, and local storage to maintain model 

states, weights, and intermediate data. For example, 

executing an RL agent onboard the UAV may 

require between 20–50 MB of memory for state-

action tables or small neural networks, and 10–20% 

additional CPU utilization during real-time decision-

making. In contrast, supervised regression models, 

once trained offline, require only a few hundred 

kilobytes of memory and can execute inference 

within 1–3 ms, making them more suitable for 

embedded devices. 

b. Training Complexity and Learning Overheads:  

The training phase of AI models represents the 

most significant computational cost. Reinforcement 

Learning requires numerous environment 

interactions (often tens of thousands of episodes) to 

converge to a stable policy, consuming high compute 

resources and energy. Hybrid heuristic approaches 

also involve iterative fitness evaluations, although 

they can be performed offline or on a remote edge 

server. Supervised regression, in contrast, has a one-

time training cost that can be executed in the cloud, 

after which the lightweight inference model is 

deployed on the UAV or WSN node. 

 

7.2. Communication Overheads and 

Synchronization 

 AI-enabled systems require feedback and data 

exchange between the UAV, WSN node, and 5G 

network for model updates and control signaling. 

This introduces additional uplink and downlink 

traffic, typically ranging from 1–5% of total 

communication bandwidth depending on the 

frequency of AI control updates. However, in 

Reinforcement Learning, the continuous 

requirement of periodic feedback in the form of 

rewards from latency measurement can lead to 

increased utilization of the control channel. 

Supervised Regression and Hybrid AI–Heuristic 

methods, on the other hand, requires periodic 

optimization updates, which reduces network 

overhead but increases the delay between 

adaptation cycles. Equally importantly, the 

synchronization between the AI controller and 

network timing domains (RAN, TN, CN) is critical. 

If the feedback feedback contains stale parameter 

decisions, because feedback is asynchronous or 

delayed, the performance degrades. This can be 

alleviated by using an edge-hosted AI controller or 
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near-real-time processing at the onboard edge 

module of the UAV where synchronization can be 

maintained within 1–2 ms accuracy. 

 

7.3.  Energy Consumption and Thermal Impact 

Onboard energy consumption grows when using 

AI algorithms, especially for ones that require 

frequent inference or retraining, which in turn can 

lead to faster battery depletion. From the 

experiments in Section 6, the energy overhead as a 

function of flight hour is within 2–7% for the 

different AI techniques and control frequencies. 

Because of continuous policy evaluation and 

exploration actions, Reinforcement Learning tends 

to be on the higher end of this spectrum. When 

optimally tuned, supervised regression and hybrid 

AI–Heuristic approaches have low and predictable 

energy footprints. Another disadvantage of the 

proposed work for UAVs is with respect to thermal 

constraints which may limit the operational window 

for UAVs called the high ambient temperature 

surroundings; therefore, thermal-aware AI scheduler 

is recommended to trade-off the performance of 

UAVs [24]. 

 

7.4. Implementation Integration and Real-Time 

Constraints 

Timing compliance is paramount in embedding 

AI decision logic into real-time UAV or 5G control 

loops. With Reinforcement Learning, policies are 

evaluated to generate decisions, introducing decision 

latency; with Supervised Regression, the decisions 

are close to instantaneous. This class of AI–Heuristic 

methods, if entirely performed onboard, may break 

sub-10 ms URLLC latency limits, unless a portion 

of the optimization loop is offloaded to the edge 

cloud. This can be orchestrated into a hierarchy of 

AI for real-time performance: 

• The UAV executes lightweight AI inference or 

local regression prediction. 

• The Edge server hosts training, reinforcement 

updates, and heuristic population evaluation. 

• The 5G core coordinates model synchronization 

across UAVs and network slices. 

This hierarchical deployment balances real-time 

responsiveness and computational scalability. 

Comparative Analysis of AI Approaches as shown 

in Table 7. 

On the other hand, the Supervised Regression is 

the optimal implementation as it is the most 

hardware-efficient algorithm and would work well 

given the specifications of a lightweight embedded 

platform or early-in-the-loop stage of deployment, 

where power reduction and simplicity are 

paramount. This, however, has low robustness when 

the environment conditions are outside the training 

data. Reinforcement Learning provides 

independence and adaptive intelligence, making it 

the best method in the case of mobility and dynamic 

interference. The major drawbacks are the difficulty 

of training and higher computational cost, which 

can be alleviated by performing policy training in the 

cloud and deploying the policy for inference at the 

edge. The most balanced solution is the Hybrid AI–

Heuristic, giving very good accuracy and a high 

level of adaptability while keeping the compute cost 

reasonable. It makes use of AI-based latency 

prediction within a heuristic search such that it 

converges more quickly to optimal configurations 

and is scalable to much larger counts of UAV-WSN 

systems. For large-scale or multi-UAV deployments, 

distributing the hybrid framework between the UAV 

edge processor and 5G MEC node offers the most 

effective trade-off between latency reduction, energy 

efficiency, and real-time feasibility. , as shown in 

Figure 8. 

 

 

 

Table 7. Comparative analysis of AI approaches 

Criterion Reinforcement Learning (RL) 
Supervised Regression 

(SR) 

Hybrid AI–Heuristic 

(Hybrid) 

Computational Cost 
High (continuous updates, large 

policy model) 

Low (offline training, 

lightweight inference) 

Moderate (periodic GA 

search + AI prediction) 

Memory Requirement 20–50 MB (policy/state tables) 
<1 MB (model 

coefficients) 

5–10 MB (combined 

modules) 

Energy Overhead 5–7% battery/hour 2–3% battery/hour 3–5% battery/hour 

Adaptability 
Excellent under mobility and 

time-varying channels 

Moderate (limited to 

training data range) 

High (dynamic exploration 

via GA) 

Response Time 3–8 ms (policy inference) 1–3 ms (regression) 5–10 ms (per iteration) 

Implementation Complexity 
High (requires training 

infrastructure) 
Low (simple to deploy) 

Moderate (requires 

coordination between AI and 

heuristic modules) 

Best Use Case Real-time adaptive UAV control 
Resource-constrained 

WSN nodes 

System-wide optimization 

with edge/cloud support 
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Fig. 8. Comparison of AI optimization approaches 

 

8. CASE STUDIES: PERFORMANCE 

EVALUATION OF 5G-BASED 

INDUSTRIAL WSNS  
 

We illustrate the applications of our proposed 

framework through six case studies representing a 

variety of UAV-WSN applications. The latency 

models provided in Section 3 have been applied 

separately for each of these case studies calculating 

the expected performance of the 5G-based solutions 

against the conventional solutions deployment. 

 

8.1. Case Study 1: Agricultural Field Monitoring 

[27] 

The research describes a precision agriculture 

use case where a UAV collects soil moisture levels 

over a big farm using a 50 sparsely deployed sensor 

network. The UAV flies at an altitude of 50 meters 

and at a speed of 10 meters per second and is used 

for data gathering. It collects information from the 

sensors using a short-range 868 MHz ISM-band RF 

link, and the sensors send 100-bit data packets at 10 

kbps. The gathered information is forwarded to a 

cloud-based farming platform using a public 5G 

system featuring an MEC (Multi-access Edge 

Computing) server deployed at the edge 

(MEC@gNB). The 5G system has an SCS 

(subcarrier spacing) of 30 kHz and an available data 

rate from the UAV to the MEC of 1 Mbps. This 

arrangement allows for near-real-time monitoring 

and analysis of the soil, which supports timely and 

effective irrigation decisions. For assessment of the 

performance of this system, comparisons are made 

to a conventional star topology LoRaWAN system,  
which is a popular choice for extended-range low-

power farm monitoring, as shown in Table 8. 

 

8.2. Case Study 2: Forest Fire Detection [28, 29] 

It considers an example case study of using a 

high-resolution thermal imaging camera on an UAV 

for forest fire detection. The UAV is at an altitude of 

200 meters and moves at 20 meters per second. 

Thermal images are taken by the UAV and 

compressed to 1 MB, and then sent to a ground 

station for real-time analysis via a private 5G system 

that uses 15 kHz subcarrier spacing and 10 Mbps 

data rate. Each image is processed at the ground 

station within a latency of  10 milliseconds. This 

achieves fast detection of hotspots, leading to 

immediate response and mitigation. For comparison 

of its efficiency, the system is compared to a legacy 

system using sparsely deployed ground-based low-

power nodes (50 nodes deployed for example) 

communicating through a multi-hop low-power 

long-range wireless network, operating within the 

license-free ISM band. Here, sensor readings go 4 

hops, on an average, for delivery to the gateway and 

incur a per-hop latency of 200 milliseconds. The 

comparison indicates the benefits of the use of a 

UAV for increased speed of detection and response, 

Table 9. 

Table 8. Results & analysis of case study 1 

Parameter 
5G-Based WSN with 

UAV Relay 
LoRaWAN Analysis 

Sensor-to-Gateway 

Latency 

10 ms (Sensor to 

UAV) 

Up to 1 second (variable, 
dependent on spreading 

factor and bandwidth) 

5G's significantly lower latency for the sensor-to-UAV link 

is crucial for enabling timely data collection. LoRaWAN's 

long-range capability comes at the cost of significantly 
higher latency. 

RAN Latency 

(RANLat) 
3 ms 

N/A (Not applicable, 

different technology) 
 

Transport Latency 
(TPLat) 

2 ms N/A  

Core Network 

Latency (CNLat) 
1 ms N/A  

Aggregation 

Latency (AggLat) 
2 ms Negligible 

While the MEC introduces a small aggregation latency, it 
is significantly offset by the latency reductions in other 

parts of the network. 

Table 9. Results & analysis of case study 2 

Parameter 
5G-Based UAV 

System 
Traditional Ground Sensors Analysis 

Image/Data 

Acquisition 
Latency 

Negligible (real-

time camera) 

Variable, depends on sensor 

polling rate. 

The UAV's thermal camera provides near-instantaneous data 

acquisition. 

Transmission 
Latency 

13 ms (5 RAN + 5 
Transport + 3 CN) 

800 ms (4 hops * 200 ms/hop 
) 

5G's significantly lower latency is critical for rapid fire detection. 
Multi-hop networks introduce substantial delays. 

Processing 
Latency 

10 ms (Ground 
station) 

Variable, depends on central 
system processing. 

 

Total Latency 23 ms 
800+ ms (excluding 

processing) 

The 5G-based UAV system drastically reduces the time to detect 

and report a potential fire, enabling faster response times for 
firefighting crews. 
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8.3. Case Study 3: Urban Air Quality 

Monitoring [28, 29]  

This study examines an air quality monitoring 

system utilizing a UAV equipped with air quality 

sensors to measure pollution levels across an urban 

area. The UAV operates at an altitude of 100 meters 

and travels at a speed of 15 meters per second. It 

transmits real-time data packets, each 250 bits in 

size, to a central monitoring station via a public 5G 

network. The UAV sends one data packet every five 

A data packet is transmitted by the UAV once every 

five minutes. Although a 60kHz SCS supports the 

high-speed transfer of data on the 5G network, the 

UAV moves rapidly, causing handovers between 

successive 5G cells, which affects latency. Its UAV-

based system is compared to a static sensor network 

that sends air quality information using Wi-Fi. In 

conventional configuration, The range and coverage 

of Wi-Fi is limited, which requires multi hop 

relaying between access points with an average of 2 

hops to central server. Every hop adds 50 

millisecond latency, increasing in urban 

environments through interference. The comparison 

emphasizes the benefits and limitations of the UAV-

mounted approach as opposed to stationary Wi-Fi-

based network in terms of coverage, latency and 

reliability , as shown in Table 10. 
 

8.4. Case Study 4: UAV Search and Rescue 

Operations [30, 31] 

Here, we present a search and rescue case study 

with UAVs as movable relays for emergency 

scenario coordination. The UAV flies around to 

locate active emergency beacons over a wide 

disaster area, downloading that information into a 

rapidly-established 5G network for transmission to a 

command center. With its operating altitudes of 

between 50 and 200 metres and speeds of 10 to 20 

metres per second being adapted according to the 

mission and terrain, the Sensor 50 exhibits 

exemplary versatility. The beacons transmit 1-kilobit 

packets to the UAV at 100 kbps, and the UAV 

forwards these packets to the 5G network, with a 1 

Mbps throughput, and a subcarrier spacing (SCS) of 

15 kHz. It also contrasts the use of drones to a 

conventional method of manually collecting data 

from beacons, which takes "orders of magnitude" 

longer and is far less efficient, particularly in larger 

disaster zones. The comparison highlights that UAV 

and the 5G integration would be much faster, and the 

entire process is highly scalable and accessible, 

providing a million times effective the search and 

rescue solution, as detailed in Table 11.  
 

8.5. Case Study 5: Emergency Medical Drone 

Delivery [4, 32] 

This case study features the use of 5G-connected 

drone technology for emergency medical supply 

delivery which consists of blood, defibrillator and 

medication to remote or inaccessible areas. It flies at 

150 meters and 25 meters a second, so it can still be 

delivered quickly. Additionally, it continuously 

transmits its position, status, and sensor data 

(payload temperature and drone stability, for 

example) from the drone via a public 5G network in 

real time to a control center. It uses 30 kHz SCS 

slicing to support priority and reliable UAV 

communications over the system. Each packet has a 

length of 200-bits and the data are sent one packet 

every 1 second. This UAV delivery method can be 

contrasted with the average 30 minute delivery time 

from traditional ground emergency medical services 

which could stretch into an unpredictable delay time 

due to traffic congestion and/or terrain difficulties. 

Clearly, the UAV have a critical associated role for 

time-sensitive medical emergencies with its 

incomparable advantages of speed, reliability and 

accessibility, as illustrated by Table 12. 

 

8.6. Case Study 6: Traffic Flow Optimization 

[33-35] 

This case study analyzes the use of 5G-connected 

UAVs to monitor traffic and optimize flow in real 

time for cities. A fleet of 10 UAVs fly 80 meters high 

and 12 meters per second and stream video and 

sensor data, such as car speed and traffic density, 

from major points throughout the city. Every UAV 

streams 5 Mbps of video data to a central traffic 

management center using a public 5G system and an 

SCS of 15 kHz. Sensor data blocks of 150 bits are 

also streamed every two seconds at a rate of one 

block per UAV. The central traffic management  
 

Table 10. Results & analysis of case study 3 

Parameter 5G-Based 

Mobile UAV 

Stationary Wi-Fi Sensor 

Network 

Analysis 

RAN/Wi-Fi 

Latency 

4 ms 100 ms (2 hops * 50 

ms/hop ) 

Even with handovers, 5G provides significantly lower 

access latency compared to multi-hop Wi-Fi. 

Transport Latency 

(TPLat) 

4 ms N/A  

Core Network 

Latency (CNLat) 

2 ms N/A  

Handover Latency 5 ms N/A Handovers in 5G contribute to latency, but the overall 

latency remains much lower than that of Wi-Fi. 

Total Latency 15 ms 100+ ms (excluding 

central server processing) 

The 5G-based system achieves much lower latency for 

real-time air quality data delivery compared to a multi-

hop Wi-Fi network. 
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Table 11. Results & analysis of case study 4 

Parameter 5G-Based UAV Relay Traditional Physical Collection Analysis 

Beacon-to-Command 

Center Latency 
25-35 ms 

Minutes to hours, depending on 

the location of the beacon and the 

search team's access. 

The UAV relay dramatically 

reduces the time it takes for 

emergency beacon data to reach the 

command center, enabling faster 

response times and potentially 

saving lives. 

Table 12. Results & analysis of case study 5 

Parameter 5G-Based UAV Delivery 
Ground-Based 

EMS 
Analysis 

Average 

Delivery Time 

10 minutes (assuming 6 km 

distance) 

30 minutes 

(highly variable, 

depending on 

traffic and road 

conditions) 

UAVs offer potentially faster delivery, especially in 

scenarios with traffic congestion or geographically 

challenging terrain. 

Real-Time 

Tracking and 

Control 

Enabled by 5G Limited 

5G connectivity enables continuous tracking of the 

UAV's location and status, enhancing control and 

coordination of the emergency response. 

Data 

Monitoring 

(e.g., payload 

status) 

Continuous monitoring via 

5G 

Not typically 

available during 

transit 

Real-time data from the UAV provides valuable 

insights into the condition of the payload and the 

drone's operation, enhancing safety and reliability. 

Avg. Latency 

(ms) 

15 (4 RAN + 4 Transport + 

2 CN + 5 buffer) 
Not applicable 

Low latency communication via 5G is essential for real-

time control and monitoring of the UAV. 

 

center processes the information in real time to 

optimize traffic flow by changing traffic light 

timings, diverting cars, and giving traffic 

information to motorists. The use of UAVs is 

compared to conventional fixed traffic monitoring 

systems like fixed cameras and inductive loop 

detectors, which are known to measure between 50 

to 100 milliseconds of variable latencies. The 

comparison indicates that the use of UAVs offers 

better flexibility, reach, and responsiveness, which 

makes it more of a dynamic and scalable traffic 

management system for handling complex urban 

scenarios, as shown in Table 13. 
 

9. COMPARISON WITH PREVIOUS 

WORKS 

 

To situate the proposed AI-optimized latency 

framework within existing research on UAV-

assisted and AI-driven 5G systems, a structured 

comparison with representative state-of-the-art 

studies was conducted. Prior works on UAV-enabled 

B5G networks have typically addressed isolated 

aspects of system performance—such as energy-

efficient UAV trajectory design, cognitive/learning-

based communication strategies, or partial latency 

modeling targeting specific domains like V2X or 

static IoT deployments. However, these studies do 

not provide a unified formulation that 

simultaneously captures sensing-layer delays, UAV 

mobility effects, and the complete 5G 

communication chain. Moreover, AI-oriented 

studies in this area often introduce learning strategies 

but lack a quantitative end-to-end latency model that 

links network dynamics, processing workloads, and 

radio-layer parameters in a reproducible analytical 

manner. By contrast, the innovation of the present 

work is the provision of the first full, 

mathematically rigorous latency model that can 

capture the full 5G RAN–TN–CN–AS pipeline for a 

WSN node, UAV subsystem, and the end-to-end 

expression that can express the system in its entirety. 

Expanding this base, the paper also presents a tri-

layer AI optimization architecture—utilizing 

Supervised Regression, Reinforcement Learning, 

and Hybrid AI–Heuristic for Phoenix traffic, and 

targeting adaptive latency minimization at varying 

network, mobility, and traffic conditions. To clearly 

express these differentiating attributes on 

contributions, the proposed framework is compared 

with three influential previous studies in Table 14—

Alsamhi et al. [7], Ullah et al. [17], and Coll-Perales 

et al. [21]—indicating which fundamental aspects of 

energy-centric optimization, higher-level cognitive 

control, and latency decomposition based on isolated 

models it overcomes to deliver a novel conceptual 

framework for end-to-end latency minimization for 

UAVcarried sensing over 5G. This table highlights 

the methodological distinctions, scope of modeling, 

AI integration levels, and performance validation 

aspects that distinguish this work from previous 

efforts, emphasizing its unique contribution in 

unifying analytical modeling and AI-based 

optimization for real-time latency control in UAV-

carried WSN systems. 

 

9. CONCLUSIONS 

 

This study provided a comprehensive analytical 

and AI-based framework to model and minimize the 

end-to-end latency of UAV-assisted 5G-based WSN 

systems. These results clearly show the performance  
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Table 13. Results & analysis of case study 6 

Parameter 5G-Based UAV System Fixed Cameras/Sensors Analysis 

Coverage Area 
Flexible and adaptable, 

covering wider areas 
Fixed locations, limited visibility 

UAVs provide a more 

dynamic and adaptable 

monitoring solution, able to 

quickly respond to changing 

traffic conditions or incidents. 

Data Quality and 

Richness 

High-resolution video and 

diverse sensor data 
Limited data from fixed points 

UAVs offer richer data sets, 

including aerial perspectives 

and real-time measurements, 

leading to more informed 

traffic management decisions. 

Avg. Latency (ms) 
20 (5 RAN + 5 Transport + 

5 CN + 5 Buffer) 
50-100 ms 

Lower latency enables more 

responsive traffic management 

and real-time information 

dissemination to drivers. 

System Cost 
Higher initial investment in 

UAVs and 5G infrastructure 

Lower initial cost, but limited 

scalability and flexibility 

The cost-effectiveness of 5G-

based systems depends on the 

long-term benefits of 

improved traffic flow, reduced 

congestion, and enhanced 

safety. 

 
Table 14. Comparison with previous works 

Aspect Alsamhi et al. [7] Ullah et al. [17] Coll-Perales et al. [21] This paper (present work) 

Primary 

focus 

Energy-efficient 

UAV/IoT strategies 

(B5G) 

Cognitive/AI methods for 

UAV–5G systems (survey) 

Rigorous E2E latency 

modeling in 5G V2X 

Integrated E2E latency model 

for UAV-carried WSN over 

5G + AI optimization 

Modeling 

depth 

High-level, 

conceptual; energy 

models and 

architecture 

Survey/taxonomy; includes 

RL/learning techniques 

Detailed analytical 

latency decomposition 

& quantitative study 

Analytical latency 

decomposition for WSN + 

UAV + 5G; sensitivity & 

tornado analysis 

AI 

integration 

Recommendations: 

federated learning, 

edge AI for 

efficiency 

Extensive discussion and 

taxonomy of 

ML/RL/spectrum cognition 

Focus is modeling; little 

on AI controllers 

Full AI-driven optimization 

(Supervised, RL, Hybrid) with 

reward/loss and estimated 

outcomes 

Actors 

modeled 

UAVs, B5G nodes, 

energy sources 

UAVs, spectrum resources, 

MEC, learning agents 

RAN, TN, CN, 

application servers 

(mainly vehicles) 

WSN node, UAV (mounted-

node), 5G RAN/TN/CN/AS — 

end-to-end chain 

Validation / 

Results 

Conceptual + small 

case examples 

Survey — no original 

experiments 

Analytical results 

validated with 

sim/measurements 

Analytical sensitivity, scenario 

case studies, estimated AI 

improvements 

Key 

strengths 

Energy-aware 

design strategies; 

actionable for long 

missions 

Clear mapping of AI 

methods, open problems, 

and cognitive use cases 

Strong analytical rigor 

in latency 

decomposition and 

sensitivity 

Combines component-level 

latency modeling with AI 

optimization techniques and 

implementation analysis 

Gaps / 

limitations 

Not focused on 

analytical latency of 

full E2E chain in 

UAV+WSN+5G 

High-level; lacks integrated 

latency model tied to WSN 

specifics 

V2X domain (vehicles) 

— not UAV-carried 

WSN; limited on AI 

adaptation policies 

Assumptions in analytic 

model; needs field validation 

and more complex 

channel/pathloss integration 

 

improvements, but there are some limitations that 

should be noted. The analytical model is based on 

idealized channel assumptions and simplifying UAV 

mobility patterns, and thus does not provide a 

complete representation of real fading, interference, 

or handover dynamics. Since the AI optimization 

strategies were tested using simulation as opposed to 

hardware-in-the-loop experiments, this means that 

real UAV constraints including processor 

temperature, battery degradation and actuator-

induced delays were not explicitly evaluated. 

Moreover, while the study focuses on latency as the 

key metric, it only provides qualitative information 

on energy consumption, reliability and scalability. In 

terms of future directions, more appropriate multi-

UAV deployments, dense sensor configurations, and 

multi-objective optimization are still open. In spite 

of these constraints, the proposed framework yielded 

a significant performance boost. Through the 

combined use of cross-layer latency modeling and 

adaptive AI-based control, the system achieved 

reductions in total end-to-end latency of about 33% 

(Hybrid AI–Heuristic), 28% (Reinforcement 

Learning), and 18% (Supervised Regression). The 

tail performance also got better, as the hybrid 

approach reduced 95th-percentile latency by ≈30%, 
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which shows that it can sustain relatively stable 

performance, despite Received Signal Strength 

Indicator (RSSI) and 𝑃𝑅𝑆𝑆 fluctuations during 

mobility and network conditions. The additional 

energy cost was also low (2–7%), illustrating that 

AI-based optimizations can be implemented during 

real UAV missions. From a wider perspective, this 

work enables economical, off-the-shelve parts that 

carry real-time low-latency operations for UAV-

WSN over 5G and paves the path to real-world tests 

along with multi-objective optimization and large-

scaled aerial sensing applications. 
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