
Article citation info:  
Hajnayeb A, Azizi R, Ghanbarzadeh A, Changizian M. Vibration-based cavitation detection in centrifugal pumps. Diagnostyka, 
2017;18(3):77-83 

 

77

 

 

DIAGNOSTYKA, 2017, Vol. 18, No. 3  ISSN 1641‐6414
e‐ISSN 2449‐5220

 
 

VIBRATION-BASED CAVITATION DETECTION IN CENTRIFUGAL PUMPS 
 

Ali HAJNAYEB1, Razieh AZIZI2, Afshin GHANBARZADEH3, Maziar CHANGIZIAN4 

Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, P.O. Box 61357-43337, 
Iran, 1a.nayeb@scu.ac.ir, 2raziyeazizi71@gmail.com, 3Ghanbarzadeh.a@scu.ac.ir, 4maziar.ch@gmail.com  

 
Abstract  

Cavitation is a common cause of failure in centrifugal pumps. Because of interaction of several 
mechanical parts and fluid, the vibration signal of a centrifugal pump is complicated. In this paper, the 
vibrations of a transparent-casing centrifugal pump are studied. Three states are studied experimentally: no 
cavitation, limited cavitation and developed cavitation. Each case was also confirmed by visually inspecting 
the cavitation bubbles. The vibrations of the pump was acquired by using an accelerometer that was attached 
to the casing. Discrete wavelet transform (DWT) analysis and empirical mode decomposition (EMD) are used 
to extract classification features from the acquired signals. Using these features, an artificial neural network 
(ANN) successfully diagnosed the cavitation condition of the pump. Finally, EEMD is also implemented. The 
results showed the success of EMD and DWT in cavitation diagnosis. The output of EEMD does not show 
significant change comparing to EMD. 
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1. INTRODUCTION 
 

Centrifugal pumps are rotating machinery which 
transfer liquid by using a rotating impeller and face 
failures related to liquids. They may fail during 
their operating conditions because of the liquid-
related problems such as cavitation, or failures in 
solid parts such as impeller, shaft and bearing. 
There are thirteen well defined fault modes of 
centrifugal pumps. A number of them can be 
detected using vibration monitoring[1].  

One of the most common causes of failure of 
centrifugal pumps is cavitation. Cavitation is the 
formation of vapor bubbles in low pressure region 
of the pump (it happens if absolute pressure is less 
than vapor pressure). If the bubbles move with fluid 
to the downstream, they implode in the higher 
pressure region of the pump and generate intense 
shock waves. The effects of cavitation within 
centrifugal pumps can have some unwanted 
outcomes such as deterioration of the hydraulic 
performance, pitting and erosion of the pump 
internal parts caused by cavity collapse, violent 
structural vibration and emitted noise [2]. 
Therefore, it is necessary to detect this type of fault 
at its early stages. The commonly used cavitation 
detection methods in centrifugal pumps are, 
determination of the net positive suction head 
(NPSH) at a constant speed and flow rate, 
visualization of the flow by an in-pump impeller 
eye, paint erosion testing of impeller blades and 
shrouds, static pressure measurement within the 
flow or on the volute-casing wall, vibration 
measurement of the pump structure and 
measurement of ultrasound or sound pressure of the 
pump in audible range [3].  

Vibration analysis has been widely used in 
condition monitoring of centrifugal pumps. Using 
this method, fault detection is possible by 
conducting a comparison between the vibration 
signals of faulty and healthy conditions. In the 
previous research studies, the occurrence of 
cavitation has been detected by analyzing vibration 
signals of the pump and comparing them with the 
signals acquired from normal conditions. Wang and 
Chen [4] applied wavelet transform to extract the 
cavitation detection features from the vibration 
signal of a centrifugal pump. The obtained features 
then were fed to an ANN for detection of health 
condition of the pump. Their results showed the 
success of wavelet transform in processing the 
signals generated by cavitation. Other signal 
processing techniques are also applicable. The 
envelope analysis have been applied as a powerful 
signal processing technique for fault diagnosis of 
bearings and gears. As a new application, it was 
used for cavitation detection by Tan and Leong [5]. 
Sakthivel et al. [6] used a number of statistical 
time-domain features and a decision tree in order to 
detect cavitation. Cernetic and Cudina [7] studied 
the influence of uncertainties on vibration-based 
cavitation detection in centrifugal pumps. 
Muralidharan and Sugumaran [8] also applied 
wavelet transform tree for cavitation detection of 
centrifugal pumps, but they combined it with a 
decision for obtaining better results. McKee et al. 
[1] extracted time and frequency-domain features 
from vibration signals of a pump for cavitation 
detection. Azizi et al. [9] used EMD to decompose 
the vibration signal and then extracted the 
necessary features for cavitation detection. In 



DIAGNOSTYKA, Vol. 18, No. 3 (2017)  
HAJNAYEB A, AZIZI R, GHANBARZADEH A, CHANGIZIAN M.: Vibration-based cavitation detection … 

 

 

78

summary, several signal processing techniques have 
been applied in this field.  

In the previous studies, despite of the 
superiorities of EEMD, it has not been used for 
cavitation detection. It does not have the 
shortcoming of mode mixing of EMD and has been 
successfully applied to, rotors, ball bearings and 
gearboxes diagnosis, before [10-13]. Moreover, in 
the available literature, mostly the presence and 
absence of cavitation has been studied. The level of 
cavitation determines the type of action and its 
urgency. Therefore, it is necessary to determine the 
severity of cavitation. In this study, the limited and 
developed cavitation are distinguished. The raw 
vibration signals acquired from experiments in 
three conditions, including no cavitation, limited 
cavitation and developed cavitation, are 
decomposed using discrete wavelet transform and 
EMD. The detailed coefficients level one to three 
and approximation coefficient level three are used 
for further analysis. In the case of EMD, the first 
four IMFs are used for further analysis. Five 
statistical features are extracted from four sub-
bands of DWT and first four IMFs. For each 
analysis method, the 20 extracted features are 
inputted to the generalized regression neural 
network (GRNN) to intelligently classify the fault 
severity. The first IMFs of EMD and EEMD are 
compared in order to examine possible 
improvements by EEMD. 

    
2. EMD AND EEMD 

 
The empirical mode decomposition, is a signal 

processing technique which is used to decompose 
any signal x(t) into a number of intrinsic mode 
functions [14, 15]. Each of these IMFs can be 
amplitude modulated and (or) frequency modulated. 
They have to satisfy the following two terms [16, 
17]: 
a) In each IMF, the difference between the number 

of extrema and the number of zero-crossings has 
to be less than two. 

b) At any point of any IMF, the mean value of the 
envelope obtained by local maxima and the 
envelope obtained by the local minima has to be 
zero. 
Based on the definition, EMD decomposes any 

signal x(t) as follows: 
Pick out the local maxima of the whole data, 

then fit a cubic spline to them and produce the 
upper envelope. 

Repeat all the steps for the local minima in 
order to produce the lower envelope.  

Compute the mean value of the two 
envelopes, ( )1m t  . 

Compute the difference between the original 
signal, x(t), and m1 to obtain the first component, 

1h : 
 1 1( )h x t m= −  (1) 

If 1h  satisfies the conditions of an IMF, then it 

is the first component of x(t) and is defined as 1c . 

If 1h  is not an IMF, replace original signal, x(t), 

with 1h  and repeat steps one to four: 
 11 1 11h h m= −  (2) 

which, 11m  is the mean value of upper and 
lower envelope of 1h . Repeat the described steps 

for k times, until 1kh  becomes an IMF. This so-
called sifting process is repeated until size of the 
standard deviation (SD) computed from the two 
consecutive sifting results is less than a 
predetermined value. SD is defined as follows: 
 2

1( 1) 1
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where T is the size of the signal. An appropriate 
value for SD is a number between 0.2 and 0.3. In 
Eq. (3), 1kh  is the first IMF and is defined as c1: 
 1 1 1( 1) 1k k kc h h m−= = −  

(4) 
Subtract c1 from x(t) and compute residue, r1: 

 1 1( )r x t c= −  (5) 
Assume r1 as original signal and repeat the 

above process to obtain the second component of 
x(t). By repeating the process for n times, the total 
number of obtained IMFs of x(t) is n and the 
remaining IMFs can be shown as: 
 

2 1 2
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The decomposition process is stopped when nr  
has at most two extrema. The relation between 
original signal and its IMFs is expressed as follow: 
 

1

( )
n

i n
i

x t c r
=

= +∑
 

(7) 

The IMFs 1c , 2c  , . . . and nc  include different 
frequency bands ranging from high to low. 

Although the EMD technique is applicable to 
most of the diagnosis studies, it has the weak point 
of mode-mixing. This shortcoming has been mostly 
resolved through the improvements achieved in 
EEMD method. 

EEMD is an improved version of EMD method 
which is based on adding a limited-amplitude white 
noise to the signal. The major steps of EEMD 
algorithm are [18]: 

1) Add a white noise to the original signal.  
2) Find the desired number of IMFs of the 

noise-added signal (e.g. N IMFs). 
3) Repeat the first two steps for m times. 
4) The results will be N m-member groups of 

IMFs.  
5) The final IMFs of this method are the 

ensemble average of each group of IMFs. 
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In most of the cases the IMFs of EEMD method are 
better than EMD if the ensemble number and the 
level of the white noise are selected appropriately. 
More discussion on the implementation of EEMD 
and setting its parameters will be provided in the 
following sections. 
   
3. DISCRETE WAVELET TRANSFORM 

 
Discrete wavelet transform is a multi-resolution 

signal processing method that uses digital filters to 
exhibit a typical time-frequency description of a 
signal. DWT decomposes any signal into some 
frequency sub–bands as described below [19]: 

At first, it uses a low-pass filter to pass 
frequency components lower than the cutoff 
frequency (half of the maximum frequency being in 
the original signal) and attenuate components with 
frequencies higher than the cutoff frequency. This 
process is repeated with a high-pass filter to 
attenuate low frequency components. Therefore, the 
original signal divides into two frequency bands as 
shown in figure 1. The low-passed signal is denoted 
as approximation coefficients, A, and the high-
passed signal is denoted as detail coefficients, D. 
The high-pass and low-pass filtering processes can 
repeated for low-passed signals in several levels. 

 

 
Fig. 1. Signal decomposition process using 

DWT in two levels 
 

4. TESTS 
 
For the purpose of cavitation severity detection 

in a centrifugal pump, a laboratory closed-loop 
system is used (figure 2). In this system, water is 
pumped from a 20 litter water tank, placed on top 
of the bench, and delivered to it again (in a closed 
circuit). A motor with a speed range of 100 to 4200 
rpm is used to drive the pump. The pump is directly 
connected to the drive unit through an elastic 
coupling. An accelerometer mounted on delivery 
side of the pump casing is used to measure the 
vibrations of the pump. This accessory kit is made 
up of a single stage centrifugal pump with three 
blades, a ball valve and pressure indicator in the 
intake of the pump and pipes. The transparent 
plastic pump housing provides a view into the 
interior of the pump during operation. This allows 
cavitation to be observed when it occurs. 

 

 
Fig. 2. The test setup: (1) Encoder, (2) Motor, (3) 

Elastic coupling, (4) Accelerometer sensor, (5) 
Water tank, (6) Centrifugal pump, (7) Optical 

sensor, (8) speed controller 
 
Before getting started, it is necessary to bleed 

the pump. Therefore, after removing the bleed 
screw, the pump is filled with water until no more 
water remains in the housing. Then, the screw is 
closed again. Motor is turned off. Then it is 
switched on with the ball valves closed and run up 
to the desired speed. After that, first the ball valve 
on the suction side, and then the ball valve on the 
delivery side are opened. 

The test was repeated 10 times and vibration 
signals were measured using an accelerometer 
mounted on the delivery side of the pump. The 
vibration signals were measured from the pump 
working under normal condition at a constant 
rotating speed of 2900 rpm. Having measured the 
normal condition, the inlet valve was partially 
closed to reduce the pressure at suction side of the 
pump until cavitation started, and acceleration data 
was collected until gradually the cavitation bubbles 
appeared in the pump eye area. This condition was 
denoted as limited cavitation. After that, the inlet 
valve was closed a little more and pressure at inlet 
of the pump was reduced more, and data was 
continuously collected until cavitation bubbles 
filled the pump housing. This condition was 
denoted as developed cavitation. Figures 4-6 show 
interior of the pump at this three conditions. 

The collected data from each test consists of 
three parts, namely: 1) without cavitation, 2) 
limited cavitation and 3) developed cavitation. An 
optical sensor was used to separate these three 
parts. The signal obtained from this sensor has zero 
amplitude, except for the initiation of cavitation and 
initiation of the developed cavitation. In these two 
moments, the amplitude of the output of the optical 
sensor is increased to 5 volts by taking an object in 
front of the optical sensor, manually. Fig. 6 shows a 
sample of vibration signals and signal measured by 
the optical sensor. The sampling frequency was 20 
kHz for all the tests. 
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Fig. 3. The pump at normal condition  

 

 
Fig. 4. The pump at limited cavitation  

 

 
Fig. 5. The pump at developed cavitation  

 

 
Fig. 6. The vibration signal (black color) and 
optical sensor output (red color) during three 
stages: (1) Without cavitation, (2) Limited 

cavitation, (3) Developed cavitation 
 

4. RESULTS 
 

The vibration signals acquired from experiments 
are used to perform fault diagnosis. Signal collected 
from each test is divided into three classes and each 
class divided into four parts with 7000 samples. 
Therefore, there are 120 vibration signals of length 
7000 (40 signal for each class). The 120 vibration 
signals are analyzed using EMD and DWT. Five 
statistical features, namely root mean square, 
kurtosis, skewness, mean and standard deviation, 
are extracted from the first four IMfs. In the case of 
DWT, decomposition is performed in three levels, 
using the Daubechies (db9) wavelet function as the 
mother wavelet, and then five statistical features are 
extracted from the first to the third detailed 
coefficients levels and the third approximation 
coefficient level. 

In each signal processing case, there is a feature 
set with 20 members for each vibration signal. The 
extracted features are fed to a generalized 
regression neural network to intelligently classify 
the fault modes. GRNN as a non-iterative neural 
network, performs one pass training to reduce 
computational time. The design parameter of this 
network is spread factor, which is set to be 1.0 in 
this paper. The input of the network is the features 
vector extracted from processed signals and the 
output is a prediction of the pump condition. There 
are 40 samples for each class that are divided in two 
parts: 28 samples for training the classifier and 
other samples for testing. Correct classification rate 
of GRNN with features extracted from IMFs as 
input vector is 98.33% and features extracted from 
DWT sub-bands is 97.5%. 

To have a better insight, the obtained results for 
the applied techniques are summarised in Table1. In 
this table, the rates of success in diagnosis of the 
fault type are written for each technique.  
 

Table 1. The total and separate rate of diagnosis 
success for different techniques that are applied in 

this research. 
      data 
 
analysis 

No 
cavitation

(%) 

Limited 
cavitation 

(%) 

Developed 
cavitation 

(%) 

Total 
(%) 

Raw signals 77.5 77.5 90 81.67 
EMD 95.0 100 100 98.33 
DWT 92.5 100 100 97.5 
 

The results of Table 1 shows the lowest 
performance in the case of no cavitation and limited 
cavitation. It also presents a significant decrease in 
the diagnosis (classification) success in the case of 
extracting the time-domain features from the raw 
vibration signals.  

In the next step, the extracted IMFs obtained 
from EMD are compared with EEMD. In order to 
make a comparison, the first five IMFs are 
extracted for two conditions of severe cavitation 
and no cavitation. In Fig. 7a and Fig. 7b, the first 
five IMFs extracted from EMD method are 
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displayed for no cavitation and severe cavitation 
conditions, respectively. The difference between  
 
(a) 
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Fig. 7. The first five IMFs extracted from EMD 

method: a) No cavitation. b) Developed or 
severe cavitation 

 
the waveform of the IMFs in those two conditions are 
quite obvious, especially for the first two IMFs the 
difference is observed both in amplitude and frequency 
contents. In Fig. 8a and Fig. 8b, the first five IMFs 
extracted from EEMD method are shown. In EEMD 
algorithm, the ensemble number was set to 100. The ratio 
of the added noise standard deviation to the standard 
deviation of the signal were also set to 0.2. The IMFs of 
EEMD method show no significant change or 
improvement comparing to EMD. It can be because of 
the random nature of the cavitation signals. The added 
white noise cannot help in separating the IMFs.   
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Fig. 8. The first five IMFs extracted from EEMD 

method: a) No cavitation. b) Developed or 
severe cavitation 

 
The outputs of DWT that is used for 

decomposing the vibration signals in three levels 
are shown in Fig. 9. The obtained components are 
three vectors of detail coefficients and one vector of 
approximation coefficients for each fault condition. 
The fault pattern is hardly observable in the 
diagrams, but the extracted features give enough 
ability to the ANN to diagnose successfully to an 
acceptable level.  
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Fig. 9. The outputs of DWT: a) No cavitation. b) 

Limited cavitation. c) Developed cavitation 
 
To sum up, the obtained table and graphs show that 
although identification of each condition based on 
the obtain graphs from EMD, EEMD and DWT is 
not easy, the ANN can perform this task with an 
acceptable performance. The level of confidence for 
the limited cavitation depends on the applied 
techniques, but it is acceptable by considering a 
narrow margin.  

 
4. CONCLUSIONS 
 

A procedure was proposed for cavitation 
severity detection in centrifugal pumps. Vibration 
signals acquired from experiments were 
decomposed using empirical mode decomposition 

and discrete wavelet transform. Five statistical 
features were extracted from first four IMFs and 
DWT sub-bands. GRNN was used for fault 
classification. The results showed that the EMD and 
DWT techniques are both effective methods in 
signal processing for detection of cavitation 
severity this type of fault, DWT was significantly 
faster than EMD in signal decomposition. Likewise 
the ability of GRNN in classification and its fast 
training could be seen. Plotting the extracted IMFs 
showed that the first two IMFs represent the most 
significant changes in case of occurance of 
cavitation. By applying EEMD to the vibrations 
signals of the pump and comparing the resulting 
IMFs showed no advantage or improvement 
comparing to EMD. For future works, it is advised 
that output of frequency-domain methods on the 
IMFs be investigated for detecting occurrence of 
cavitation. 
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