Non-destructive control method of the state of objects operating long time
Liudmyla Trykoz 1  
Vitalii Lyuty 1  
Dmytro Borodin 1  
More details
Hide details
Ukrainian State University of Railway Transport.
O.M.Beketov National University of Urban Economy
Online publish date: 2017-12-18
Publish date: 2018-03-12
Submission date: 2017-10-20
Final revision date: 2017-11-20
Acceptance date: 2017-12-07
Diagnostyka 2018;19(1):11–17
The development of a diagnostic system is a complex engineering problem aimed at preventing damage caused by deteriorating properties of the materials and structures. This article presents the method of nondestructive testing of change control of concrete structures. The analysis of literature data shows that the overwhelming majority of studies are devoted to the change in electrical resistance of concrete in the collection of its strength, and practically no analogous studies regarding its aging are presented. Theoretical substantiation of the change in electrical concrete characteristics (conductivity, resistance) is given with a change in its strength. A work over-bridge in operation more than 30 years has been surveyed. The experimental part consisted in measuring the electrical potentials on the bridge structures, as well as in determining the strength of the material at the same points. Correlation dependence between the measured electric potential value and the strength of the samples taken from the bridge structures were obtained.
Liudmyla Trykoz   
Ukrainian State University of Railway Transport., Feuerbach square, 7, 61050 Kharkiv, Ukraine
1. ASTM C876-91, Standard Test Method for Half-cell Potentials of Uncoated Reinforcing Steel in Concrete, American Standards for Testing Materials, Reapproved 1999.
2. Ayswarya KS, Johnson AM, Chaithanya, Prasad D, Krishnan DR, Radhika Nair NJ. Evaluation of Bridge Performance Using Non-Destructive Testing - A Review. International Advanced Research Journal in Science, Engineering and Technology, 2016; 5 (1): 5-18.
3. Bakhramov O, Kaps C, Samigov N. Anwendung von Lichtoptischen Feuchte-Sensor in der Baupraxis. Proceeding 18. Internationale Baustofftagung, 2012:1143-1150.
4. Bakhramov O, Kaps Ch, Samigov N. Lichtoptischer Feuchte-Sensor und seine Anwendung. Proceeding 17. Internationale Baustofftagung, 2009:1121-1126.
5. Girtler J. Identyfication method of technical state of the objects on the ground of estimation of their work. Diagnostyka, 2001; 25: 5-12.
6. Harnisch J, Dominik A, Raupach M, Koch S. Entwicklung eines Sensorsystems für die tiefengestaffelte, kontinuierliche Wassergehalts-bestimmung in Mauerwerk. Proceeding 16. Internationale Baustofftagung, 2006, 2: 1213-1220.
7. Hecht C, Grüner M, Neubauer G, Dreyer J. Messung von Verdunstungsmengen auf Bauteiloberflächen als Beg¬leitung von Sanierungen Proceeding 16. Internationale Baustofftagung, 2006: 1281-1288.
8. Kurumisawa K, Nawa T. Electrical Conductivity and Chloride Ingress in Hardened Cement Paste. Journal of Advanced Concrete Technology, 2016;14 (3): 87-94.
9. Lübeck A, Gastaldini ALG, Barin DS, Siqueira HC. Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag. Cement and Concrete Composites, 2012;34(3):392-399.
10. Michelle R. Nokken, R. Doug Hooton. Electrical Conductivity Testing. American Concrete International, 2006: 58-63.
11. Pratanu Ghosh, Quang Tran. Correlation Between Bulk and Surface Resistivity of Concrete. International Journal of Concrete Structures and Materials, 2015; 9(1):119-132.
12. Rama Mohan Rao. P, Vinothkumar S. Assessment of Strength and Electrical resistance of Ternary blend concrete. International Journal of ChemTech Research, 2015; 7(4):2034-2040.
13. Rucka M, Wilde K. Non-destructive diagnostics of concrete cantilever beam and slab by impact echo method. Diagnostyka, 2010; 3(55): 63-68.
14. Sanish KB, Narayanan Neithalath, Manu Santhanam. Monitoring the evolution of material structure in cement pastes and concretes using electrical property measurements. Construction and Building Materials, 2013;49:288-297.
15. Rehman S, Ibrahim Z, AliMemon S, Jameel M. Nondestructive test methods for concrete bridges: A review. Construction and Building Materials, 2016; 107:58-86.
16. Shen P, Lu L, He Y, Wang F, Hu S. Hydration monitoring and strength prediction of cement-based materials based on the dielectric properties. Construction and Building Materials, 2016; 126: 179-189.
17. Sklodowski M, Pininska J, Lukaszewski P, Bobrowska A. Application of Rayleigh wave to diagnostics of degradation of historic construction materials. Diagnostyka, 2011; 3(59): 19-24.
18. Snellings R. X-Ray Powder Diffraction. In: Scrivener K, Snellings R, Lothenbach B, eds. A Practical Guide to Microstructural Analysis of Cementitious Materials. CRC Press; 2017.
19. Starrs G, McCarter WJ, Chrisp TM. Characterisation of PFA using impedance techniques. Proceeding of the 11th International Congress on the Chemistry of Cement. – 11-16 May 2003, Durban, South Africa: 370-379.
20. Verstrynge E, Orlowsky J, Harnisch J, Raupach M. Calibration of Sensors for Measuring the Humidity of the Masonry of the Cathedral in Aachen. Proceeding 16. Internationale Baustofftagung, 2006 2:751-758.
21. Xu D, Hu X-Y, Shan C-L, Li R-H. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography. Applied Geophysics, 2016;13(1):1-12.