Eccentricity monitoring in induction traction motors of railway rolling stock using the Prony method
 
More details
Hide details
1
Department of Electromechanics and rolling stock of railways of Educational and Scientific Kyiv Institute of Railway Transport, National Transport University, Ukraine
 
2
Department of Heat Engineering, Kyiv National University of Construction and Architecture, Ukraine
 
3
Department of Oil and Gas Engineering and Technologies of the National University “Yuriy Kondratyuk Poltava Polytechnic”, Ukraine
 
These authors had equal contribution to this work
 
 
Submission date: 2025-07-19
 
 
Final revision date: 2025-10-02
 
 
Acceptance date: 2025-12-01
 
 
Online publication date: 2025-12-02
 
 
Publication date: 2025-12-02
 
 
Corresponding author
Oleg Gubarevych   

Department of Electromechanics and rolling stock of railways of Educational and Scientific Kyiv Institute of Railway Transport, National Transport University, Ukraine
 
 
 
KEYWORDS
TOPICS
ABSTRACT
The problems of improving and perfecting the diagnostic systems of railway transport drives continue to be the most relevant. The article proposes a method for operational monitoring of rotor eccentricity in induction traction motors of railway transport. Eccentricity is an indicator of defects that can be detected at the early stages of operation. The developed diagnostic system combines the Prony method and the Wiener–Hopf theorem, which allows to increase the accuracy of spectral analysis of stator phase currents in conditions of noise and alternating modes. The simulation modeling of the СТА-1200 traction motor of the DS-3 electric locomotive drive showed that the Prony method provides more accurate detection of subsynchronous type harmonics compared to the traditional fast Fourier transform. The obtained symmetrical spectral components reduce the risk of erroneous interpretation. The presented approach has confirmed its effectiveness for increasing the reliability of traction motor diagnostics.
FUNDING
This research received no external funding.
REFERENCES (71)
1.
Polater N, Tricoli P. Technical review of traction drive systems for light railways. Energies. 2022;15(9);3187. https://doi.org/10.3390/en1509....
 
2.
Sulym A, Khozia P. Analysis of management strategies for energy exchange processes in the electric rolling stock with on-board capacitive energy storages. 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek). 2021:109-114. https://doi.org/10.1109/KhPIWe....
 
3.
Ronanki D. Overview of rolling stock. Transportation Electrification: Breakthroughs in Electrified Vehicles. Aircraft, Rolling Stock, and Watercraft. 2022:249-281. https://doi.org/10.1002/978111....
 
4.
Issa R, Clerc G, Hologne-Carpentier M, Michaud R, Lorca E, Magnette C, Messadi A. Review of fault diagnosis methods for induction machines in railway traction applications. Energies. 2024;17(11):2728. https://doi.org/10.3390/en1711....
 
5.
Liubarskyi BG, Overianova LV, Riabov IS, Iakunin DI, Ostroverkh OO, Voronin YV. Estimation of the main dimensions of the traction permanent magnet-assisted synchronous reluctance motor. Electrical Engineering & Electromechanics. 2021;(2):3–8. https://doi.org/10.20998/2074-....
 
6.
Wang J, Ren C, Liu Z, Mao M. Research on direct drive technology of the permanent magnet synchronous motor for urban rail vehicles. Mathematical Problems in Engineering. 2022;(1):8312121. https://doi.org/10.1155/2022/8....
 
7.
Hu H, Liu Y, Li Y, He Z, Gao S, Zhu X, Tao H. Traction power systems for electrified railways: evolution, state of the art, and future trends. Railway Engineering Science. 2024;32(1):1-19. https://doi.org/10.1007/s40534....
 
8.
Domínguez M, Fernández-Cardador A, Fernández-Rodríguez A, Cucala AP, Pecharromán RR, Sánchez PU, Cortázar IV. Review on the use of energy storage systems in railway applications. Renewable and Sustainable Energy Reviews. 2025;207:114904. https://doi.org/10.1016/j.rser....
 
9.
Akay ME, Ustaoglu A. Energetic, exergetic, and environmental evaluation of railway transportation by diesel and electric locomotives. Environmental Progress & Sustainable Energy. 2022;41(3):e13804. https://doi.org/10.1002/ep.138....
 
10.
Chen Z. Analysis the principle and applications for locomotive engine. Applied and Computational Engineering. 2024;98:47-51. https://doi.org/10.54254/2755-....
 
11.
Riabov I, Yeritsyan B, Roi S, Kachan A. Determination of the rational strategy of voltage regulation of the traction induction electric motor for a shunting diesel locomotive with a group-driven wheelsets. Engineering Research Express. 2025.https://doi.org/10.1088/2631-8....
 
12.
Sulym АО, Fomin OV, Khozia PО, Mastepan AG. Theoretical and practical determination of parameters of on-board capacitive energy storage of the rolling stock Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2018;(5):79-87. https://doi.org/10.29202/nvngu....
 
13.
Fomin O, Sulym A, Kulbovskyi I, Khozia P, Ishchenko V. Determining rational parameters of the capacitive energy storage system for the underground railway rolling stock. Eastern-European Journal of Enterprise Technologies. 2018;21(92):63–71. https://doi.org/10.15587/1729-....
 
14.
Abouzeid AF, Guerrero JM, Vicente-Makazaga I, Muniategui-Aspiazu I, Endemaño-Isasi A, Briz F. Torsional vibration suppression in railway traction drives. IEEE Access. 2022;10;32855-32869. https://doi.org/10.1109/ACCESS....
 
15.
Vantagodi NV, Abouzeid AF, Guerrero JM, Vicente-Makazaga I, Muniategui-Aspiazu I, Endemaño-Isasi A, Briz F. Design of a scaled roller-rig test bench for anti-slip control development for railway traction. IEEE Transactions on Vehicular Technology. 2022;72(4): 4320-4331. https://doi.org/10.1109/TVT.20....
 
16.
Goolak S, Liubarskyi B. Vector control system taking into account the saturation of an induction motor. Tehnički Vjesnik. 2024;31(4):1170-1178. https://doi.org/10.17559/TV-20....
 
17.
Wang X, Wang J, Yang J, Yao D, Zhao Y, Chen B. Dynamic characteristics of electromechanical coupling of body-suspended drive system for high-speed trains under wheel polygonal wear. Transactions of the Canadian Society for Mechanical Engineering. 2024;48(4):659-670. https://doi.org/10.1139/tcsme-....
 
18.
Goolak S, Liubarskyi B, Riabov I, Chepurna N, Pohosov O. Simulation of a direct torque control system in the presence of winding asymmetry in induction motor. Engineering Research Express. 2025;5:025070-025086. http://doi.org/10.1088/2631-86....
 
19.
Gerlici J, Lovska A, Vatulia G, Pavliuchenkov M, Kravchenko O, Solcansky S. Situational adaptation of the open wagon body to container transportation. Applied Sciences. 2023;13(15):8605. https://doi.org/10.3390/app131....
 
20.
Vatulia GL, Lovska AO, Krasnokutskyi YS. Research into the transverse loading of the container with sandwich-panel walls when transported by rail. In IOP Conference Series: Earth and Environmental Science. 2023;1254(1):012140. https://doi.org/10.1088/1755-1....
 
21.
Lovska A, Gerlici J, Dizo J, Ishchuk V. The strength of rail vehicles transported by a ferry considering the influence of sea waves on its hull. Sensors. 2024;24:183. https://doi.org/10.3390/s24010....
 
22.
Gubarevych O, Goolak S, Daki O, Yakusevych Y. Determining an additional diagnostic parameter for improving the accuracy of assessment of the condition of stator windings in an induction motor. Eastern-European Journal of Enterprise Technologies. 2021;5(113):21–29. http://doi.org/10.15587/1729-4....
 
23.
Goolak S, Liubarskyi B, Lukoševičius V, Keršys R, Keršys A. Operational diagnostics system for asymmetric emergency modes in traction drives with direct torque control. Applied Sciences. 2023;13(9):5457. https://doi.org/10.3390/app130....
 
24.
Gubarevych O, Goolak S, Golubieva S. Systematization and selection of diagnosing methods for the stator windings insulation of induction motors. Rev. Roum. Sci. Techn. – Électrotechn. et Énerg. 2022;67(4):445-450.
 
25.
Yousuf M, Alsuwian T, Amin AA, Fareed S, Hamza M. IoT-based health monitoring and fault detection of industrial AC induction motor for efficient predictive maintenance. Measurement and Control. 2024;57(8): 1146-1160. https://doi.org/10.1177/002029....
 
26.
Hassan IU, Panduru K, Walsh J. An in-depth study of vibration sensors for condition monitoring. Sensors. 2024;24(3):740. https://doi.org/10.3390/s24030....
 
27.
Konda YR, Ponnaganti VK, Reddy PVS, Singh RR, Mercorelli P, Gundabattini E, Solomon DG. Thermal analysis and cooling strategies of high-efficiency three-phase squirrel-cage induction motors A review. Computation. 2024;12(1):6. https://doi.org/10.3390/comput....
 
28.
García-Pérez D, Saeed M, Díaz I, Enguita JM, Guerrero JM, Briz F. Machine learning for inverter-fed motors monitoring and fault detection: An overview. IEEE Access. 2024;12:27167-27179. https://doi.org/10.1109/ACCESS....
 
29.
Gubarevych O, Goolak S, Daki O, Tryshyn V. Investigation of turn-to-turn closures of stator windings to improve the diagnostics system for induction motors. Problemele Energeticii Regionale. 2021;2(50):10-24. https://doi.org/10.52254/1857-....
 
30.
Kryvonosov V, Matvienko O, Antipov I, Stefani B, Zaporozhets A, Borychenko O, Cherniavskyi A. Non-destructive test method for diagnosing turn-to-turn circuits of electric motor windings under conditions of local reactive power compensation. Modern Technologies in Energy and Transport II. 2025:281-297. https://doi.org/10.1007/978-3-....
 
31.
Gubarevych O, Gerlici J, Gorobchenko O, Kravchenko K, Zaika D. Analysis of the features of application of vibration diagnostic methods of induction motors of transportation infrastructure using mathematical modelling. Diagnostyka. 2023;24(1):1-10. https://doi.org/10.29354/diag/....
 
32.
Goolak S, Gubarevych O, Gorobchenko O, Nevedrov O, Kamchatna-Stepanova K. Investigation of the influence of the quality of the power supply system on the characteristics of an asynchronous motor with a squirrel-cage rotor. Przeglad Elektrotechniczny. 2022;98(6):142–148. http://doi.org/10.15199/48.202....
 
33.
Gerlici J, Goolak S, Gubarevych O, Kravchenko K, Kamchatna-Stepanova K, Toropov A. Method for determining the degree of damage to the stator windings of an induction electric motor with an asymmetric power system. Symmetry. 2022;14(7):1305. https://doi.org/10.3390/sym140....
 
34.
Gubarevych O, Wierzbicki S, Petrenko O, Melkonova I, Riashchenko O. Modular unit for monitoring of elements of asynchronous machine for improving reliability during operation. Diagnostyka. 2024;25(4):2024411. https://doi.org/10.29354/diag/....
 
35.
Goolak S, Gorobchenko O, Holub H, Dudnyk Y. Increasing the efficiency of railway rolling stock operation with induction traction motors due to implementation of the operational system for diagnostic condition of rotor. Diagnostyka. 2024;25(4):1-11. https://doi.org/10.29354/diag/....
 
36.
Goolak S, Gubarevych O, Yurchenko V, Kyrychenko M. A review of diagnostic information processing methods in the construction of systems for operating diagnostics of rotor eccentricity of induction motors. Diagnostyka. 2025; 26(1): 1-15. ttps://doi.org/10.29354/diag/202757.
 
37.
Zhou L, Wang B, Lin C, Inoue H, Miyoshi M. Static eccentricity fault detection for psh-type induction motors considering high-order air gap permeance harmonics. In 2021 IEEE International Electric Machines & Drives Conference (IEMDC). 2021:1-7. https://doi.org/10.1109/IEMDC4....
 
38.
Garcia-Calva T, Morinigo-Sotelo D, Fernandez-Cavero V, Romero-Troncoso R. Early detection of faults in induction motors A review. Energies. 2022;15(21): 7855. https://doi.org/10.3390/en1521....
 
39.
Petryna J, Duda A, Sułowicz M. Eccentricity in induction machines A useful tool for assessing its level. Energies. 2021;14(7):1976. https://doi.org/10.3390/en1407....
 
40.
Viswanath S, Praveen Kumar N, Isha TB. Static eccentricity fault in induction motor drive using finite element method. In Advances in Electrical and Computer Technologies: Select Proceedings of ICAECT 2019. 2020:1291-1302. https://doi.org/10.1007/978-98....
 
41.
Liu Z, Zhang P, He S, Huang J. A review of modeling and diagnostic techniques for eccentricity fault in electric machines. Energies. 2021;14(14):4296. https://doi.org/10.3390/en1414....
 
42.
Widagdo RS, Hermawati FA, Hariadi B. Unbalanced voltage detection with measurement current signature analysis (MCSA) in 3-phase induction motor using Fast Fourier Transform (FFT). Jurnal Teknologi Elektro. 2024;15(02):95-101. https://doi.org/10.22441/jte.2....
 
43.
Deeb M, Kotelenets NF. Fault diagnosis of 3-phase induction machine using harmonic content of stator current spectrum. 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). 2020:1-6. https://doi.org/10.1109/REEPE4....
 
44.
Krishnasarma A, Mostafavi Yazdi SJ, Taylor A, Ludwigsen D, Baqersad J. Acoustic signature analysis and sound source localization for a three-phase AC induction motor. Energies. 2021;14(21):7182. https://doi.org/10.3390/en1421....
 
45.
Allal A, Khechekhouche A. Diagnosis of induction motor faults using the motor current normalized residual harmonic analysis method. International Journal of Electrical Power & Energy Systems. 2022;141:108219. https://doi.org/10.1016/j.ijep....
 
46.
Chen X, Feng Z. Order spectrum analysis enhanced by surrogate test and Vold-Kalman filtering for rotating machinery fault diagnosis under time-varying speed conditions. Mechanical Systems and Signal Processing. 2021;154:107585. https://doi.org/10.1016/j.ymss....
 
47.
Chehaidia SE, Cherif H, Alraddadi M, Mosaad MI, Bouchelaghem AM. Experimental diagnosis of broken rotor bar faults in induction motors at low slip via hilbert envelope and optimized subtractive clustering adaptive neuro-fuzzy inference system. Energies. 2022;15(18): 6746. https://doi.org/10.3390/en1518....
 
48.
Guezam A, Bessedik SA, Djekidel R. Fault diagnosis of induction motors rotor using current signature with different signal processing techniques. Diagnostyka. 2022;23(2):1-9. https://doi.org/10.29354/diag/....
 
49.
Gangsar P, Tiwari R. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review. Mechanical Systems and Signal Processing. 2020;144:106908. https://doi.org/10.1016/j.ymss....
 
50.
Frosini L. Novel diagnostic techniques for rotating electrical machines A review. Energies. 2020;13(19):5066. https://doi.org/10.3390/en1319.....
 
51.
Abdellah C, Mama C, Meflah Abderrahmane MR, Mohammed B. Current Park’s vector pattern technique for diagnosis of broken rotor bars fault in saturated induction motor. Journal of Electrical Engineering & Technology. 2023;18(4):2749-2758. https://doi.org/10.1007/s42835....
 
52.
Kahraman E, Ulusoy AE, Şerifoğlu MO, Kara DB. Park vector approach based misalignment detection strategy for IMs. 14th International Conference on Electrical and Electronics Engineering (ELECO). 2023:1-5. https://doi.org/10.1109/ELECO6....
 
53.
Laadjal K, Sahraoui M, Alloui A, Cardoso AJM. Three-phase induction motors online protection against unbalanced supply voltages. Machines. 2021;9(9):203. https://doi.org/10.3390/machin....
 
54.
Chen X, Feng Z. Tacholess speed estimation for rotating machinery fault diagnosis of induction motor drivetrain. IEEE Transactions on Power Electronics. 2024;39(4): 4704-4713. https://doi.otg/10.1109/TPEL.2....
 
55.
Laadjal K, Cardoso AJM, Sahraoui M, Alloui A. A novel stator faults indicator in three-phase induction motors, based on voltage and impedance symmetrical components. IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society. 2022;1-6. https://doi.org/10.1109/IECON4....
 
56.
Lee CY, Huang KY, Jen LY, Zhuo GL. Diagnosis of Defective rotor bars in induction motors. Symmetry. 2020;12(11):1753. https://doi.org/10.3390/sym121....
 
57.
Kumar RR, Andriollo M, Cirrincione G, Cirrincione M, Tortella A. A comprehensive review of conventional and intelligence-based approaches for the fault diagnosis and condition monitoring of induction motors. Energies. 2022;15(23):8938. https://doi.org/10.3390/en1523....
 
58.
Kim MC, Lee JH, Wang DH, Lee IS. Induction motor fault diagnosis using support vector machine, neural networks, and boosting methods. Sensors. 2023;23(5): 2585. https://doi.org/10.3390/s23052....
 
59.
Niu H, Chen Y. Why do big data and machine learning entail the fractional dynamics? In Smart big data in digital agriculture applications: acquisition, advanced analytics, and plant physiology-informed artificial intelligence, 2023:15-53. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-....
 
60.
Nigmatullin RR, Sabatier J. How to detect and fit “fractal” curves, containing power-law exponents? Part 2. In 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA. 2023:1-5. https://doi.org/10.1109/ICFDA5....
 
61.
Nigmatullin RR, Lino P, Maione G. The statistics of fractional moments and its application for quantitative reading of real data. New Digital Signal Processing Methods: Applications to Measurement and Diagnostics, 2020:87;139. https://doi.org/10.1007/978-3-....
 
62.
Huang Y, Wang H, Yin H, Zhao Z. Iterative time-varying channel prediction based on the vector prony method. Wireless Personal Communications. 2024;136(1):103-122. https://doi.org/10.1007/s11277....
 
63.
Kaur J, Parmar KS, Singh S. Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research. 2023;30(8):19617-19641. https://doi.org/10.1007/s11356....
 
64.
Menin B. Objective model selection in physics: Exploring the finite information quantity approach. Journal of Applied Mathematics and Physics. 2024; 12(5):1848-1889. https://doi.org/10.4236/jamp.2....
 
65.
Ding J, Tarokh V, Yang Y. Bridging AIC and BIC: a new criterion for autoregression. IEEE Transactions on Information Theory. 2017;64(6):4024-4043. https://doi.org/10.1109/TIT.20....
 
66.
Lin WC, Tsai CF, Zhong JR. Deep learning for missing value imputation of continuous data and the effect of data discretization. Knowledge-Based Systems. 2022;239: 108079. https://doi.org/10.1016/j.knos....
 
67.
Li H. Time-series analysis. In Numerical Methods Using Kotlin: For Data Science. Analysis, and Engineering. 2022:737-881. https://doi.org/10.1007/978-1-....
 
68.
Macedo P. A two-stage maximum entropy approach for time series regression. Communications in Statistics-Simulation and Computation. 2024;53(1):518-528. https://doi.org/10.1080/036109....
 
69.
Subba Rao S, Yang J. A prediction perspective on the Wiener–Hopf equations for time series. Journal of Time Series Analysis. 2023;44(1):23-42. https://doi.org/10.1111/jtsa.1....
 
70.
Goolak S, Liubarskyi B, Sapronova S, Tkachenko V, Riabov I. Refined model of asynchronous traction electric motor of electric locomotive. Transport Means - Proceedings of the International Conference. 2021:455–460.
 
71.
Goolak S, Riabov I, Petrychenko O, Kyrychenko M, Pohosov O. The simulation model of an induction motor with consideration of instantaneous magnetic losses in steel. Advances in Mechanical Engineering. 2025;17(2): 16878132251320236. https://doi.org/10.1177/168781....
 
eISSN:2449-5220
Journals System - logo
Scroll to top