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Abstract 

This paper presents a cointegration-based method for condition monitoring of wind turbines. Analysis of 

cointegration residuals – obtained from cointegration process of wind turbine data – is used for operational 

condition monitoring and fault detection. The method has been employed for on-line condition monitoring of 

a wind turbine drivetrain with a nominal power of 2 MW under varying environmental and operational 

conditions using only the temperature data of gearbox bearing and generator winding, which were collected 

by the Supervisory Control And Data Acquisition (SCADA) system. The results show that the proposed 

method can effectively monitor the wind turbine and reliably detect the gearbox fault. 
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DIAGNOSTYKA TURBINY WIATROWEJ W OPARCIU O ANALIZĘ KOINTEGRACJI  

SYGNAŁÓW TEMPERATURY Z PRZEKŁADNI ORAZ GENERATORA 
 

Streszczenie 

Artykuł przedstawia metodę kointegracji sygnałów do monitorowania stanu turbiny wiatrowej. Analiza 

wektorów resztkowych kointegracji wykorzystana została do monitorowania stanu turbiny wiatrowej o mocy 

nominalnej 2 MW. Diagnostykę turbiny wiatrowej przeprowadzono dla zmiennych warunków 

środowiskowych i eksploatacyjnych, tylko  w oparciu o sygnały temperatury łożyska przekładni i uzwojenia 

generatora. Sygnały te zostały zgromadzone przez system sterowania, monitorowania oraz wizualizacji 

SCADA. Wyniki pokazują, że proponowana metoda może skutecznie monitorować turbinę wiatrową i 

niezawodnie wykryć uszkodzenie przekładni. 

 

Słowa kluczowe: turbiny wiatrowe, zmienne warunki środowiskowe i eksploatacyjne, monitorowanie stanu, wykrywanie 

uszkodzeń, kointegracja, system SCADA 

 

1. INTRODUCTION 

 

It is well known that unexpected failures of 

wind turbine components (such as gearboxes, 

generators, rotors) can lead to costly repair and 

often months of machine unavailability, thereby 

increasing operation and maintenance costs, and 

consequently the total cost of energy. Therefore 

condition monitoring (CM) and fault diagnosis of 

wind turbines (WTs), in particular at the early stage 

of fault occurrence, is an important problem in 

wind turbine engineering [1]. 

Many CM techniques have been developed to 

detect and diagnose abnormalities of WTs, as 

reviewed in [2,3], such as vibration analysis, oil 

monitoring, acoustic emission, ultrasonic testing, 

strain measurement, radiographic inspection, and 

thermography. Another solution – based on the 

analysis of Supervisory Control And Data 

Acquisition (SCADA) data – has been employed in 

[1,4-7]. This technique is cost-efficient, readily 

available, and is beneficial for identifying abnormal 

components because only key process parameters 

need to be tracked [1,6]. Monitoring of data trends 

and removing undesired trends from wind turbine 

data are important when SCADA approaches are 

used. Various methods have been developed for 

data trend analysis. Recent years have attracted 

many applications based on the cointegration 

technique, which was originally developed in the 

field of Econometrics [8,9]. 

The cointegration method has been successfully 

employed as a reliable tool for dealing with the 

problem of environmental and/or operational 

variability in Process Engineering [10] and 

Structural Health Monitoring (SHM) [11-17]. The 

previous work in [10-17] has showed that when 

variables (or data from a monitored process or 

structure) are cointegrated, the stationary linear 

combinations of these variables – obtained from the 

cointegration analysis – are purged of all common 

trends in the original data, leaving residuals 

equivalent to the long-run dynamic equilibriums of 

the process. The common trends removed by the 
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cointegration process in this case are supposed to be 

the environmental and/or operational conditions 

that drive the response of the monitored process or 

structure [11-14]. Because the choice of lag length 

in cointegration analysis has a strong influence on 

damage detection results where any wrong selection 

of lag length can lead to false damage detection 

alarms, a new approach for the optimal selection of 

lag length in cointegration analysis used for damage 

detection has been proposed in [18]. More recently, 

the research on applications of cointegration for 

SHM has been moving towards nonlinear 

extensions, as presented in [19-21]. 

This paper builds upon previous research work 

on the cointegration technique for data trend 

analysis, process monitoring and structural damage 

detection. The main goal is to investigate the 

feasibility of applying the cointegration-based 

approach for condition monitoring and fault 

detection in wind turbine systems using only the 

temperature data of gearbox bearing and generator 

winding, which were collected by the SCADA 

system. The proposed method is based on the 

residual-based control chart approach. 

 

2. CONDITION MONITORING OF WIND 

TURBINES USING SCADA DATA 

 

SCADA-based approach has great advantages 

for developing CM systems for WTs. Firstly, 

SCADA systems have been installed in the majority 

of utility-scale WTs for system control and data 

acquisition so that the data needed for analysis is 

readily available and no more hardware investment 

is required when developing a SCADA-based CM 

system [6,7]. This solution is thus cheap in cost. 

Secondly, the technique is beneficial for identifying 

fault components by tracking only key process 

parameters [1,6]. Because of these advantages, 

developing CM tools for WTs using SCADA data 

has become a fast growing research field and 

SCADA data have been widely used by researchers 

as the basis for CM systems. As a results, previous 

work on the use of SCADA data for condition 

monitoring and fault diagnosis of WTs has 

established considerable achievements, as reported 

in [1,4-7]. 

The main objective of the work presented in this 

paper is to develop a reliable SCADA data analysis 

method – based on cointegration technique – that 

can automatically interpret and analyse a large 

amount of low-sampling rate SCADA data, and 

additionally, is able to deal with undesired effects 

of environmental and operational variability in data 

used for condition monitoring and fault detection of 

wind turbines. 

 

3. COINTEGRATION ANALYSIS 

 

In mathematics the concept of stationarity can 

be introduced using time series analysis. A given 

time series ty  can be presented in the form of the 

first-order Auto-Regressive )1(AR  process [22], 

which is defined as 

 ttt yy   1  
(1) 

where t  is an independent Gaussian white noise 

process with zero mean, i.e. ),0(~ 2 IWNt . 

Then three different time series can be 

distinguished for different values of coefficient   

[22]. These are: (1) stationary time series ( 1 ); 

(2) nonstationary time series ( 1 ); and (3) 

random walk ( 1 ). 

Any time series ty  that exhibits the form of 

random walk without a trend is considered as an 

integrated series of order 1, denoted )1(I
 
[23]. For 

such a series Eq. (1) yields 

 tttt yyy  1  
(2) 

Eq. (2) shows that, the first difference of ty , 

i.e. 1 tt yy , is just a stationary white noise 

process t . In other words, a nonstationary )1(I  

process becomes a stationary )0(I
 
process after the 

first difference. By analogy, a nonstationary )2(I  

process would require differencing twice to induce 

a stationary )0(I  process. 

Next, the concept of cointegration can be 

introduced using a vector t  of )1(I  time series 

defined as 
T

ntttt yyy ),...,,( 21 . This vector is 

linearly cointegrated if there exists a vector 
T

n ),...,,( 21    such that 

)0(~2211 Iyyy ntnttt
T  

 
(3) 

In other words, the nonstationary )1(I  time 

series in t  are linearly cointegrated if there exists 

(at least) a linear combination of them that is 

stationary, i.e. having the )0(I  status. This linear 

combination, denoted as t
T , is referred to as a 

cointegration residual or a long-run equilibrium 

relationship between time series [23]. The vector 

  is called a cointegrating vector. The action of 

creating the cointegration residual ( t
T

tu   ) is 

considered as the action of projecting the vector t  

on the cointegrating vector  . 

In essence, testing for cointegration is testing 

for the existence of long-run equilibriums (or 

stationary linear combinations) among all elements 

of t . Such tests have two important requirements 

[23]. Firstly, any analysed time series must exhibit 

at least a common trend. Secondly, the analysed 

time series must have the same degree of 

nonstationarity. 

The cointegration test consists of two steps: 
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1. The first step is to determine the existence of 

cointegration relationships and the number of 

linearly independent cointegrating vectors 

among multivariate nonstationary time series 

and to form the cointegration residuals. 

2. The second step is to perform unit root tests on 

the cointegration residuals found to determine if 

they are stationary series (i.e. testing for 

stationarity). 

For the first step, the Johansen’s cointegration 

test [9] has been widely used. It is a sequential 

procedure based on the maximum likelihood 

technique, which basically is a combination of 

cointegration and error correction models in a 

Vector Error Correction (VEC) model. For the 

second step, the augmented Dickey-Fuller (ADF) 

test [24] is the most popular unit root test. The ADF 

test checks the null hypothesis that a time series is 

nonstationary against the alternative hypothesis that 

it is stationary, assuming that dynamics in the data 

have Auto-Regressive Moving Average structure. 

 

4. WIND TURBINE DATA 

 

The wind turbine data used in this paper 

originate from a series of experimental 

measurements on a WT drivetrain with the nominal 

power of 2 MW. SCADA data were acquired at 10-

minute intervals during thirty days in November 

2012. A number of process parameters (such as 

wind speed, rotor speed, generator speed, generated 

power, generator voltage and generator current, 

gearbox bearing and generator temperature) were 

monitored and recorded under varying operating 

conditions. The collected data were also influenced 

by environmental conditions (namely, wind speed, 

ambient temperature variations between day and 

night, and air humidity). As a result, 4320 data 

samples were acquired for each process parameter 

under the effect of both environmental and 

operational variability. Examples of the SCADA 

data are illustrated in Fig. 1, in which the wind 

speed, the generator speed, and the generated power 

are shown. It should be noted that this study 

assumed that under the normal operating condition 

the investigated wind turbine operated at wind 

speeds varying around 5–11 meters per second 

(mps) or 11–25 miles per hour (mph). 

To investigate whether the cointegration-based 

approach – presented in Section 5 – can reliably 

detect a faulty situation of the turbine, a known 

gearbox fault (occurred at the data sample 1230 and 

persisted in 20 minutes until the data sample 1232) 

has ben used as a case study. This fault is identified 

from the event logs for the wind turbine and the 

corresponding data are shown in Figs. 2 and 3, with 

the fault happening at the moment indicated by the 

circle marked at the data sample 1230, leading to 

the turbine being shut down immediately at the data 

sample 1232. More especially, this fault happened 

when the generator speed and generated power as 

well as the generator voltage and generator current 

were suddenly dropped down to the zero value, 

whereas at the same time, the wind speed was 

relatively stable around [5–6] mps (i.e. it was 

varying within the specified normal operating 

condition). It was assumed that this fault might be 

caused by a bearing failure in the gearbox. It is thus 

important to accurately detect this fault at the early 

stage of its occurrence. 

 
Fig. 1. Examples of wind turbine data 
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Fig. 2. Wind turbine data displaying the occurrence of the gearbox fault. 

 

 
Fig. 3. Zoomed data from Fig. 2 displaying in detail the occurrence of the gearbox fault. 

 

It has been discussed that the temperature data 

of the gearbox bearing and generator winding may 

provide an early indication of generator, bearing, 

and gearbox faults [2-4]. Thus only the temperature 

data of gearbox bearing and generator winding have 

been used in the current work for condition 

monitoring and fault detection of the wind turbine. 

It is expected that this analysis can effectively 

monitor the wind turbine and reliably detect 

abnormal problems. Since the temperatures of the 

gearbox bearing and generator winding depend not 

only on the wind speed, but also on the power 

demand from the grid therefore this study considers 

the temperatures of both gearbox bearing and 

generator winding as the functions of wind speed 

and generated power. 

Figs. 4a and 4b illustrate the relations between 

the gearbox bearing temperature and wind speed 

and generated power, respectively. One can notice a 

common nonlinear trend from these characteristics, 

that is, the temperature of gearbox bearing increases 

nonlinearly with the increase of wind speed and 

generated power. 
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The relations between the generator winding 

temperature and wind speed and generated power 

are shown in Figs. 4c and 4d, respectively. Another 

common nonlinear trend (in the form of a dead-

zone saturation nonlinearity) can be observed from 

these characteristics, i.e. the generator winding 

temperature increases nonlinearly with the increase 

of wind speed and generated power; however there 

exists a dead-zone region in the middle. 

 
Fig. 4. Gearbox bearing temperature v.s (a) wind speed and (b) generated power; Generator winding 

temperature v.s (c) wind speed and (d) generated power. 

 

5. CONDITION MONITORING OF WIND 

TURBINES BASED ON COINTEGRATION 

ANALYSIS OF TEMPERATURE DATA 

 

The cointegration-based data analysis procedure 

for condition monitoring of wind turbines using 

SCADA data employed in this paper involves two 

steps [17]: 

1. Off-line step: calculate (or estimate) 

cointegrating vectors using SCADA data that 

are acquired from the monitored wind turbine 

under normal operating conditions or modes 

(usually at the beginning of the WT’s lifetime 

when its components are considered "healthy"). 

2. On-line step: calculate cointegration residuals 

used for continuous (on-line) condition 

monitoring using the cointegrating vectors 

found and SCADA data acquired from the 

monitored wind turbine under regular operating 

stage (during electricity production phase). 

It is important to note that the main idea of the 

cointegration-based condition monitoring and fault 

detection method utilised in this paper is basically 

similar to the well-known residual-based control 

chart approach, which is one of the primary 

techniques of statistical process control. An 

advantage of control charts is that they can be 

automated for on-line condition monitoring and 

SHM applications [25]. More specifically in the 

context of the proposed method, cointegration is a 

property of some sets of nonstationary time series 

where a linear combination of these nonstationary 

series can produce a stationary residual. Then the 

stationarity (or nonstationarity) of the cointegration 

residual can be used in a control chart as a 

potentially effective damage feature or indicator. 

It should be noted here that in the previous work 

presented in [17] six process parameters of the wind 

turbine were analysed using the cointegration-based 

procedure. These are: wind speed, generator speed, 

generated power, generator temperature (front part), 

generator current, and gearbox temperature. This 

means that, in the previous work [17], four different 

kinds of physical signals (i.e. speed, power, 

temperature and current) of the wind turbine were 

simultaneously analysed by the cointegration-based 

procedure. In the current study, however, only three 

temperature parameters measured in the gearbox 

and at the generator (one in the front and another in 

the back of the generator) have been analysed. 

These temperature parameters are shown in Fig. 5. 

Although only three temperature data sets are used, 

it is expected that the proposed method can 

effectively monitor the wind turbine and reliably 

detect abnormal problems. The results are presented 

and discussed in Section 6. 
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Fig. 5. Temperature data used in this study: (a) generator temperature (front part);  

(b) generator temperature (back part); (c) gearbox temperature. 

 

6. RESULTS AND DISCUSSION 

 

Selected results of the condition monitoring 

process and fault diagnosis for the wind turbine 

using the cointegration residual are presented in 

Fig. 6. The generator speed (previously plotted in 

Fig. 2) is plotted again in Fig. 6a to ease the 

observation and assessment of the results. The 

temperature parameters and cointegration residual 

are plotted in Fig. 6b and Fig. 6c, respectively. 

In order to make the results in Fig. 6c more 

clear and readable, the 99.7% statistical confidence 

levels – with respect to the average of the 

cointegration residual – were calculated as  3 , 

where   and   are the mean and standard 

deviation, respectively. Two pairs of red dotted 

horizontal lines indicate these confidence intervals. 

The values of the cointegration residual between 

these two confidence levels fall into the area 

representing that the wind turbine is still operating 

in the normal condition. In contrast, abnormal 

problems or faults would occur whenever the 

cointegration residual goes beyond the confidence 

levels. Briefly speaking, the turbine fault has been 

detected using the residual-based control chart. 

The results in Fig. 6 show that the cointegration 

residual successfully detects the gearbox fault. One 

can also notice that another fault (occurred at the 

data sample 413) has been detected; however this 

case is not presented and discussed in this paper. To 

illustrate more specifically how cointegration 

residuals can be used for condition monitoring and 

fault detection of the wind turbine, monitoring 

process of the gearbox fault is enlarged and 

presented in Fig. 7. By observing the plot results, 

the gearbox fault was detected by the cointegration 

residual in the middle of the data samples 1230 and 

1231 when the residual goes beyond the confidence 

level indicated by the dotted horizontal line. 

One might argue that this gearbox fault could be 

detected by directly monitoring the behaviour of 

wind turbine parameters (such as generator speed 

and generated power), without using the resulting 

cointegration residual. This would be the case but 

the most important result presented here is that the 

gearbox fault could be detected at the early stage of 

its occurrence by using the cointegration residual. 

Fig. 7 shows that this fault really came to effect at 

the data sample 1232 after the generator speed was 

dropped down to the zero value. However, as 

mentioned above this gearbox fault was detected by 

the residual in the middle of the data samples 1230 

and 1231. A conclusion can be drawn from these 

results is that the cointegration residual predicted in 

advance the occurrence of the gearbox fault. More 

specifically, in this case the gearbox fault was 

detected one and a half sampling intervals (i.e. 

about 15 minutes earlier) before its occurrence. 

Interestingly, the results obtained in this study 

demonstrates that the proposed method – although 

applied for only gearbox and generator temperature 

data – can effectively monitor the wind turbine and 

reliably detect the gearbox fault with almost the 

same quality as the previous work in [17] where 

four different physical signals (speed, power, 

temperature and current) of the wind turbine were 

simultaneously analysed by cointegration. This 

confirms that temperature data of the gearbox and 
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generator can provide an early indication of wind 

turbine faults. Furthermore, the use of only gearbox 

and generator temperature data helps to reduce the 

number of sensors used for the monitored wind 

turbine and simplify the cointegration-based data 

analysis procedure performed. 

 
Fig. 6. Condition monitoring and fault detection for the wind turbine using the cointegration residual: (a) generator speed; 

(b) generator temperature (front part) and gearbox temperature; (c) cointegration residual. 

 

7. CONCLUSIONS 

 

Condition monitoring and fault detection of 

wind turbines using temperature data of gearbox 

and generator has been addressed in this paper. 

Analysis of cointegration residuals – obtained from 

the cointegration process of gearbox bearing and 

generator winding temperature data – is used for 

operational condition monitoring and automated 

fault detection under the residual-based control 

chart scheme. The method was illustrated using a 

case study with a known gearbox fault. 

The results have indicated that the proposed 

method can effectively monitor the wind turbine 

and reliably detect the gearbox fault as good as the 

previous study in [17] where different process 

parameters of the wind turbine were simultaneously 

analysed by the same cointegration-based method. 

In summary, this work has contributed a simple, 

reliable and efficient SCADA data analysis method 

using only temperature parameters of gearbox and 

generator for condition monitoring and fault 

diagnosis of wind turbines. 

The work presented is a feasibility study 

therefore further research work is required to test 

the method to other wind turbine SCADA database. 

In addition, the proposed methodology should be 

investigated for a large number of wind turbines 

with different types of fault/abnormal components. 
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Fig. 7. Zoomed data from Fig. 6 displaying in detail the gearbox fault detection results using the 

cointegration residual. 
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