In the paper reliability model for pressure vessel protective fittings is developed. The model is intended for the quantitative analysis of failure causes of such system. Reliability of the system is formalized by the dynamic fault tree in which load-sharing phenomena are mathematically described. Using the dynamic fault tree th
e split homogeneous Markov model is obtained. Reliability characteristics are calculated based on the Markov model. Life of protective fittings components is distributed by Weibull that provided by tensor splitting of Markov model. The
result of the simulation is probability curve family obtained for different values of load-sharing coefficients. It is shown how the main cause of system failure changing with these coefficients changing.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.