Performance comparison of classical and fuzzy logic MPPT techniques under sudden irradiation variations and their hardware implementation
 
More details
Hide details
1
Energy, Embedded System, and Data Processing Laboratory, National School of Applied Sciences Oujda (ENSAO), Mohammed First University (UMP), Oujda, 60000, Morocco
 
2
Laboratory of Electrical Engineering and Maintenance, Higher School of Technology (ESTO), Mohammed First University (UMP), Oujda, 60000, Morocco
 
 
Submission date: 2024-12-01
 
 
Final revision date: 2025-08-06
 
 
Acceptance date: 2025-08-09
 
 
Online publication date: 2025-08-17
 
 
Publication date: 2025-08-17
 
 
Corresponding author
Mohammed Boutaybi   

Energy, Embedded System, and Data Processing Laboratory, National School of Applied Sciences Oujda (ENSAO), Mohammed First University (UMP), Oujda, 60000
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This study presents the simulation and experimental implementation of two distinct categories of Maximum Power Point Tracking (MPPT) algorithms aimed at optimizing the performance of Photovoltaic (PV) systems. The first category involves advanced Fuzzy Logic-based MPPT controllers, specifically FL-Mamdani and FL-Takagi Sugeno (FL-TS) models. These controllers utilize two input parameters: the gradient of the power-current curve and its variation, offering an alternative to conventional methods that depend on the gradient of the power voltage curve and its change. The second category consists of classical MPPT algorithms, including Incremental Conductance (IC) and Perturb and Observe (P&O). The experimental setup comprises a PV system with a TDC-P50-42 solar panel powering a resistive load through a boost converter. The converter’s Mosfet is controlled via a Pulse Width Modulation (PWM) signal generated by the MPPT controller. The algorithms were first simulated using MATLAB/Simulink and then implemented in real-time using an Arduino board supported by the Simulink hardware package for Arduino. Experimental results confirm the proper functioning of the proposed PV system. Among the tested techniques, the FL-TS fuzzy logic controller demonstrated superior performance and reliability, validating its practical applicability in real-world PV applications.
FUNDING
This research received no external funding.
REFERENCES (37)
1.
An L, Dylan L. Design of a single-switch DC/DC converter for a PV-battery-powered pump system with PFM+PWM control. IEEE Transactions on Industrial Electronics. 2015;62(2):910-921. https://doi.org/10.1109/TIE.20....
 
2.
Ibrahim EH, Aslan SR. Solar photovoltaic water pumping system approach for electricity generation and irrigation: Review. Diagnostyka. 2023;24(2): 2023211. https://doi.org/10.29354/diag/....
 
3.
Aashoor FAO; Robinson FVP. Maximum power point tracking of photovoltaic water pumping system using fuzzy logic controller. Proceedings of the Universities Power Engineering Conference. 2013:1-5. https://doi.org/10.1109/UPEC.2....
 
4.
El Idrissi R, Abbou A, Mokhlis M, Salimi M. A comparative study of MPPT controllers for photovoltaic pumping system. 9th International Renewable Energy Congress (IREC). 2018:1-6. https://doi.org/10.1109/IREC.2....
 
5.
Aldjia L, Kesraoui M, Djalloul A. Energy management and control of a hybrid water pumping system with storage. Applied Solar Energy, Appl. Sol. Energy. 2017;53:190-198. https://doi.org/10.3103/S00037....
 
6.
Zaid SA, Albalawi H, Alatawi KS, El-Rab HW, El-Shimy ME, Lakhouit A, Alhmiedat TA, Kassem AM. Novel fuzzy controller for a standalone electric vehicle charging station supplied by photovoltaic energy. Appl. Syst. Innov. 2021;4:63. https://doi.org/10.3390/asi403....
 
7.
Raturi, A. Feasibility study of a solar water pumping system. Appl. Sol. Energy. 2011;47:11-13. https://doi.org/10.3103/S00037....
 
8.
Nasri E, Jarou T, Benchikh S, Elkoudia Y. Reliable energy supply and voltage control for hybrid microgrid by pid controlled with integrating of an EV charging station. Diagnostyka. 2023;24(4):2023409. https://doi.org/10.29354/diag/....
 
9.
Po-Cheng Chen PYC, Yi-Hua L, Jing-Hsiao C. A comparative study on maximum power point tracking techniques for photovoltaic generation systems operating under fast-changing environments. Sol. Energy. 2015;119:261-276. https://doi.org/10.1016/j.sole....
 
10.
Lalouni S, Rekioua D, Rekioua T. Matagne E. Fuzzy logic control of stand-alone photovoltaic system with battery storage. Journal of Power Sources. 2009; 193: 889-907. https://doi.org/10.1016/j.jpow....
 
11.
Bounechba H, Bouzid A, Nabti K, Benalla H. Comparison of perturb & observe and fuzzy logic in maximum power point tracker for PV systems. International Journal Energy Procedia. 2014;50:667-684. https://doi.org/10.1016/j.egyp....
 
12.
Doudou NL, Atanda KR. Comparing fuzzy rule-based MPPT techniques for fuel cell stack applications, Journal Energy Procedia. 2019;156:177-182. https://doi.org/10.1016/j.egyp....
 
13.
Gupta A, Chauhan YK, Pachauri RK. A comparative investigation of maximum power point tracking methods for solar PV system, Solar Energy. 2016;136: 236-253. https://doi.org/10.1016/j.sole....
 
14.
Motahhir S, El Hammoumi A, El Ghzizal A. Photovoltaic system with quantitative comparative between an improved MPPT and existing INC and P&O methods under fast varying of solar irradiation. Energy Reports. 2018;4:341-350. https://doi.org/10.1016/j.egyr....
 
15.
Gupta AK, Chauhan YK, Maity T. Experimental investigations and comparison of various MPPT techniques for photovoltaic system. Indian Academy of Sciences. 201843:4-15. https://doi.org/10.1007/s12046....
 
16.
Sellami A, Kandoussi K, El Otmani R, Eljouad M, Mesbahi O, Hajjaji A. A novel auto scaling MPPT algorithm based on perturb and observe method for photovoltaic modules under partial shading conditions. Appl. Sol. Energy. 2018;54:149-158. https://doi.org/10.3103/S00037....
 
17.
Loukriz A, Haddadi M, Messalti S. Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems, , Journal ISA Transactions. 2016;62:30-38. https://doi.org/10.1016/j.isat....
 
18.
Kamal S, Aniket A, Anjanee Kumar M, Bhim S, Kaldeep, S. SEPIC converter for solar PV array fed battery charging in DC homes; Journal of The Institution of Engineers (India) Transactions. 2021; 102:455-463. https://doi.org/10.1007/s40031....
 
19.
Rokeya JM, Ariful I. Modeling and performance analysis of PV module with Maximum Power Point Tracking in Matlab/Simulink. Applied Solar Energy. 2015;51:245-252. https://doi.org/10.3103/S00037....
 
20.
Farayola AM, Hasan AN, Ali A. Implementation of modified incremental conductance and fuzzy logic MPPT techniques using MCUK converter under various environmental conditions. Appl. Sol. Energy. 2017;53:173-184. https://doi.org/10.3103/S00037....
 
21.
Mukti RJ, Islam A. Modeling and performance analysis of PV module with maximum power point tracking in Matlab/Simulink. Appl. Sol. Energy. 2015; 51:145-252. https://doi.org/10.3103/S00037....
 
22.
Yamina K, Hajji B, Adel M. A new maximum power point tracking PV control for rapid changes in irradiation level. Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy. 2019;512:384-391. https://doi.org/10.1007/978-98....
 
23.
Yuncong J, Qahouq JA, Haskew TA. Adaptive step size with adaptive- perturbation-frequency digital MPPT controller for a single-sensor photovoltaic solar system. IEEE Transactions on Power Electronics. 2013;28:3195-3205. https://doi.org/10.1007/978-98....
 
24.
Ahmed KA, Ahmed MM, Shehab A, Parasad NE, High-peformance adaptive perturb and observe MPPT technique for photovoltaic-based micro-grids. IEEE Transactions on Power Electronics. 2011;26(4):1010-1021. https://doi.org/10.1109/TPEL.2....
 
25.
Bhukya L, Nandiraju S, Messaoudi A. A novel photovoltaic maximum power point tracking technique based on grasshopper optimized fuzzy logic approach. International Journal of Hydrogen Energy. 2020;45:9416-9427. https://doi.org/10.1016/j.ijhy....
 
26.
Rezk H, Aly M, Al-Dhaifallah M, Shoyama M. Design and hardware implementation of new adaptive fuzzy logic-based MPPT control method for photovoltaic appli-cations. IEEE Access. 2019;7:106427-106438. https://doi.org/10.1109/ACCESS....
 
27.
Mohammed B, Yamina K, Bekkay H. Efficient fuzzy logic MPPT controls for sudden change in load. Lecture Notes in Electrical Engineering. 2023. https://doi.org/10.1007/978-98....
 
28.
Ouahib G, Dahhou B, Ferhat, C, Adaptive fuzzy controller based MPPT for photovoltaic systems. Journal Energy Conversion and Management. 2014; 78:843-850. https://doi.org/10.1016/j.enco....
 
29.
Saad M, Abdelaziz EG, Souad S, Aziz D. Modeling of photovoltaic system with modified incremental conductance algorithm for fast changes of irradiance. International Journal of Photoenergy. 2018:1-3. https://doi.org/10.1155/2018/3....
 
30.
Mohammed B, Bekkay B, Hassan M, Khalid C. Neural network-based precision irrigation scheduling and crop water stress index (CWSI) Assessment in book: Proceedings of the 3rd International Conference on Electronic Engineering and Renewable Energy Systems. 2023:661-669. https://doi.org/10.1007/978-98....
 
31.
Aicha D, Mohamed MR, Ali, T, Mohamed B. The MPPT command for a PV system comparative study: control based on fuzzy logic with P&O. Renewable Energy for Smart and Sustainable Cities. 2019;62: 346-354. https://doi.org/10.1007/978-3-....
 
32.
Unal Y, Ali K, Selim B. PV system fuzzy logic MPPT method and PI control as a charge controller. Renewable and Sustainable Energy Reviews. 2018;81: 994-1001. https://doi.org/10.1016/j.rser....
 
33.
Yamina K, Aziz A. Efficient energy utilization of standalone photovoltaic system under rapid change in load. AIP Conference Proceedings. 2018;2056:SP-0200026. https://doi.org/10.1063/1.5084....
 
34.
Mohammed B, Yamina K, Anas B, Mohamed LHA. Optimization of photovoltaic system using Mamdani and Takagi Sugeno MPPT Controls. 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). 2022:1-5. https://doi.org/10.1109/IRASET....
 
35.
Abdellahi B, Ould Ehssein C, Mahmoud M, Hamdoun O, Elhassen A. Comparative study of different DC/DC power converter for optimal PV system using MPPT (P&O) Method. Appl.Sol. Energy. 2018;54:235-145. https://doi.org/10.3103/S00037....
 
36.
Benbitour Khennane M, Boughali S, Bechki D, Zaghba L, Fezzani A, Hadj Mahammed I. Experimental performance characterization and economic efficiency of 16.28 kWp grid-tied PV systems in semi-arid climate. Diagnostyka. 2021;22(2):53-65. https://doi.org/10.29354/diag/....
 
37.
Mohamed F, Mohamed LH, Mohamed Z, Mohamed LHA. Hardware implementation of the fuzzy logic MPPT in an Arduino card using a Simulink Support Package for photovoltaic application. IET Renewable Power Generation. 2018:13. https://doi.org/10.1049/iet-rp....
 
eISSN:2449-5220
Journals System - logo
Scroll to top