Method of indicating effective circumferences of rolling vehicle wheels
More details
Hide details
Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Nauk Technicznych Katedra Budowy, Eksploatacji Pojazdów i Maszyn
Michał Janulin   

Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Nauk Technicznych Katedra Budowy, Eksploatacji Pojazdów i Maszyn
Submission date: 2020-07-22
Final revision date: 2020-11-17
Acceptance date: 2020-11-18
Online publication date: 2020-11-19
Publication date: 2020-11-19
Diagnostyka 2020;21(4):95–101
Determining the exact values of the rolling radii of the wheels is extremely important in terms of the functioning of the safety systems of modern vehicles. It is on the basis of the rotational speed of the vehicle wheels that the traction parameters of the vehicle are determined, as well as the warning about the existence of low tire pressure. The precision of determining the turning radius significantly improves the accuracy of calculations of the slip value, driving force, and also plays a key role in determining the linear speed of a motor vehicle. This article presents the method of determining the value of the rolling radius of a tire and tests of changes in its value under the influence of changes in the value of vertical load and tire pressure. Based on the performed measurements, a mathematical model of changes in the value of the effective wheel rolling circumference from the above-mentioned parameters was determined. The results of the regression analysis indicate a very good fit of the developed model to the results of the conducted experimental research.
Balakina EV, Lipatov EY, Sarbayev D S. Advantages of using wheel rolling radius for calculating friction characteristics in wheel-to-road contact patch. In: International Conference on Industrial Engineering. Springer, Cham. 2019:1015-1022.
Bosch HRB, Hamersma HA, Els PS. Parameterisation, validation and implementation of an all-terrain SUV FTire tyre model. Journal of Terramechanics. 2016; 67:11-23.
Butsch M, Dettling J, Ritz C, Wizgall A. Tests with a Dynamometer Related to the Determination of Energy Consumption, Dynamic Behavior and Slippage of Vehicles. SAE Technical Paper, 2019.
Celiński I. Mobile diagnostics of vehicles as a means to examine and define speed limits in a road. Diagnostyka. 2017;18(1):67-72.
Dębicki M. Teoria samochodu-teoria napędu; Wydawnictwa Naukowo-Techniczne, Warszawa 1969.
Dębowski A. Modelling of centre differential control. Journal of KONES Powertrain and Transport. 2011; 18(1): 135-142.
Fayyad SM, Rawashdeh MO. Factors affect slipping of automobiles. WSEAS Trans. Syst. Control 2020;15:247-253.
Grytsyuk O, Vrublevskyi O. Investigations of diesel engine in the road test. Diagnostyka, 2018;19:89-94.
Hamersma HA, Botha TR, Els PS. Kinetic vs. Kinematic Roll Radius on Rough Roads. In: Proceedings of the 18th International Conference of the ISTVS, Seoul, Korea. 2014:69-80.
Kiss P. Rolling Radii of a Pneumatic Tyre on Deformable Soil, Biosystems Engineering. 2003; 85(2):153-161.
Kolator B, Janulin M, Vrublevskyi O. Influence of traction conditions on the power balance in the vehicle 4WD system. In: IOP Conference Series: Materials Science and Engineering. 2018.
Kolator B, Janulin M, Vrublevskyi O. Effect of a Torsen Differential Mechanism on Car Tyre Wear. Tribologia. 2018;4:31-37.
Kutzbach HD, Bürger A, Böttinger S. Rolling radii and moment arm of the wheel load for pneumatic tyres. Journal of Terramechanics. 2019; 82: 13-21.
Mikołajczak J. Statystyka matematyczna z pakietem WinStat. Wydawnictwo UWM, Olsztyn 2001.
Miller SL, Youngberg B, Millie A, Schweizer P, Gerdes JC. Calculating longitudinal wheel slip and tire parameters using GPS velocity. In: Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148). IEEE, 2001: 1800-1805.
Naunheimer H, Bertsche B, Ryborz J, Novak W. Automotive Transmissions: Fundamentals, Selection, Design and Application. Second Edition. Springer: Heidelberg, Dor-drecht, London, New York. 2011.
Oh J, Nam J, Kim S, Park, Y. Influence of tire inflation pressure on the estimation of rating cone index using wheel sinkage. Journal of Terramechanics. 2019; 84: 13-20.
Pedrycz N, Cieślikowski B, Frączek J, Ślipek Z, Francik S. Badania trakcyjne samochodu wyposażonego w pośredni system pomiaru ciśnienia w kołach. Logistyka. 2015; 4: 5278-5283.
Šarkan B, Skrúcaný T, Semanová Š, Madleňák R, Kuranc A, Sejkorová M, Caban J. Vehicle coast-down method as a tool for calculating total resistance for the purposes of type-approval fuel consumption. Scientific Journal of Silesian University of Technology. Series Transport. 2018; 98: 161-172
Szczucka-Lasota B, Kamińska J, Krzyżewska I. Influence of tire pressure on fuel consumption in trucks with installed tire pressure monitoring system (TPMS). Scientific Journal of Silesian University of Technology. Series Transport. 2019;103:167-181.
Upadhyaya SK, Chancellor WJ, Wulfsohn D. Sources of variability in traction data. Journal of Terramechanics. 1988; 25(4):249-272,
Warczek J. Metoda pomiaru promienia dynamicznego koła samochodowego. Zeszyty Naukowe. Transport/Politechnika Śląska. 2010; 67: 97-103.
Žuraulis V, Garbinčius G, Skačkauskas P, Prentkovskis O. Experimental study of winter tyre usage according to tread depth and temperature in vehicle braking performance. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2020;44.1:83-91.
Żebrowski J. Metodyka określania efektywności funkcjonowania ciągnika terenowego. Prace Naukowe, Mechanika. Politechniki Warszawskiej. 2004.