Sensitivity analysis for a hybrid off-grid PV/DG/BATT system for the electrification of rural communities
More details
Hide details
Universidad Politécnica Salesiana
Submission date: 2021-11-10
Final revision date: 2021-12-03
Acceptance date: 2022-01-03
Online publication date: 2022-01-14
Publication date: 2022-01-14
Corresponding author
Lata-Carlos Juan   

Universidad Politécnica Salesiana
Diagnostyka 2022;23(1):2022103
One of the pillars for the development of isolated communities is electricity, however the implementation of conventional networks is limited as a result of the difficulties of the terrain. This paper aims to analyze the technical-economic feasibility of implementing a hybrid off-grid solar photovoltaics (PV)/diesel generator (DG)/battery (BATT) based power system for the electrification of rural communities, using a case study in Bameno, Ecuador. The simulation and optimization of the system is done using the HOMER software. As a result, the optimal sizing is composed of 23kW PV modules, a DG 27 kW, 88.4 kWh storage batteries and 9.4 kW converter system, obtaining an LCOE of 0.359 $/kWh. After the optimization is executed, a sensitivity analysis is performed to establish the effects of the variations of solar radiation, demand, fuel, and component costs on the system. The PV/DG/BATT system is considered the best choice for fuel prices up to $ 0.83 per liter. For higher values the optimal system is the PV/BATT. It is also established that the LCOE is mostly affected by the cost of technological components, followed by variations in solar radiation and demand.
Fujii T, Shonchoy AS, Xu S. Impact of Electrification on Children’s Nutritional Status in Rural Bangladesh. World Dev. 2018;102:315–30.
Kumar S, Rauniyar G. The impact of rural electrification on income and education: Evidence from Bhutan. Rev Dev Econ. 2018;22(3):1146–65.
International Energy Agency. World Energy Outlook 2020 – Analysis - IEA. 2020.
Wilmsmeier G, Jaimurzina A, Montiel D. Eficiencia energética y movilidad fluvial: soluciones sostenibles para la Amazonía. Boletín FAL. 2017;353(1):11.
Feng W, Jin M, Liu X, Bao Y, Marnay C, Yao C, et al. A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools. Appl Energy. 2018;228:1656–68.
Come Zebra EI, van der Windt HJ, Nhumaio G, Faaij APC. A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renew Sustain Energy Rev. 2021;144.
Li J, Liu P, Li Z. Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China. Energy. 2020;208:118387.
Ur Rehman S, Rehman S, Qazi MU, Shoaib M, Lashin A. Feasibility study of hybrid energy system for off-grid rural electrification in southern Pakistan. Energy Explor Exploit. 2016;34(3):468–82.
Lotfi H, Khodaei A. Levelized cost of energy calculations for microgrids. IEEE Power Energy Soc Gen Meet. 2016;2016-Novem:1–5.
Fox J, Okten G, Uzunoglu B. Global sensitivity analysis for power systems via quasi-monte carlo methods. 2019 4th Int Conf Syst Reliab Safety, ICSRS 2019. 2019;446–51.
Mohammadi M, Hosseinian SH, Gharehpetian GB. GA-based optimal sizing of microgrid and DG units under pool and hybrid electricity markets. Int J Electr Power Energy Syst. 2012;35(1):83–92.
Toopshekan A, Yousefi H, Astaraei FR. Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy. Energy. 2020 Dec;213:118850.
Arévalo P, Benavides D, Lata-García J, Jurado F. Techno-economic evaluation of renewable energy systems combining PV-WT-HKT sources: Effects of energy management under Ecuadorian conditions. Int Trans Electr Energy Syst. 2020;30(10):1–26.
Halabi LM, Mekhilef S, Olatomiwa L, Hazelton J. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia. Energy Convers Manag. 2017;144:322–39.
Cristian H, Bizon N, Alexandru B. Design of hybrid power systems using homer simulator for different renewable energy sources. Proc 9th Int Conf Electron Comput Artif Intell ECAI 2017. 2017;2017-Janua:1–7.
Pawar N, Nema P. Techno-Economic Performance Analysis of Grid Connected PV Solar Power Generation System Using HOMER Software. 2018 IEEE Int Conf Comput Intell Comput Res ICCIC 2018. 2018;.
Shamachurn H. Optimization of an off-grid domestic Hybrid Energy System in suburban Paris using iHOGA software. Renew Energy Focus. 2021.
Lata-Garcia J, Jurado-Melguizo F, Sanchez-Sainz H, Reyes-Lopez C, Fernandez-Ramirez L. Optimal sizing hydrokinetic-photovoltaic system for electricity generation in a protected wildlife area of Ecuador. Turkish J Electr Eng Comput Sci. 2018;26(2):1103–14.
Lata-Garcìa J, Reyes-Lopez C, Jurado F, Fernández-Ramírez LM, Sanchez H. Sizing optimization of a small hydro/photovoltaic hybrid system for electricity generation in Santay Island, Ecuador by two methods. 2017 Chil Conf Electr Electron Eng Inf Commun Technol CHILECON 2017 - Proc. 2017;2017-Janua:1–6.
López-González A, Domenech B, Gómez-Hernández D, Ferrer-Martí L. Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renew Sustain Energy Rev [Internet]. 2017;79(September 2016):1255–65.
GAD(Cononaco). Actualizacion del PDOT de la parroquia de Cononaco. 2020.
Enrique L, Villafuerte M. Elaboración y evaluación de modelos energéticos sostenibles en entornos rurales aislados de la Amazonía del Ecuador / Luis Enrique Manzano Villafuerte. 2021.
POWER Data Access Viewer [Internet]. [cited 2021 Aug 5].
IRENA Renewable Cost Database. Renewable Power Generation Costs in 2020 [Internet]. International Renewable Energy Agency. 2020. 160 p. Available from:
Pintulac. Pintulac | Tu amigo experto en acabados para construcción y maquinaria | Pintulac [Internet]. [cited 2021 Dec
Autosolar Energy Solutions S.L.U. Autosolar | La Tienda de la Energía Solar. 2021.
Journals System - logo
Scroll to top