Diagnosis of hybrid systems through bond graph, observers and timed automata
 
More details
Hide details
1
Laboratory of Automatic Signal and Image Processing (LARATSI), University of Kairouan, Tunisia
2
Laboratory of Automatic Signal and Image Processing (LARATSI), University of Kairouan, Tunisia
3
Laboratoire d’Automatique et Informatique de Guelma (LAIG lab.), Université 8 Mai 1945 Guelma, BP 401, Guelma 24000, Algérie
Submission date: 2020-04-01
Final revision date: 2020-07-26
Acceptance date: 2020-08-17
Online publication date: 2020-08-24
Publication date: 2020-08-24
 
Diagnostyka 2020;21(3):113–125
 
KEYWORDS
TOPICS
ABSTRACT
Despite technological advances and progress in industrial systems, the fault diagnosis of a system remains a very important task. In fact an effective diagnosis contributes not only to improved reliability but also to a decrease in maintenance costs. This paper presents an approach to a diagnosis of hybrid systems thanks to the use of Bond Graphs, Observer and Timed Automata. Dynamic models (in normal and failing mode) are generated by an observer based methods as well as through state equations generated by the Bond Graphs model. The procedure of fault localization through a method based on the observer does not allow locating faults with the same signature of failure. Thus the diagnosis technique for the localization of these defects will be based on the time analysis using Timed Automata. The proposed approach is then validated by simulation tests in a two tanks hydraulic system.
 
REFERENCES (46)
1.
Branicky MS. Studies in hybrid systems: Modeling, Analysis and Control. Ph.D thesis, Department of Electrical Engineering and Computer Science – MIT Cambridge. 1995.
 
2.
Alur R, Courcoubetis C, Henzinger TA, Ho PH. Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In Hybrid Systems, LNCS. 1993; 736:209-229.
 
3.
Le Bail J, Alla H, David R. Hybrid Petri nets. In Proceedings of the European Control Conference, Grenoble, France. 1991:1472-1477.
 
4.
Mosterman PJ. Hybrid dynamic systems: a hybrid Bond-Graph modeling paradigm and its application in diagnostic. Ph.D thesis, Vanderbilt University 1997.
 
5.
Ould Bouamama B, Medjaher K, Samantaray AK, Staroswiecki M. Supervision of an industrial steam generator. Part I: Bond graph modelling. Control Engineering Practice. 2006:14:71–83.
 
6.
Dhouibi H, Bochra M, Simeu Abazi Z, Hassani M. Diagnosis approach using bond graph and timed automata. IJAREEIE. 2013;2(9).
 
7.
Bengtsson J, Wang Yi. Timed automata: semantics, algorithms and tools. In lecture Notes on Concurrency and Petri Nets, W. Reisig and G. Rozenberg (eds), LNCS 3098, Springer-Verlag, 2004.
 
8.
Saeed Ghasemi, Leili Mohammad Khanli, Mina Zolfi, Ghader Tahmasebpour. Modeling and Simulation of NFC Logical Layer Peer-to-Peer Mode using CPN and TA. International Journal of Electrical and Computer Engineering (IJECE). 2014;4(2): 162-168.
 
9.
Mhamdi L, Dhouibi H, Simeu-Abazi Z, Liouane N. Using constrained Petri nets and timed automata for modelling of discrete event systems. IJE. 2014;27: 113-122.
 
10.
Gascard E, Simeu-Abazi Z. Modular Modelling for the Diagnostic of Complex Discrete-Event Systems. IEEE Trans. on Automation Science and Engineering. 2013;10(4):1101-1123.
 
11.
Zineb Simeu-Abazi and al. Fault diagnosis for discrete event systems: modelling and verification. Reliability Engineering et systems Safet. 2010;95(4): 369-378.
 
12.
Paynter HM. Analysis and design of engineering systems. MIT Press, Cambridge, Massachusetts. 1961.
 
13.
Mukherjee A, Karmakar R. Modelling and simulation of engineering systems through bond graphs. Alpha sciences international. 2000.
 
14.
Thoma JU, Ould Bouamama B. Modelling and simulation in thermal and chemical engineering: A Bond graph approach. Springer Science & Business Media. 2013.
 
15.
Ould-Bouamama B, Medjaher K, Bayart M, Samantaray AK, Conrard B. Fault detection and isolation of smart actuators using bond graphs and external models. Control Engineering Practice. 2005; 13:159–175,.
 
16.
Ould-Bouamama B, El Harabi R, Abelkrim MN, Ben Gayed MK. Bond graphs for diagnosis of chemical processes. Computers & chemical engineering. 2012; 36: 301–324.
 
17.
Panos Antsaklis, Xenofon Koutsoukos, Janan Zaytoon. On hybrid control of complex systems: a survey. ADPM’98, Reims, France. 1998.
 
18.
Dauphin-Tanguy G. Les Bond Graphs. Hermes Sciences Europe Limited, Paris. 2000.
 
19.
Karnopp DC, Rosenberg RC. System Dynamics: A unified Approach. John Wiley, New York. 1974.
 
20.
Borutzky W. Bond Graph Modelling and Simulation of Multidisciplinary Systems: An introduction. Simulation Modelling Practice and Theory. 2009;17(1):3-21.
 
21.
Paynter HM. Analysis and design of engineering systems. MIT Press, Cambridge. 1961.
 
22.
Touati Y. Diagnostic Robuste et estimation de défauts à base de modèle Bond Graph. Ph.D thesis. 2012.
 
23.
Chen J, Patton RJ. Robust model-based fault diagnosis for dynamic systems. The International Series on Asian Studies in Computer and Information Science. 1999.
 
24.
Chen J, Patton RJ, Zhang HY. Design of unknown input observers and robust fault detection filters. IJC, 1996; 63(1):85–105.
 
25.
Frank PM. Analytical and qualitative model-based fault diagnosis - a survey and some new results. European Journal of Control. 1996;2:6–28.
 
26.
Patton RJ. Robust model-based fault diagnosis: the state of the art. IFAC Safe process Symposium, Espoo, Finland. 1994:1-24.
 
27.
Gauthier JP, Hammouri H, Othman S. A Simple Observer for Nonlinear Systems Applications to Bioreactors. IEEE Trans on Automatic Control. 1992;37:875–880.
 
28.
René Husson et al. Automatique du cahier des charges à la réalisation de systems. Edition Dunod, Paris. 2007.
 
29.
Perry Y. Li. University of Minnesota ME 8281: Advanced Control Systems Design. 2001-2012.
 
30.
Sava AT. Sur la synthese de la commande des systemes a evenements discrets temporises. Ph.D thesis, Laboratoired’Automatique de Grenoble. 2001.
 
31.
Simeu-Abazi Z, Rayhane H, Bennani T, Bouredji Z. Optimisation des temps de detection dans la surveillance des systemes. 5eme Congres International de Genie Industriel. 2003: 25-29.
 
32.
Lajmi F, Talmoudi AJ, Dhouibi H. Fault Diagnosis of Uncertain Systems Based onInterval Fuzzy PETRI Net, Studies in Informatics and Control. 2017;26(2):239-248. https://doi.org/10.24846/v26i2....
 
33.
Maaref B, Ghabi J, Simeu-Abazi Z. A mixed approach for modeling and fault diagnosis of hybrid dynamical systems with unknown disturbance. Studies in Informatics and Control. 2018;27(3):307-318.
 
34.
Miguel Hernandez, Basilio Del Muro, Domingo Cortes, Juan Carlos Sanchez. An Easy to Apply Methodology for Fault Detection and Isolation in Linear Systems. Studies in Informatics and Control. 2012;21(3):275-282.
 
35.
Guerra RV, Rubio JM, Cuéllar BM, Sánchez GID. Dynamic delayed controllers for unstable recycling systems with time delays. Studies in Informatics and Control. 2016;25(2):195-206.
 
36.
Campos-Rodriguez R, Alcaraz-Mejia M. An efficient testing for the detection of trajectories in discrete-event systems modelled by S-Nets. Studies in Informatics and Control. 2016;25(3):363-374.
 
37.
Mhamdi L, Dhouibi H, Simeu-Abazi Z, Liouane N. Modelling approach for discrete event systems through petri nets and timed automata. In 2013 International Conference on Control, Decision and Information Technologies (CoDIT). 2013:166-171.
 
38.
Belkacem L, Mhamdi L, Simeu-Abazi Z, Messaoud H, Gascard E. Diagnosis of Hybrid Dynamical Systems through Hybrid Automata. IFAC-PapersOnLine. 2016;49(12):990-995.
 
39.
Achbi MS, Kechida S. Methodology for monitoring and diagnosing faults of hybrid dynamic systems: a case study on a desalination plant. Diagnostyka, 2020;21(1):27:33. https://doi.org/10.29354/diag/....
 
40.
Achbi MS, Kechida S. Hybrid dynamic systems fault diagnosis approach based on hybrid automata and ANFIS. 2nd international conference on Applied Automation and Industrial Diagnostics. ICAAID. Djelfa. 2017.
 
41.
Achbi M S, Kechida S. Fault diagnosis of a reverse osmosis water desalination plant through a hybrid approach. International conference on Electronicsand new technologies.ICENT.M’sila. 2017.
 
42.
Mhamdi L, Liouane N, Hassani M, Dhouibi H. Using interval petri nets and timed automata for diagnosis of discrete event systems (des). International Journal of Engineering. 2014;27(1): 113-122.
 
43.
Achbi MS, Kechida S. Fault tolerant control of Reverse Osmosis Desalination Plant with the application of SCADA system. 2nd international conference on Applied Automation and Industrial Diagnostics. ICAAID. Djelfa. 2017.
 
44.
Mhamdi L, Belkacem L, Dhouibi H, Abazi ZS. Using Hybrid Automata for Diagnosis of Hybrid Dynamical Systems. International Journal of Electrical & Computer Engineering. 2015;5(6).
 
45.
Mhamdi L, Dhouibi H, Simeu-Abazi Z, Liouane, N. Modelling approach for discrete event systems through petri nets and timed automata. In 2013 International Conference on Control, Decision and Information Technologies (CoDIT). 2013;166-171.
 
46.
Kechida S, Cocquempot V. Méthodologies de diagnostic des systèmes dynamiques: Théories et exemples. Kechida S, & Cocquempot V. Méthodologies de diagnostic des systèmes dynamiques: Théories et exemples. 2012.
 
eISSN:2449-5220
ISSN:1641-6414