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Summary 

In this paper a novel method for informative frequency band selection is presented. It is suitable for a 
vibration signal from a damaged rotating machine which is consisted of a pulse train, but it might be 
contaminated by other vibrations, often with higher energy. We first decompose the signal into simpler 
sub-signals and analyze those sub-signals using statistical tools, i.e. autoregressive moving average 
modelling and fitting of the α -stable distribution. The choice of this distribution is motivated by its 
excellent ability of modeling heavy-tailed data, i.e impulsive data. We illustrate the proposed 
methodology by analysis of real vibration signals from heavy-duty rotating machinery. The results prove 
that this statistical analysis is very efficient in informative frequency band selection in presence of high-
energy contamination. 
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ZASTOSOWANIE MODELU ARMA I ROZKŁADU ALFA-STABILNEGO  
DO DETEKCJI USZKODZEŃ LOKALNYCH W ŁOŻYSKACH 

 
Streszczenie 

W artykule zaprezentowano nową metodę selekcji informacyjnego pasma częstotliwościowego. Jest 
ona odpowiednia dla sygnałów drganiowych z maszyny uszkodzonej zawierających impulsy, nawet kiedy 
są one niewidoczne w dziedzinie czasu, tzn. kiedy wysokoenergetyczne drgania innych elementów 
zakłócają sygnał informacyjny. Pierwszym krokiem zaproponowanej metody jest dekompozycja sygnału 
na składowe o prostszej strukturze i ich analiza za pomocą narzędzi statystycznych, tj. modelu ARMA i 
rozkładu alfa-stabilnego. Wybór tego rozkładu jest umotywowany zdolnością modelowania danych 
ciężko ogonowych, tzn. sygnałów, w których występują impulsy. Metodę zilustrowano analizą 
rzeczywistych sygnałów z drganiowych maszyn górniczych. Potwierdzono efektywność zaproponowanej 
metody statystycznej w kontekście selekcji informacyjnego pasma częstotliwościowego w obecności 
wysokoenergetycznych zakłóceń. 

  
Słowa kluczowe: wykrywanie uszkodzeń lokalnych, wybór pasma informacyjnego, modelowanie szeregów 

czasowych, rozkłady ciężko-ogonowe  
 

1. INTRODUCTION  
 

Diagnostics of belt conveyor drive systems, 
which is an example of a heavy-duty machinery, is a 
very challenging problem due to its complex 
structure [1]. One of the most popular methods of 
damage detection that do not require visual 
inspection of the diagnosed machine relies on 
processing of a vibration signal acquired on the 
housing. Since such signal contains a lot of different 
components, extraction of the part which is 
informative from diagnostic point of view is the key 
issue. In other words, the signal has to be 
decomposed into the informative and non-
informative part. In the literature one can find 
several methods that are based on the fact, that 

different frequency bands of the considered signal 
might carry different level of diagnostic information. 
Thus it is of high importance to divide the frequency 
spectrum of the signal into sub-bands to assess each 
one and quantify its diagnostic informativeness. The 
informativeness might be quantified by using many 
different approaches. Since a local damage of the 
machine results in a pulse train in time domain, thus 
it is revealed by a set of wideband excitations in the 
time-frequency domain. In the case of constant 
rotational speed (or when angular resampling make 
distances between pulses constant) the excitations 
constitute a periodic pulse train in a frequency band 
where they appear, thus not only impulsiveness, but 
also periodicity of impulses might be taken into 
consideration for assessment and quantification of 
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informativeness. In the literature one can find 
methods that are based on the periodic nature of the 
pulse train, e.g. the protrugram [2], statistic based on 
the local maxima method [3,4]. There are also many 
previous works that incorporate the cyclic nature of 
a vibration signal from rotating machinery [5-10]. If 
the pulses might not be periodic or angular 
resampling does not give good results (or it just 
cannot be applied), then some methods that exploit 
only impulsiveness might be used, e.g. kurtosis [11-
13], sparsity [14-16], measures based on moments, 
quantiles or cumulative distribution function [3,17] 
and other statistical criteria for informative band 
selection [18-21]. In this paper we follow the second 
approach, but with indirect application of the novel 
quantitative measure of informativeness. The 
indirection means that the measure is not applied to 
the raw sub-signals that represent energy flow in 
particular sub-bands, but to preprocessed sub-
signals. Such preprocessing is required by the 
measure we propose, namely we decorrelate sub-
signals to obtain data to which we can properly fit 
the stability parameter of the α-stable distribution, 
i.e. the α parameter. One of the motivations of the 
preprocessing step is related to appropriate 
assessment and quantification of certain types of 
sub-signals. During the process of dividing the raw 
signal into sub-signals it can be noticed that some 
sub-signals might reveal a strange behavior, e.g. due 
to specific windowing procedure while sub-signals 
are obtained by the short-time Fourier transform 
(STFT). Therefore, the decorrelation procedure 
might decrease influence of data correlation on the 
measure of impulsiveness and increase influence of 
impulses related to the local damage. 

The paper is organized as follows. In Section 2 we 
present methodology that incorporates short time 
Fourier transform, sub-signals extraction, modeling 
of sub-signals, statistical analysis of residuals and 
selection of the informative frequency band. In 
Section 3 we present analysis of a real data set 
which illustrates properties of the proposed 
methodology. The last section contains conclusion. 

2. METHODOLOGY  

   In this section we present the algorithm that is 
used for selection of the informative band (Fig.1). 
After obtaining the raw signal, we first transform it 
into the time-frequency map through the short-time 
Fourier transform (STFT). The STFT is defined as 
[22]: 

∫
∞

∞−
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where w(t-τ) is the shifted window and X(τ) is the 
input signal. The discrete version of equation (1) for 

observations X1,X2,…,XN, time point Tt∈  and 
frequency Ff ∈ is defined as follows: 
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In our analysis we use the Kaiser window. In the 
proposed procedure each sub-signal is a time series 
corresponding to a narrow frequency band that arises 
after the mentioned time-frequency decomposition. 
However, since the STFT matrix is complex, 
absolute value needs to be taken to obtain the 
spectrogram. Moreover in our analysis we examine 
the increments of the sub-signals. In the next step we 
are going to determine orders and coefficients of the 
ARMA model through prediction error minimization 
algorithm.  

The time series Xt is said to be an autoregressive 
moving-average process of order (p,q) (ARMA(p,q)) 
if {Xt} is stationary and if for every t the following 
equation is satisfied [23]: 

φ(B)Xt  = θ(B)εt           (3) 

where B is backwards-shift operator: BXt=Xt-1 and  

φ(B)=1- φ1B1-...- φpBp 
          θ(B)=1+ θ1B1+ θqBq          (4) 

It is well-known how to estimate parameters of 
ARMA model - it might be done through Yule-
Walker equations, Maximum Likelihood Estimator 
or prediction error minimization algorithm [23]. Last 
one is used in this work.  
Another important issue related to the ARMA time 
series model are information criteria [24]. By 
choosing many possible orders of ARMA for both 
AR and MA parts (by ACF and PACF), and then 
applying an information criterion, e.g. the AIC 
criterion, one can choose best-fit model [23].  
The next step involves statistical analysis of 
residuals of aforementioned models.  Residuals are 
calculated by following equation: 
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B
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We propose to fit the is α-stable distribution to the 
residuals, since in sub-signals we expect a set of 
impulses (in statistical meaning – a set of extreme 
values) in a damaged bearing case and the is α-stable 
distribution can perfectly exhibit such behavior. This 
distribution has been already used for diagnostics, 
see [25]. A random variable X is α-stable distributed 
if its characteristic function is as follows [26]: 
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where α is stability parameter, β is asymmetry 
parameter, σ is scale parameter and μ is location 
parameter. The α-stable distributed random variable 
has ‘heavy’ tails, i.e. its cumulative probability 
density function decays with power law. Therefore, 
there is a high probability of the variable having 
extreme values, which is useful in modeling signal 
with impulses. Therefore if we expect signal to come 
from damaged bearing, we shall expect high 
impulses on the left and right (tails). One of them 
method used to estimate parameters of the α-stable 
distribution is called the McCulloch method and 
uses quantiles of the distribution [27].  

On this basis we define a new selector for the 
informative band as: 

Selα=2-α            (7) 

with 0<α≤2. This formula is motivated by the fact 
that for non-heavy tailed data (i.e. for healthy or 
non-informative) the α parameter should be close to 
2 and for heavy-tailed – lower than 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Block scheme of analysis 
 

Thus, the selector is close to 0 in healthy case and 
significantly higher than 0 for a data with set of 
impulses, which is consistent with previously used 
criteria, for example, kurtosis. Mentioned selector is 
higher for signals containing impulses (α is lower) 
and it is invariant to energy contained in the 
considered narrowband frequency bin. We also refer 
to [28] for detailed analysis of the α-stable 
distribution with α parameter close to 2. 

Therefore, above methodology might be helpful 
in selection of informative frequency band. 

3. REAL DATA ANALYSIS 

In this section we present real data analysis 
performed for validation of the proposed method of 
informative frequency band selection described in 
the Section 2. The investigated signals represent 
vibrations of a bearing which is a part of a belt 
conveyor driving unit. The unit is consisted of a 
motor, two-stage gearbox and drive pulley. The 
signals were acquired using an accelerometer 
located on the bearing’s housing in horizontal 
direction. The machine was normally loaded and the 
rotational speed was approximately constant during 
the data acquisition. We analyze two signals – one 
related to a healthy bearing and one related to a 
bearing with local damage of the outer race. 
Sampling frequency in both signals is 19.2 kHz and 
length of both of them is 2.5 s. These signals were 
analyzed in several previous works, where one can 
find detailed description of the machine. We just 
recall that the theoretical characteristic frequencies 
are: FTF (fundamental train frequency) – 0.51 Hz, 
BSF (ball spin frequency) – 4.45 Hz, BFF (ball fault 
frequency) – 8.9 Hz, BPFO (ball passing frequency 
outer race) – 12.34 Hz and BPFI (ball passing 
frequency inner race) – 16.06 Hz. Fig. 2  presents 
time series of the raw vibration signals.  

Fig. 3 and 4 shows the corresponding 
spectrograms.

 
Fig.2 Healthy (top panel) and damaged (bottom panel) bearings 

raw vibration signal 

Parameters of the spectrogram are as following: 
Kaiser window of length 125, the number of 
overlapping samples is equal to 110 and the number 
of FFT points is 512. In both cases high-energy, 
low-frequency contamination from the gearbox is 
present (below 1 kHz) as well as high-frequency, 
low-energy noise above 7 kHz. Middle band from 1 
to 7 kHz contains information about cyclic impulses 
which are related to the local damage.  

 

Signal 

STFT Decomposition 
and 
differentiation

ARMA model  
orders estimation for 
sub-signals 

Estimation of 
α-stable 
parameters of 
residuals 

ARMA 
models 
estimation 

Calculation of 
residuals for each 
sub-signal 

Selector function (f) 

Band selection 

Damage detection  Filtered signal 
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Fig.3 Spectrogram of vibration signal from healthy bearing  

 

 
Fig.4 Spectrogram of vibration signal from damaged bearing 

 
Figures 5 and 6 represent orders of coefficients 

of AR and MA parts, respectively, chosen  through 
the Akaike Information Criterion.  As it can be seen 
orders of AR part for damaged bearing are 
significantly higher in band 1kHz-6kHz. Observing 
Figure 6 one can notice that orders of MA part 
behave in similar way. Observing both, AR and MA 
part one can notice that orders for damaged bearing 
are significantly higher for MA part in informative 
band.  It is due to the series of high energy impulses 
which increase the order of MA part. 

 
Fig.5 Orders of AR part of estimated ARMA  

 
Fig.6 Orders of MA part of estimated ARMA model  

Figures 7-12 present exemplary residuals of the 
suitable ARMA model from 3 narrowband 
frequency bins: low frequency, middle-frequency 
and high-frequency. Each frequency bin is 
represented by 2 sub-signal residuals – one from a 
healthy bearing and one from the damaged one.  

It can be noticed that sub-signal residuals for 
low- and high-energy frequency bins in both cases 
are free of impulses related to damage, but they do 
not seem to be normally distributed. Thus, the 
stability parameter of the α-stable distribution should 
be close to 2 which results in close to 0 value of the 
selector defined in Eq. (7). Also sub-signal residuals 
for healthy case from the middle-frequency bin does 
not reveal pulses characteristic for low parameter of 
stability in the α-stable distribution. The only sub-
signal residual which is consisted of impulses 
represents the middle-frequency bin and the 
damaged bearing. The value of the selector should 
be significantly higher than 0 therein. 
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Fig.7 Sub-signal residuals for healthy bearing corresponding to 

900 Hz frequency bin 

 
Fig.8 Sub-signal residuals for damaged bearing corresponding to 

900 Hz frequency bin 

 
Fig.9 Sub-signal residuals for healthy bearing corresponding to 

3375 Hz frequency bin 

 
Fig.10 Sub-signal residuals for damaged bearing corresponding to 

3375 Hz frequency bin 

 

 Fig.11 Sub-signal residuals for healthy bearing corresponding to 
7462,5 Hz frequency bin 

 

 Fig.12 Sub-signal residuals for damaged bearing corresponding 
to 7462,5 Hz frequency bin 

 

  Fig.13 Selector values for all range of frequencies  

Figure 13 presents values of selectors for all 
range of frequencies for healthy and damaged case, 
respectively. It can be easily noticed that for the 
frequency band between 1 and 7 kHz values of the 
selector for damaged bearing signal residuals are 
significantly higher. It proves effectiveness of our 
algorithm in automatic selection of the informative 
frequency band. 
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Fig.14 Damaged signal after filtration through band-pass filter 
frequency 1-7kHz. Top panel – signal from damaged bearing 

before filtration, bottom panel – after filtration 

In Figure 14 signal from bearing with damaged 
outer ring is seen (top panel). After band-pass 
filtration applied with lower frequency equal to 
1kHz and upper frequency equal to 7kHz, we 
obtained signal with clear visible impulses. 
Therefore, our method have been proven to be 
effective. 

4. CONCLUSION 

In the paper a novel criterion for informative 
frequency band selection is proposed. It is based on 
the fundamental property of a vibration signal from 
a damaged machine, i.e. presence of impulses in a 
certain frequency band. As an indicator of 
impulsiveness we used the stability parameter of the 
α-stable distribution. The choice of this parameter is 
motivated by the fact that it is close to a certain 
constant for a sub-signals that represent healthy 
machine or the non-informative part of the signal 
from a damaged machine and it is significantly 
lower for frequency bands containing impulses. 
Since the sub-signals are correlated due to the high 
overlapping in the STFT, we first model the sub-
signals using the ARMA time series model of 
optimal order to improve efficiency of the selector. 
We illustrated the efficiency of the proposed method 
by analysis of a vibration signals from a heavy-duty 
machinery – drive pulley bearing from a belt 
conveyor driving unit. We proved that the novel 
selector appropriately finds the informative 
frequency band and the filtered signal contains a set 
of impulses that was invisible in the raw vibration 
signal. 
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