An experimental investigation of fracture modes and delamination behavior of carbon fiber reinforced laminated composite materials
More details
Hide details
Department of Polymers and Petrochemical Industries, Faculty of Materials Engineering, University of Babylon, Iraq
Department of Prosthetics and Orthotics, Faculty of Engineering, University of Karbala, Iraq
Mustafa Abdul Hussein Musafir   

Department of Polymers and Petrochemical Industries, Faculty of Materials Engineering, University of Babylon, Iraq
Submission date: 2022-09-23
Final revision date: 2022-11-23
Acceptance date: 2022-11-24
Online publication date: 2022-12-01
Publication date: 2023-01-02
Mechanically, composite laminates perform exceptionally well in-plane but poorly out-of-plane. Interlaminar damage, known as "delamination," is a major issue for composite laminates. Results from Mode-I and Mode-II experimental testing on twill-woven carbon fiber reinforced (CFRP) laminates are analyzed in this paper. Composite Mode-I fracture toughness was determined using three different methods in accordance with ASTM D5528: modified beam theory, compliance calibration, and a codified compliance calibration. Two methods, the Compliance Calibration Method and the Compliance-Based Beam Method, were used to determine the Mode-II fracture toughness in accordance with ASTM D7905. Stick-slip behavior is quite evident in the composite's Mode-I fracture toughness test findings. The MBT technique's GIc values for initiation and propagation are 0.533 and 0.679 KJ/m2, respectively. When comparing the MBT approach to the industry-standard ASTM procedure for determining fracture toughness Mode-I, the MBT method was shown to be highly compatible. Furthermore, the GIIc values for the CBBM technique are 1.65 KJ/m2 for non-pre cracked and 1.4 KJ/m2 for pre-cracked materials. The CBBM method shows a good method to evaluate fracture toughness Mode-II, due to not needing to monitor the length of the crack during delamination growth to get the value of the fracture toughness.
Hocheng H, Tsao CC. The path towards delamination-free drilling of composite materials. J. Mater. Process. Technol. 2005;167(2–3):251–264.
Jacob GC, Starbuck JM, Fellers FJ, Simunovic S, Boeman RG, The effect of loading rate on the fracture toughness of fiber reinforced polymer composites. J. Appl. Polym. Sci. 2005;96(3):899–904.
Asp LE. The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite. Compos. Sci. Technol. 1998;58(6):967–977.
Shivakumar KN, Crews JH, Avvat VS. Modified mixed-mode bending test apparatus for measuring delamination fracture toughness of laminated composites. J. Compos. Mater. 1998;32(9):804–828.
Crews JH, Reeder JR. A mixed-mode bending apparatus for delamination testing. NASA Ames Res. Cent. 1981;1000: 19890001574.
A. International. ASTM D5528-01 (Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix). 2014.
Rybicki EF, Schmueser DW, Fox J. An energy release rate approach for stable crack growth in the free-edge delamination problem. J. Compos. Mater. 1977;11(4): 470–487.
Davitt DF, Schapery RA, Bradley WL. A method for determining mode 1 delamination fracture toughness of elastic and viscoelastic composite materials. J. Comp. Mat. 1980;14:270–285.
Davies P, Moulin C, Kausch HH, Fischer M, Measurement of GIc and GIIc in carbon/epoxy composites. Compos. Sci. Technol. 1990;39(3): 193–205.
Caprino G, The use of thin DCB specimens for measuring mode I interlaminar fracture toughness of composite materials. Compos. Sci. Technol. 1990;39(2):147–158
De Morais AB. Double cantilever beam testing of multidirectional laminates. Compos. Part A Appl. Sci. Manuf. 2003;34(1):1135–1142.
Pereira AB, de Morais AB. Mode I interlaminar fracture of carbon/epoxy multidirectional laminates. Composites Science and Technology. 2004;64(13-14):2261–2270
Choi JKG, Williams NS. Delamination fracture of multidirectional carbon-fiber epoxy composites under mode I, mode II and mixed-mode I-II loading. J. Compos. Mater. 199;33(1):73–99.
Zulkifli R, Azhari CH, Ghazali MJ, Ismail AR, Sulong AB. Interlaminar fracture toughness of multi-layer woven silk/epoxy composites treated with coupling agent. Eur. J. Sci. Res. 2009;27:454–462.
Aliyu AA, Daniel IM. Effects of strain rate on delamination fracture toughness of graphite/epoxy. Delamination Debonding Mater. Johnson. 1985: 336–348.
Alhussein MA, Ameer ZA, Hamzah AF. Simulation of the effect laminate sequence on delamination mode-I with elastic couplings. Diagnostyka. 2922;23(2):1–12.
Ashcroft IA, Casas-Rodriguez JP, Silberschmidt VV. Mixed-mode crack growth in bonded composite joints under standard and impact-fatigue loading. J. Mater. Sci. 2008;43(2):6704–6713.
Funk JG The interlaminar fracture toughness of woven graphite/epoxy composites. 1989.
Kim KY, Ye L. Interlaminar fracture properties of weft-knitted/woven fabric interply hybrid composite materials. J. Mater. Sci. 2012;47(20): 7280–7290.
Pereira AB, De Morais AB. Mode II interlaminar fracture of glass/epoxy multidirectional laminates. Composites Part A: Applied Science and Manufacturing. 2004;35(2):265–272.
Saidpour H, Barikani M, Sezen M. Mode-II Interlaminar Fracture Toughness of,” Iran. Polym. J. 2003;2(5):389–400.
A International. ASTM D7905/D7905M-14 (Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer). 2014.
Dalbe MJ, Santucci S, Cortet PP, Vanel L. Strong dynamical effects during stick-slip adhesive peeling. Soft Matter. 2014;10(1):132–138.
A. International. ASTM D3039 (Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials). 2014.
Bensadoun F, Verpoest I, Van Vuure A. Interlaminar fracture toughness of flax-epoxy composites. Journal of Reinforced Plastics and Composites. 2017;36(2):121-136.
Saidane R, Scida EH, Pac D, Ayad MJ. Mode-I interlaminar fracture toughness of flax, glass and hybrid flax-glass fibre woven composites: failure mechanism evaluation using. acoustic emission analysis. Polymer Testing. 2019;75:246–2539.
Liu Z, Xia Y, Guo S. Characterization methods of delamination in a plain woven CFRP composite. J. Mater. Sci. 2019;54(20):13157–13174.
Rajendran TS, Johar M, Low KO, Hassan SA, Wong KJ. Interlaminar fracture toughness of a plain weave flax/epoxy composite. Plast. Rubber Compos. 2019;48(2):74–81.
Liu C, Bai R, Lei Z, Di J, Wu W, Zou J, Gao T, Yan C. Mode II fracture toughness related to ply angle for composite delamination analysis. Mechanics of Advanced Materials and Structures. 2021;28(23):2417–2428.
Ducept F, Davies P, Gamby D. Mixed mode failure criteria for a glass/epoxy composite and an adhesively bonded composite/composite joint. International Journal of Adhesion and Adhesives. 2000;20(3):233–244.
de Moura MFSF, Campilho RDSG, Gonçalves JPM. Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading. Composites Science and Technology. 2008; 68(10–11):2224–2230,2008.