Analytical modelling for Newtonian fluid flow through an elastic tube
Abdessamad Mehdari 1  
,  
Mohamed Agouzoul 2  
,  
 
 
More details
Hide details
1
University MV Rabat Morocco
2
Mohamed V University, Rabat, Morocco
3
Royal Air Force School, Marrakech, Morocco
Online publish date: 2017-12-19
Publish date: 2018-03-12
Submission date: 2017-09-29
Final revision date: 2017-12-09
Acceptance date: 2017-12-15
 
Diagnostyka 2018;19(1):57–62
KEYWORDS:
TOPICS:
ABSTRACT:
The objective of the present work is to develop analytical modelling of an unsteady fluid flow through an elastic tube. The fluid is considered to be newtonian and incompressible. The cylindrical tube wall boundaries are isotropic. The study provides a review of recent modelling aimed at understanding the effects of fluid parameters over the elastic tube wall behaviour. First of all, the fluid flow is analysed following an asymptotic approach according to a large Reynolds number and a small aspect radio. Second of all, the wall has been assumed to be a thin shell, which generates a small axisymmetric vibration. The mathematical model is developed according the thin shell theory. The dynamic behaviour of the tube wall is represented and discussed.
CORRESPONDING AUTHOR:
Abdessamad Mehdari   
University MV Rabat Morocco, Irfane im 1 apt 6, 10000 Rabat, Morocco
 
REFERENCES (21):
1. Mehdari A, Hasnaoui M, Agouzoul M. Modelling of flow through an elastic tube with a variable radius. 12eme Congrès de Mécanique2015. Casablanca. Maroc.
2. Grotberg, JB, Oliver EJ. Biofluidmechanics in flexible tubes. Annual review of fluid mechanics, 2004, 36:121-147.
3. Todd MS, Stephen R. Quake. Microfluidics: fluid physics at the nanoliter scale. Reviews of modern physics, 2005, 77: 977–1026.
4. Eggert MD, Kumar S. Observations of instability, hysterisis, and oscillation in low-Reynolds number flow past polymer gels. Journal of Colloid and Interface Science 2004, 274: 234-242.
5. Babarit A, Gendron B, Singh J, Melis C, Jean P. Modélisation numérique et expérimentale d’un système houlomoteur électro-actif déformable. 13 Journées de l’hydrodyn 2012. Chatou, France.
6. Mitin A. Main gas pipelines: fracture resistance assessment of pipes. Journal of Mechanics Engineering and Automation 2013, 3: 127-140.
7. Anvar G,Trung B.L, Fotis S. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. Journal of computational physics 2015, 300:814-843. https://doi.org/10.1016/j.jcp.....
8. Blom DS, Van Zuijlen AH, Bijl H. Multi-level acceleration with manifold mapping of strongly coupled partitioned fluid–structure interaction. Journal ofComputer Methods in Applied Mechanics and Engineering 2015, 296: 211-231. https://doi.org/10.1016/j.cma.....
9. Hansen TW, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen J, Jeppesen J. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. American Heart Association Circulation 2006,113:664-670. https://doi.org/10.1161/CIRCUL....
10. Kanyiri CW, Kinyanjui M, Giterere K. Analysis of flow parameters of a Newtonian fluid through a cylindrical collapsible tube. Journal of Spring Plus 2014, 3:566. DOI.10.1186/2193-1801-3-566.
11. Frey F, Studer MA. Analyse des structures et milieux continus: Coques, Presses polytechniques et universitaires romandes, 2003, Lausane. Suisse.
12. Kirchhoff GR. Uber das gleichgewicht und die bewegungeinerelastischenscheibe. Journal of Reine und angewandtemathematik 1850, 40:51–88.
13. Koiter WT. On the foundations of the linear theory of thin elastic shells. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen1970, B73. 169-54.
14. Laroze S. Mecanique des structures Tome 1: Solides elastiques, plaques et coques, Chapitre III, Coques. Editions Cépaduès 2005. Toulouse, Fance.
15. Sochi T. The flow of Newtonian and power law fluids in elastic tubes, International Journal of Non-Linear Mechanics 2014, 67:245–250.
16. Leibinger J, Dumbser M, Iben U, Wayand I. A path-conservative Osher-type scheme for axially symmetric compressible flows in flexible visco-elastic tubes. Journal Applied Numerical Mathematics 2016, 105:47-63. https://doi.org/10.1016/j.apnu....
17. Vassal JP, Avril S, Genovese K. Caractérisation des propriétés mécaniques d'un tronçon d'aorte par méthode inverse basée sur une mesure ex-vivo du champ de deformations. 19eme CongrèsFrançais de Mécanique 2009. Marseille- France.
18. Redheuil A, Yu WC, Colin OW,Mousseaux E, Cesar A, Yan R, Kachenoura N, Bluemke D, Lima JAC. Reduced Ascending Aortic Strain and Distensibility Earliest Manifestations Of vascular Aging in Humans. American Heart Association Hypertension2010, https://doi.org/10.1161/HYPERT....
19. Moore JE, Xu C, Glagov S, Zarins CK, Ku DN.Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behaviour and relationship to atherosclerosis. Journal of Atherosclerosis 1994, 110:225-240.
20. Crawford MH. Current diagnosis and treatment in cardiology. 4th edition, Lange current series. New York. USA. 2014.
21. Eric KS, Derek PN, Shanna RS, Ronald MF, Joseph EB, Robert CG, Joseph HG, Benjamin MJ. Impact of wall thickness and saccular geometry on the computational wall stress of descending thoracic aortic aneurysms. American Heart Assocaition. Meeting in Los Angeless. USA. 2012. http://doi/org/10.1161/CIRCULA....
eISSN:2449-5220
ISSN:1641-6414