The concept of an improved acoustic wireless sensor node for leak detection and location in a water distribution networks
 
More details
Hide details
1
Silesian University of Technology
CORRESPONDING AUTHOR
Mateusz Andrzej Kosior   

Silesian University of Technology
Online publication date: 2019-09-23
Publication date: 2019-09-23
Submission date: 2019-06-24
Final revision date: 2019-08-27
Acceptance date: 2019-09-16
 
Diagnostyka 2019;20(4):49–55
KEYWORDS
TOPICS
ABSTRACT
The paper presents the concept of a node of an acoustic-based system for leak detection and location. The system monitors hydraulic parameters and condition of a water distribution network (WDN) using a wireless sensor network (WSN). The WSN’s nodes communicate with each other using acoustic waves propagating through water in the pipeline. Alternatively, a WSN uses a combination of acoustic-based and radiowave-based communication. The preliminary research positively verified communication capabilities of the WSN in laboratory conditions. The paper discusses the improvements of an idea presented in previous papers and its possible application to leak detection and location. The paper continues the long-term research on diagnostics of water distribution networks conducted by the Institute of Fundamentals of Machinery Design.
 
REFERENCES (22)
1.
Moczulski W, Wyczółkowski R, Ciupke K, Przystałka P, Tomasik P, Wachla D. A methodology of leakage detection and location in water distribution networks - The case study. Proceedings of the 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol); 2016;:331-336. https://doi.org/10.1109/SYSTOL....
 
2.
Moczulski W, Karwot J, Wyczółkowski R, Wachla D, Ciupke K, Przystałka P et al. SysDetLok - a leakage detection and localization system for water distribution networks. Proceedings of the 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes; 2018; Warsaw.
 
3.
Puust R, Kapelan Z, Savic D, Koppel T. A review of methods for leakage management in pipe networks. Urban Water Journal. 2010; 7 (1): 25-45.
 
4.
Przystałka P, Wyczółkowski R. Sensor and actuator placement for leakage diagnosis in water distribution systems. Problemy eksploatacji; 2011; 2: 141-151. Polish.
 
5.
Przystałka P. Leakage detection method in water supply networks using NLARX models. Model. Inż. 2013; 15 (46): 94-102. Polish.
 
6.
Moczulski W, Karwot J, Wyczółkowski R, et al. Method for conducting detection and location of accidents in water supply systems having a closed structure and using the water flow measuring devices in the water supply network. PL224049 (B1). 2011.
 
7.
Allen M, Iqbal M, Girod L, Preis A, Srirangarajan S, Fu C, et al. WaterWiSe@SG: a WSN for Continuous Monitoring of Water Distribution Systems. 2011.
 
8.
Kilian E. Nowe technologie w diagnostyce sieci wodociągowej. Napędy i sterowanie. 2015; 1: 48-53. Polish.
 
9.
Future Processing. Case study. SmartFlow [Internet]. 2017 [20.03.2019]. Available from: https://www.smart-flow.eu/uplo....
 
10.
Besancenot F, Quesnel JJ. Detection and location system of an event in a fluid transport channel allowing the use of low pass-band communication means. EP2097728 (A2). 2009.
 
11.
Wayman M. Apparatus for acoustic monitoring of pipeline connected components. Patent no WO2017203279 (A1). 2011.
 
12.
Kosior M. Koncepcja układu bezprzewodowej komunikacji systemów monitorowania sieci wodociągowych [master’s thesis]. Gliwice: Politechnika Śląska; 2018. Polish.
 
13.
Kohvakka M, Hämäläinen TD, Hännikäinen M. Energy efficient wireless sensor network and a method for arranging communications in a wireless sensor network. European Patent no 1829291 (B1). 2007.
 
14.
Kosior M, Moczulski W, Przystałka P. System i sposób komunikacji w bezprzewodowej sieci sensorycznej w rurociągu, zwłaszcza w systemach monitorowania parametrów i stanu sieci wodociągowej [patent application]. 2018. Polish.
 
15.
Kortnieiev S, Shuliak V, Otradnov K. Underwater Wireless video communication. New Horizon of Underwater Explorations [Internet]. 2016 [27.12.2017]. www.hydro-international.com/co...
 
16.
Stojanovic M. Underwater acoustic communication. In: Wiley Encyclopedia of Electrical and Electronics Engineering; 2015; https://doi.org/10.1002/047134....
 
17.
Lasota H. Podstawy Hydroakustyki I. Gdańsk; 2004/2005. Polish.
 
18.
Bień J, Stępniak L, Palutkiewicz J. Efficiency of Water Disinfection in Ultrasonic Field. Ochrona środowiska; 1995; 4 (59): 56-58. Polish.
 
19.
Kochańska I. Badanie właściwości transmisyjnych kanału hydroakustycznego dla zastosowania w komunikacji cyfrowej [dissertation]. Gdańsk: Politechnika Gdańska; 2012. 122 p. Polish.
 
20.
Kosior M, Kronhof G, Przystałka P. The prototype of an acoustic communication device for monitoring of water distribution networks. Aparatura Badawcza i Dydaktyczna; 2019; 24: 56-65.
 
21.
Przystałka P, Moczulski W. Optimal placement of sensors and actuators for leakage detection and localization. In: Astorga AMZ, Carlos M, editors. IFAC Proceedings Volumes. Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes; 2012; Mexico City, Mexico; 45 (20): 666–671. https://doi.org/10.3182/201208....
 
22.
Wyczółkowski R. Metodyka detekcji i lokalizacji uszkodzeń sieci wodociągowych z wykorzystaniem modeli przybliżonych. Manuscript of the monograph. Wydaw. Politechniki Śląskiej; 2013. Polish.
 
eISSN:2449-5220
ISSN:1641-6414