Surface acoustic waves application for gas leakage detection
Mateusz Pasternak 1  
,   Krzysztof Jasek 2  
,   Michał Grabka 2  
More details
Hide details
Wojskowa Akademia Techniczna
Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii
Mateusz Pasternak   

Wojskowa Akademia Techniczna
Submission date: 2019-06-19
Final revision date: 2019-12-10
Acceptance date: 2020-01-03
Online publication date: 2020-01-07
Publication date: 2020-01-07
Diagnostyka 2020;21(1):35–39
The influence of the environment on surface acoustic wave (SAW) parameters can be used to detect specific gases that are present in this environment. The basic research problem was to determine the dependence of the resonant frequency and attenuation of waves in a resonator with SAW on the parameters and concentrations of specific gases in the gaseous environment in which the resonator works. The secondary objective was to determine whether this dependence is strong enough to be used for the construction of sensors and whether it is possible to identify gases present in the environment based on such measurements. Two-port resonators from SAW and measuring stand of our own design were used for the research. The analyses conducted and laboratory measurements confirmed the existence of the above-described dependence. It was found that it increases with the increase of the difference between the molar mass of the gas being tested and the average molecular mass of the gaseous environment. This fact makes the proposed method suitable for detection of gases of relatively low or high molar masses. In air it is possible to detect hydrogen, helium, krypton, xenon and vapour of volatile compounds with sufficiently high molar masses.
Jasek K, Pasternak M. The Influence of External Pressure on Resonant Frequency of SAW Resonator. Acta Physica Polonica A. 2015; 127(6):1601-1604.
Jasek K, Neffe S, Pasternak M. SAW sensor for mercury vapour detection. Acta Physica Polonica A. 2012; 122(5):825:827.
Urbańczyk M. Sensory gazu z akustyczną falą powierzchniową. Wydawnictwo Politechniki Śląskiej, 2011.
Mujahid A, Dickert FL. Surface acoustic wave (SAW) for chemical sensing applications of recognition layers. Sensors. 2017;17(2):2716
Zhu J, Popovics JS, Schubert F. Leaky Rayleigh and Scholte waves at the fluid–solid interface. J. Acoust. Soc.Am.2004;116(4).
Cheeke JDN. Fundamentals and Applications of Ultrasonic Waves. CRC Press 2002.
Mozhaev V, Weihnacht M. Subsonic leaky Rayleigh waves at liquid-solid interfaces, Ultrasonics. 2002;40(1-8):927-933.
Borman VD, Krylov SY, Kharitonov AM. Transport phenomena at a gas-solid interface due to propagation of surface sound. Zh. Eksp. Teor. Fiz., Sov. Phys. JETP 1987;92:1668-1683.
Chu KW. Transport induced by a surface acoustic wave along a slab. The European Physical Journal - Applied Physics. 2002;18(1):51-56.
Aleksandrov OE, Seleznev VD. Acoustic gas slip induced by surface waves. Journ. of Statist. Phys. 1995; 78:161–167.
Pasternak M. Applicability of different SAW oscillators’ topologies for high frequency gas sensors construction. Acta Physica Polonica B. 2010; 118(6):1232-1234.
Filipiak J, Solarz L, Steczko G. Surface acoustic wave vibration sensor electronic system. Acta Physica Polonica A. 201l; 120(4):598-603.
Soluch W. SAW Synchronous Multimode Resonator with Gold Electrodes on Quartz. IEEE Trans. on Ultras. Ferroel. and Freq. Control, 2008;55(6):1391-1393,
Jasek K, Miluski W, Pasternak M. A new system for acoustoelectronic gas sensors analysis. Acta Physica Polonica A. 2014;124(3):445:447.
Grabka M, Jasek K, Pasternak M, Miluski W. Stanowisko do badania sensorów z akustyczną falą powierzchniową. Aparatura Badawcza i Dydaktyczna. 2015; 20(4): 251-258.