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Summary 
This paper describes the method of model-free fault detection and isolation. The main purpose 

of the research is to present one possibility of the development of diagnostic schemes for which 
the component structure and behavioural parameters are tuned automatically in order to obtain the 
maximal efficiency of the fault detection and isolation system. The proposed approach can be 
viewed as the intersection of elementary methods (classic and soft computing) such as discrete 
wavelet analysis, machine learning (using decision trees or artificial neural networks), and 
evolutionary algorithms. The fundamental verification of the method was conducted for data made 
available within the benchmark problem involving a wind turbine. The achieved results confirm 
the effectiveness of the proposed approach while also showing its limitations. 
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OPTYMALIZACJA SPRAWNOŚCI SCHEMATÓW DIAGNOSTYCZNYCH 
BEZ WSPARCIA MODELOWEGO 

 
Streszczenie  

Artykuł opisuje metodę detekcji i izolacji uszkodzeń bez użycia modelu. Głównym celem 
badań jest pokazanie możliwości opracowania schematów diagnostycznych, których struktura oraz 
parametry są dostrajane automatycznie w celu osiągnięcia najwyższej możliwej sprawności 
detekcji i izolacji uszkodzeń. Zaproponowane podejście może być postrzegane jako połączenie 
elementarnych metod (klasyczne metody  oraz obliczenia miękkie) jak np. analiza falkowa, 
metody uczenia maszynowego (drzewa decyzyjne i sztuczne sieci neuronowe) oraz algorytmy 
ewolucyjne. Weryfikacja metody  została przeprowadzona na danych symulacyjnych 
wygenerowanych za pomocą modelu turbiny wiatrowej. Uzyskane wyniki potwierdziły wysoką 
skuteczność metody oraz pokazały jej ograniczenia. 

  
Słowa kluczowe: detekcja i izolacja uszkodzeń, optymalizacja ewolucyjna,  

techniki eksploracji danych, analiza falkowa, turbiny wiatrowe 
 

1. INTRODUCTION 
 
Fault diagnosis is one of the most important 

directions of research in the field of automatic 
control because of the fact that industrial systems 
such as oil refineries, chemical plants, power 
stations, and many others, are required to be safely 
and reliably operated [1, 2]. In general, fault 
diagnosis can be carried out by applying various 
diagnostic schemes classified into two groups: 
model-based or model-free approaches. Fault 
diagnosis with the use of analytical or information 
redundancy is one of the most popular approaches in 
the area of process diagnostics [2]. Model-based 
fault diagnosis methods utilize quantitative and/or 
qualitative models of the supervised object in order 
to detect, isolate and identify faults affecting its 

components. Despite the fact that much more 
attention is currently paid to model-based fault 
diagnosis methods, the authors proposed an 
approach that can be used to improve the 
development of model-free fault detection and 
isolation schemes for wind turbine systems. This 
method provides the opportunity to develop model-
free diagnostic schemes for which the component 
structure and behavioural parameters are adjusted 
automatically in order to obtain the maximal 
efficiency of the fault detection and isolation system. 

Wind energy is becoming more and more 
popular because of international and national 
government regulations governing the use of 
renewable power sources [3]. However, the energy 
obtained from a wind farm is expensive considering 
the costs of wind turbine manufacturing and 
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maintenance. Currently, industrial fault detection 
algorithms are based on simple approaches, and thus 
wind turbines must be turned off even in the cases 
when insignificant problems and faults occur. 
Moreover, it is important to reduce the costs of the 
operation and maintenance of wind turbines, 
especially for offshore wind farms, where weather 
conditions may prevent servicing for long periods of 
time [4]. The probability of wind turbine failure is 
high because of an aggressive and changing 
environment [3]. Considering this, faults may occur 
in different parts of a wind turbine like the generator 
[3,5], gearbox [6], controller, sensors, motors 
yawing, and others described e.g. by the authors of 
[7]. It follows that the diagnosis of a wind turbine in 
light of the proposed approach in this paper seems to 
be attractive while simultaneously challenging. 
Therefore, it has been selected as a diagnosed object 
in this study. Different studies in this matter (see e.g. 
[4,8-13]) emphasize two main directions in the 
development of fault detection and isolation 
approaches for wind turbines such as model-based 
methods (with the use of analytic models or data-
driven models) and model-free methods (applying 
machine learning techniques together with signal 
processing approaches such as Kalman filtering, 
wavelet transformation, etc.). When one only takes 
into consideration the methods included in the group 
related to the subject of the paper, it can be easy to 
see that the most commonly used approaches adhere 
to classic methods (decision trees, naive Bayes 
algorithm, k-Nearest Neighbors algorithm, etc.) or 
soft computing methods (e.g. artificial neural 
networks, Bayesian networks, heuristic optimization 
algorithms, etc.). A survey on the application of such 
methods for fault detection and the diagnosis of 
wind turbines can be found in [14]. 

The rest of the paper is organized as follows. 
Section 2 contains the detailed description of the 
proposed method. In particular, it contains 
investigations on signal processing, classification 
methods, and performance optimization for the 
proposed fault detection and isolation schemes. 
Section 3 contains a brief description of the 
benchmark problem adapted and the most interesting 
results of the verification experiments, while the 
final section is devoted to concluding remarks. 
 
2. MODEL-FREE FAULT DETECTION AND 

ISOLATION METHOD WITH 
PERFORMANCE OPTIMIZATION 

 
In this paper, the general scheme presented in 

Fig. 1 is proposed for use in the fault detection and 
isolation of wind turbine systems. It may be seen 
that faults are detected and distinguished by use of 
primary and redundant process variables (filtered 
signals and residues). In this method, two separate 
classifiers should be introduced. The first classifier 
uses the subset of relevant diagnostic information as 
its input and is dedicated to generating diagnostic 

signals, whereas the second one has the other subset 
of input variables and its task is to calculate a fault 
signature. This classifier is triggered in cases when 
the diagnostic signal indicates a fault scenario. 

 

 
Fig. 1 General scheme of model-free 
fault detection and isolation schemes 

 
 The scheme described above can be included 

into well-known model-free fault diagnosis 
techniques. However, the novelty of the proposed 
approach is based on the fact that the structure and 
behavioural parameters of the scheme are tuned 
automatically, taking into account the general 
performance of the designed fault detection and 
isolation system. The idea of this concept is 
presented schematically in Fig. 2. As one may 
observe, the wavelet analysis and calculation of 
residues are performed in the classic way. On the 
other hand, differences can be seen in the estimation 
of scalar features and the selection of relevant 
inputs, as well as in the learning of the fault 
classifier. These parts of the scheme were subjected 
to optimization. A more detailed description of each 
step of the proposed approach is provided below.  
 

 
Fig. 2 Proposed approach for 

optimizing model-free fault detection 
and isolation schemes 
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2.1 Data preprocessing 
 

Wavelet analysis was performed for the 
preliminary filtering and emphasizing of the features 
of raw signals generated through the use of the 
benchmark. The strong effectiveness of wavelet 
analysis in fault detection and isolation problems 
was shown by numerous researchers, with a variety 
of such applications being described in the review 
paper [15]. An important reason for the application 
of wavelet analysis in process signals acquired from 
the wind turbine is that these signals are highly non-
stationary, and thus time-frequency analysis should 
be performed in order to properly extract the 
features. Discrete wavelet transform (DWT) was 
applied, which allows for the decomposition of the 
analysed signals into approximate and detailed parts. 
The decomposition was performed at a single-level 
with an application of a Daubechies wavelet of order 
5. The reason for the selection of this wavelet is 
because of the stochastic nature of the analysed 
signals and higher number of vanishing moments of 
this wavelet, which results in the stronger emphasis 
of the detected features with simultaneously low-
magnitude disturbances around the detected feature. 
As is known, decomposition using the DWT 
algorithm can be interpreted as a filtering procedure 
using a set of low- and high-pass filters. During this 
procedure we obtained the low-pass wavelet 
coefficients (approximations), which are the filtered 
versions of the original signals, and high-pass ones 
(details), which contain relevant diagnostic 
information including the locations of features 
responsible for the faulty states. It should also be 
mentioned that during decomposition, the resulting 
sets of coefficients reduce their length twice due to 
the downsampling procedure. However, this 
phenomenon is advantageous in this case, because 
the amount of diagnostic information increases 
while the amount of data remains the same as before 
the wavelet-based preprocessing. Both approximate 
and detailed wavelet coefficients were used for 
further analysis. 

In the benchmark model, several signals are 
measured by redundant sensors. For this kind of 
signals, two physically redundant measurements are 
subtracted from each other to generate one residual 
signal. All obtained residues are added to the matrix 
of process variables. Next, the algorithm calculates 
the scalar features of all available signals (filtered by 
wavelet transform and residues). The authors choose 
several of the time domain features often used in 
fault diagnosis [16], such as: average, maximum and 
minimum values, standard deviation, root mean 
square, shape factor, kurtosis, time-domain energy, 
skewness, and entropy. All of the new values of the 
time domain features are added to the matrix of 
transformed signals and residues. In the next step, 
the optimization algorithm chooses the most relevant 
variables from the matrix of all available signals. 

The selected variables are used in the process of 
training and testing of classifiers. In this step, each 
classifier is trained and tested ten times in a cross 
validation process. The learning data is prepared in a 
different way for fault detection and for fault 
isolation. The proportion of samples for different 
classes in each dataset is always equal. The process 
of the fundamental verification of a classifier is run 
again after the optimization process for optimal 
parameters. The final results are as follows: the 
confusion matrix, the average efficiency, and its 
standard deviation. 
 
2.2 Classification methods 

 
The problem of classification can be resolved in 

different ways, but in this paper three well-practised 
tools were utilized. The first two classification 
methods adhere to soft computing approaches, 
whereas the last one can be viewed as a classic 
approach. 

Multilayer neural network (MLP) – this is a 
feedforward neural model in which multiple layers 
of neurons with nonlinear activation functions allow 
the network to learn nonlinear or linear relationships 
between input and output vectors [17]. In this paper, 
a multiple-layer network consists of three layers 
including 1n  neurons in the input layer and 2n  and 

3n  neurons in the first and the second hidden layers, 
respectively. In this case, the neural computation can 
be represented by the following equation: 
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where }3,2,1{LW  correspond to the weight matrices 
of the input layer and the first/second hidden layer,  

}3,2,1{b are vectors of biases, u is the input signal, 
}2,1{f are nonlinear transform operators consisting of 

tangensoidal activation functions. 
Probabilistic neural network (PNN) –the first 

layer of this type of a neural model computes 
distances from the input signal to the training input 
patterns [18]. This layer returns a vector whose 
elements indicate how close the actual input is to a 
training input pattern. The next layer quantifies these 
contributions for each class of inputs so as to 
calculate a vector of probabilities as its net output. 
Finally, a competitive activation function on the 
output of the second layer is used in order to pick the 
maximum of these probabilities (it produces a set of 
values, where the value of 1 is used for the chosen 
class and 0 for the other classes). The architecture of 
this neural network can be expressed in a 
mathematical sense as: 
 )( 122 aLWfy =   (2) 

 )( 1111
iiii buLWfa =   (3) 



DIAGNOSTYKA, Vol. 17, No. 1 (2016)  
KALISH, PRZYSTAŁKA, KATUNIN, TIMOFIEJCZUK: Performance optimization of model-free fault …  

 

54

 
where }2,1{LW correspond to the weight matrices of 
the radial basis and competitive layer, ( )α1

if is the 
i th component of radial basis transform operator, 
α  is known as the spread or smoothing parameter 
determining the size of the receptive field of the 
Gaussian kernel, 2f  is a competitive activation 

function, 1
iLW  is a vector made of the i th row of 

1LW , 1,,2,1 ni K= , and 1n  is the number of 
neurons in the first layer. 

Decision tree (DT) – the CART (Classification 
And Regression Tree) algorithm, which belongs to 
the group of supervised learning methods, was 
utilized in this paper. This requires labelled learning 
data to create a classifier. The decision tree is a 
collection of simple rules connected by branches in a 
hierarchical graph. One of the most important parts 
of the learning process is splitting. There are two 
widely used splitting algorithms: Gini splitting rule 
(4) and Twoing splitting rule (5) [19]: 
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where Klk ,,1, K=  – the index of the class; 

( )tkp |  – the conditional probability of the class k  
provided for the node t . There are several other 
methods based on entropy, 2χ , and maximum 
deviation but it has been proven that the final tree is 
insensitive to the choice of splitting rule [19]. The 
comparison of two decision trees, learned on the 
same dataset but using different splitting rules, 
shows that structures of the trees are very similar. 
The difference can be seen only at the bottom of the 
tree, where the variables are less significant [20]. 
Another important part of the decision tree learning 
process is pruning. Pruning prevents overfitting and 
reduces the complexity of the tree. There are many 
available methods for pruning, like reduced error 
pruning, pessimistic error pruning, critical value 
pruning, cost-complexity pruning, and error-based 
pruning. 

Each classifier described above was trained and 
tested n  times during the cross-validation process. 
Each time the training and testing dataset was drawn 
again from the full data. The final result of the cross-
validation process was the average efficiency of the 
classification and its standard deviation. 
 
2.3 Performance optimization of the FDI scheme 
 

The main purpose of the optimization process is 
to find the structure and values of the adjustable 
parameters of the fault detection and isolation 

scheme in order to minimize the cost function, 
which can be formulated by taking into account the 
following two criteria: the first criterion is to obtain 
the maximal efficiency of the fault detection and 
isolation scheme, whereas the second one is to 
minimize the complexity of a fault classifier. The 
authors propose the adaptation of the global criterion 
method in which two objectives are combined. 
Therefore, one of the most general indirect utility 
functions is suggested in its simplest form as [21]: 
 
 ( ) ( )[ ] γαα ++−= ceffqU efft1  (6) 
 
where eff  is the average efficiency of a fault 

diagnosis scheme, effσ  is the standard deviation of 

the efficiency, tα  is the critical value corresponding 
to a given significance level, c  denotes the 
complexity of an applied classifier,  

( )effeffH s −⋅⋅= 6101γ  is the penalty factor, H  is 
the unit step function (Heaviside’s function) and 

seff  is the set-up value of the efficiency. The vector 
q  is composed of adjustable parameters. These 
components represent the length of a moving 
window, sequences of bits denoting relevant input 
signals and their features, as well as the structure or 
behavioural parameters of a used classifier (e.g. the 
number of neurons in the hidden layer of a 
multilayer neural network or a spread parameter of 
the probabilistic neural network).   

Due to the form of the cost function (6), and 
because there are continuous and discrete 
independent variables in the vector q , standard 
optimization methods such as gradient-based 
approaches cannot be adopted in this context. In 
spite of this, there are a large number of algorithms 
that can be used for solving the problem stated 
above. The authors decided to employ evolutionary 
optimization algorithms, which are based on the 
natural selection process that mimics biological 
evolution. The standard genetic operators for single-
objective optimization are used to guarantee the 
convergence of a solution [22]. 
 
3. CASE STUDY 
 

The authors of the paper applied the benchmark 
model of a wind turbine elaborated by the authors 
of [23] and implemented in MATLAB® Simulink® 
commercial software. The benchmark was 
developed in order to aid engineers and scientists 
working in evolving fault detection and isolation 
methods, and robust controllers of the wind turbines. 
The benchmark can be divided into several parts 
connected with the wind model, blade and pitch 
model, drive train model, generator/converter model, 
and controller. The benchmark allows for the use of 
several process variables such as measured wind 
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speed at hub position ( hubV  [m/s]), rotor speed ( rω  

[rad/s]), generator speed ( gω  [rad/s]), feedback 

pitch angle ( fβ ), pitch angle ( β  [deg]), generator 

torque ( gτ  [Nm]), and electrical power ( gP  [W]). 
In this benchmark model, several faults are 
considered. These faults cover sensor, actuator, and 
process faults in different parts of the wind turbine. 
Some of these faults are very serious and it is 
important to detect and isolate them very quickly. 
Other faults are less severe, and the controller can 
compensate for the influence of the fault while the 
turbine still works with reduced performance. The 
list of available faults implemented in the 
benchmark was grouped and presented in Tab. 1. 
 

Table 1 Set of faults considered 
Sensor faults 

F1 Fixed value on Pitch 1 position sensor 1 
F2 Scaling error on Pitch 2 position sensor 2 
F3 Fixed value on Pitch 3 position sensor 1 
F4 Fixed value on Rotor speed sensor 1 
F5 Scaling error on Rotor speed sensor 2 and 

Generator speed sensor 2 
Actuator faults 

F6 Changed pitch system response pitch 
actuator 2  – high air content in oil 

F7 Changed pitch system response pitch 
actuator – low pressure 

System faults 
F8 Offset in Converter torque control 
F9 Change Dynamic Drive train 
  
The proposed method was examined in order to 
display a possibility for the design of wind turbine 
diagnostic schemes for which structure and 
behavioural parameters can be tuned automatically 
to obtain the maximal performance of the fault 
detection and isolation system. The case study was 
carried out on data collected during the simulation of 
the benchmark model of the wind turbine described 
above.  

The authors decided to use only a subset of the 
available data in order to reduce the time of 
computations required for training and testing 
processes. To minimise the influence of the time on 
classification results, the chosen part of the data was 
acquired from the period where the power generated 
by a wind turbine was approaching the maximum 
value. It was assumed that only one fault might 
occur at the same time. The moment of fault 
occurrence was chosen randomly. The length of a 
signal was equal to 1000 seconds and the length of 
each sample with a fault was equal to 50 seconds. In 
this way, the prepared data contained approximately 
50% of data without faults and 50% of data with all 
considered faults. This data was directly used in the 
preparation of fault detection and isolation schemes.  

In this study, the performance optimization process 
was carried out using MATLAB® with the Genetic 
Algorithm and Direct Search toolbox. The most 
relevant parameters of the evolutionary algorithm 
were chosen according to the guidelines suggested in 
the literature [22]. The fitness function was based on 
the indirect utility function (6), wherein the critical 
value tα  equalled 6 and the set-up value of the 

efficiency ceff  equalled 85%. The upper and lower 

limits of the independent variables ( K,, 21 qq ) 
were chosen, taking into account the number of the 
measured signals and the properties of a given 
classifier. It was determined that individuals in the 
population would be composed of genes 
representing real numeric and integer values. Genes 
in the chromosome correspond to the values of the 
elements of the vector q , where 1q  represents the 

length of a moving window and 1322 ,,, qqq K  are 
used in order to indicate the relevant signals and 
scalar features (for each classifier). In the case of a 
multilayer neural network, variables 14q  and 15q  
correspond to the number of neurons in the first and 
second hidden layer; when the classifier is based on 
a probabilistic neural network, 14q  denotes the 
spread parameter. The feasible population method 
was adapted to create a randomly well-dispersed 
initial population that satisfies all bounds. The 
ranking method was used to scale the fitness 
function and the roulette method was employed to 
choose parents creating new individuals for the next 
generation. Reproductions were carried out by 
applying the elite count method (the number of 
individuals equalled 2) with crossover as well as 
mutation operators. The heuristic crossover was 
realized with a probability of 0.8. The remaining 
individuals were processed using an adaptive 
feasible mutation function. The maximum number of 
generations was chosen as the criterion for stopping 
the algorithm. On the one hand, the performance 
optimization of the fault detection scheme was run 
for 5 generations and with 10 individuals in the 
population. On the other hand, it was experimentally 
established when tuning the fault isolation scheme 
that the population size would equal to 30 and the 
maximum number of generations would equal to 50. 

The overall results of the tuning procedure can 
be seen in Tab. 2. The smallest value of the fitness 
function was obtained for the fault detection and 
isolation scheme based on a decision tree algorithm.  
The highest value of this function was received for 
the case when the fault classifier was created using a 
probabilistic neural network. It can be observed that 
for this type of a classifier, if the spread parameter 
α  is near zero, the network acts as the nearest 
neighbour classifier. Alternatively, if it becomes 
larger, the designed network takes into account 
several nearby design vectors. In the case of a 
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multilayer neural network-based classifier, it was 
possible to have the final result of the performance 
optimization comparable to the result obtained for 
the scheme based on a decision tree algorithm. 

 
Table 2 Overall results of the performance 

optimization of fault detection and isolation schemes 
Class. kΔ  ( )udim  Params. ( )qU  

Fault detection 

MLN 211 202 
9
13

3

2

=

=

n
n

 2.16 
E03 

PNN 25 10 05.0=α  3.98E04 
DT 248 201 - 0.86E03 

Fault isolation 

MLN 236 195 
9
13

3

2

=

=

n
n

 0.66E03 

PNN 140 190 38.0=α  9.59E05 
DT 232 171 - 0.17E03 

 
The optimization results can be better explained 

when taking into consideration the convergence 
plots of the normalized fitness function presented in 
Fig. 3. The most significant minimization of the 
fitness function was possible for the fault isolation 
scheme, with the classifier created based on a 
multilayer neural network. The other conclusion 
from this figure is that the optimization algorithm 
does not converge at the optimal solution for the 
case of a probabilistic neural classier. 

 
Fig. 3 Evolutionary optimization of 

the fault isolation scheme 
 

In order to present some aspects more clearly, 
further discussion was focused on the efficiency of 
the fault detection and isolation schemes that were 
created taking into account the results of the 
performance optimization. 

The authors prepared three test datasets for use 
during the verification process. Optimal parameters 
were used in the last step of the proposed approach 
in order to estimate the final result of the classifiers 
used in fault detection and isolation schemes. In the 
first dataset, the time of the occurrence of faults in 
training and test samples was the same. This 

indicates that the training and testing samples were 
drawn from the same dataset. In the second dataset, 
faults in the testing area were moved 25 seconds 
forward. Therefore, the testing dataset contained 
50% of samples consisting of the training data and 
50% of new samples that were not included in the 
training interval. The last test dataset was 
completely different, due to the time of the fault 
occurrence. In this case, faulty samples were moved 
forward 50 seconds with respect to the training 
dataset, thus 100% of the data with faulty states in 
the testing data did not overlap with faulty states in 
the training data. 
 

Table 3 General efficiency of fault detection and 
isolation for considered verification tests 

 Test 
dataset 

1 

Test 
dataset 

2 

Test 
dataset 

3 

MLN 99 ± 
2.55 

75 ± 
2.19 

56 ± 
2.55 

PNN 99 ± 
0.10 

61 ± 
0.70 

48 ± 
0.70 

Fault 
detection 

DT 84 ± 
2.55 

74 ± 
3.56 

66 ± 
4.53 

MLN 99 ± 
0.03 

81 ± 
4.12 

56 ± 
2.55 

PNN 99 ± 
0.04 

11 ± 
0.33 

11 ± 
0.70 

Fault 
isolation 

DT 92 ± 
2.28 

81 ± 
0.22 

76 ± 
0.43 

 
As is shown in Tab. 3, the highest efficiency for 

each classifier was obtained within the first test 
dataset because the training and testing data were 
drawn from the same source. For Tests 2 and 3, the 
efficiency is worse because the faults in the testing 
dataset were moved in relation to the training 
dataset. The decision tree obtained the worst 
classification efficiency in the first test. In Test 2, it 
was able to reach a comparable result, and in Test 3 
achieved a clearly better result for both considered 
diagnostic schemes (fault detection and isolation) 
was obtained.  Confusion matrices for the two 
classifiers used in fault isolation by means of the 
decision tree and multilayer neural network were 
obtained. Tab. 4 and Tab. 5 contain results in 
percentages only for the second verification case. 
The general efficiency of these classifiers is almost 
the same, but the differences in the fault isolation of 
specific faults can be clearly seen. For example, the 
decision tree algorithm has a problem with the 
isolation of Fault no. 3, whereas the multilayer 
neural network for the same fault reaches 100% 
efficiency.  
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Table 4 Confusion matrix of decision tree for the 
second variant 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 
F1 100 0 0 0 0 0 0 0 0 
F2 0 100 49 0 0 0 0 0 0 
F3 0 0 51 0 0 0 0 0 0 
F4 0 0 0 100 0 0 0 0 0 
F5 0 0 0 0 100 0 0 0 0 
F6 0 0 0 0 0 82 8 1 0 
F7 0 0 0 0 0 8 58 48 0 
F8 0 0 0 0 0 10 34 51 0 
F9 0 0 0 0 0 0 0 0 100 
 
The similar situation occurred for Fault no. 7. On the 
other hand, a multilayer neural network has 
significant problems in isolating Fault no. 2 and no. 
6. Furthermore, a multilayer neural network 
classified incorrect results into almost all available 
faults, whereas a decision tree algorithm classified 
incorrect results only for few classes. One may also 
see which faults were difficult to isolate in the 
confusion matrices of both classifiers, e.g. Faults no. 
6, 7, and 8 or Faults no. 2 and 3. 
 

Table 5 Confusion matrix of multilayer neural 
network for the second variant 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 
F1 92 0 0 0 0 0 0 0 0 
F2 0 59 0 0 2 0 0 0 0 
F3 4 21 100 0 2 0 0 0 0 
F4 2 8 0 100 2 0 0 0 0 
F5 1 3 0 0 94 0 0 0 0 
F6 1 2 0 0 0 59 0 2 2 
F7 0 2 0 0 0 9 100 18 4 
F8 0 1 0 0 0 32 0 75 5 
F9 0 4 0 0 0 0 0 5 89 

 
One of the tasks of the optimization algorithm 

was to choose the signals that were used to learn 
classifiers. After wavelet transformation, each 
measured signal was represented by two filtered 
signals – approximation and detail. The analysis of 
signals chosen by the optimization algorithm shows 
that for fault detection, the prepared matrix of 
signals had about 15% more detail signals than 
approximation signals; for the fault isolation, there 
were more signals based on approximations than 
based on details. This trend was the same for each 
classifier tested. 
 
4. CONCLUSIONS 
 

The main purpose of this study is to present the 
method of fault detection and isolation. The basis of 
this method is a well-practiced model-free approach, 
where the diagnostic scheme is created by using 
elementary methods (classic and soft computing) 
such as discrete wavelet analysis, machine learning 
(e.g. decision trees and artificial neural networks), 
and algorithms. The extension in this matter is based 
on the fact that the proposed method enables the 
creation of diagnostic schemes for which the 
component structure and behavioural parameters are 
tuned automatically in order to obtain the maximal 

efficiency of the fault detection and isolation system. 
The verification study was elaborated for the data 
obtained during the simulation of the numerical 
model of a wind turbine. The results achieved show 
the effectiveness of the proposed approach. This 
confirms that the method possesses great potential 
and should be further developed to improve the 
reliability of industrial systems.  
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