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Abstract  
Functionally graded materials are used in aircrafts, space vehicles and defence industries because of their 

good thermal resistance.  Geometrically nonlinear free vibration of a functionally graded beam with clamped 
ends (FGCB) is modeled here by an N-dof discrete system presenting an equivalent isotropic beam, with 
effective bending and axial stiffness parameters obtained via a homogenization procedure. The discrete model 
is made of N masses placed at the ends of solid bars connected by rotational springs, presenting the flexural 
rigidity. Transverse displacements of the bar ends induce a variation in their lengths giving rise to axial forces 
modeled by longitudinal springs. The nonlinear semi-analytical model previously developed is used to reduce 
the vibration problem, via application of Hamilton’s principle and spectral analysis, to a nonlinear algebraic 
system involving the mass and rigidity tensors mij and kij and the nonlinearity tensor bijkl. The material 
properties of the (FGCB) examined is assumed to be graded according to a power rule of mixture in the 
thickness direction. The fundamental nonlinear frequency parameters found for the (FGCB) are in a good 
agreement with previously published results showing the validity of the present equivalent discrete model and 
its availability for further applications to non-uniform beam. 
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1. INTRODUCTION  
 

The functionally graded materials (FGM) are a 
type of inhomogeneous materials made of a mixture 
of ceramic and metal in proportions varying from 0 
to 1 in the structure thickness direction, as shown in 
Figure 1 [1 to 9]. These materials have been 
designed by researchers in Japan (1980) in order to 
overcome some of the disadvantages encountered 
with classical composites such as the stress 
concentration at the interfaces between the layers 
due to the sharp change in mechanical properties 
from one layer to another.  Nowadays, FGM’s are 
being increasingly used in many fields, such as 
aircrafts, space vehicles and defence industries, 
electronic and biomedical equipments.  Due to their 
good thermal resistance, they are also used in areas 
such as nuclear engineering, aeronautics, etc.  

 

 
Fig. 1. FG beam notation 

Geometrical nonlinearity occurs in vibrating 
structures when the amplitude of vibration is so 
large that it cannot be considered as small compared 
to the structure thickness.  This may be due to the 
proximity of one of the resonance frequencies or to 
high excitation levels due to severe environments. 
One of the main effects of non-linearity is the 
dependence of the natural frequencies on the 
amplitude of vibration. To make a safe and an 
efficient design in such situations, non-linear models 
should be available to analyse properly the system 
dynamics and estimate accurately the dynamic 
characteristics amplitude dependence.  

The present work is concerned with 
geometrically non-linear vibrations of a functionally 
graded beam with clamped ends (FGCB).  The FG 
beam is modelled by a discrete N-dof system 
presenting the equivalent isotropic beam obtained 
via a homogenization procedure. In [10 and 11], a 
discrete model, shown in Figure 2, has been 
developed allowing the study of nonlinear 
geometrical bending vibrations of homogeneous 
beams. Euler-Bernoulli's first-order theory of 
neglecting the transverse shear effect for long beams 
has been applied. Various applications have 
followed to nonlinear vibrations of non-uniform 
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beams, beams carrying point masses, beams resting 
on elastic foundations and cracked beams [12 to 14].   

The discrete model mentioned above is made of 
N point masses and (N+2) torsional springs with a 
rigidity Cr. The spiral springs are attached to (N+1) 
massless bars considered as longitudinal springs of 
length l and stiffness k in order to take into account 
the axial forces induced by the geometrical non-
linearity. Indeed, severe work conditions and 
repeated loading cause a material fatigue which may 
be accelerated when resonance occurs around the 
structure natural frequencies, inducing large 
vibration amplitudes.  If such a nonlinear effect is 
not well controlled, it may lead to structural 
damages and catastrophic failures.   

.  Beam with clamped ends (FGCB) is modelled 
here by the N-dof discrete system presenting an 
equivalent isotropic beam, with effective bending 
and axial stiffness parameters obtained via a 
homogenization procedure see Figure 2. 

 
 

Fig. 2. FGCB modelled by multi-degree-of-
freedom discrete system with effective bending and 

axial stiffness parameters obtained via a 
homogenization procedure. 

 
The nonlinear vibration analysis becomes then 

essential for a reliable structural design. The 
transverse variation of the (FGCB) dynamic 
characteristics through the beam thickness presented 
in [9] is adopted in this work, the axial inertia and 
damping are ignored and a homogenization 
procedure is proposed to reduce the problem studied 
to that of an equivalent homogeneous beam with 
effective bending and axial stiffness parameters [9]. 
The analogy between the classical continuous model 
of the (FGCB) and the present discrete model is 
developed. Then, the fundamental amplitude 
dependent nonlinear frequency parameters found 
here for the (FGCB) are compared to previously 
published results in order to validate the equivalent 
discreet model and to show its availability for 
further applications to non uniform FG beam with 
any type of ceramic distribution. 

  
2. THEORETICAL FORMULATION FOR A 

CLAMPED FUNCTIONALLY GRADED 
BEAM  
 
In this section, the (FGCB) having the 

geometrical characteristics shown in Figure 1 and 3 
is examined. It is assumed that the beam is made of 
ceramic and metal, and that its material properties, 

i.e., Young’s modulus E and mass density ρ, are 
functionally graded in the thickness direction (see 
equations 1 to 4). 

 Using the volume fractions Vc and Vm of the 
ceramic and metal constituents, a material property 
P can be expressed as: 

 m m c cP P V PV= +  (1) 
where subscripts “m” and “c” refer to the metal and 
ceramic constituents, respectively. Various types of 
functions are used in the literature to describe the 
variation in the volume fraction of the constituents. 
Here, a power law is adopted as follows: 
 

 1
2

k

c
zV
h

⎛ ⎞= +⎜ ⎟
⎝ ⎠

with    1m cV V+ =  (2) 

where k is a non-negative parameter (power-law 
exponent) which dictates the material variation 
profile through the thickness of the beam, shown in 
Figure 3. Effective material properties of the FG 
beam such as Young’s modulus (E(z)), the mass 
density (ρ(z)) or Poisson's modulus (υ(z)) can be 
determined by substituting (2) into (1), which gives:  
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where Em and Ec are the Young's modulus of the 
lower surface (z = -h/ 2) and of the surface (z = h/2 ) 
of the FGM beam, the variation of Young's modulus 
in the thickness direction of the beam k-FGM beam 
is shown Figure 3 [5].  The volume fraction changes 
rapidly near the lower surface for k <1, and increases 
rapidly near the upper surface for k > 1. 
 

 
 
Fig. 3. Variation of the material properties of the 
FG beam through the thickness (Young Modulus)  
 

3. THE HOMOGENIZATION PROCEDURE  
  
The nonlinear strain–displacement relationships 

in a vibrating beam are given by: 
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where a
xε   is the nonlinear axial strain and  xK is 

the beam curvature. The total elastic strain energy 
TV  of  Euler-Bernoulli beams is: 

 
0

1 ( )
2

L
a

T x x y xV N M K dx= +∫ ε  (8) 

In which xN and yM are respectively the axial 
internal force and the bending moment, related to 
strains as follows: 
 
 11 11

a
x x xN b A b B K= +ε  (9) 

 
 11 11

a
y x xM b B b D K= +ε  (10) 

b: is the width of the beam 
 
Where 11A , 11B and 11D are the extension-extension, 
the bending-extension and the bending-bending 
coupling coefficients respectively. These 
coefficients are evaluated using the classical 
functionally graded beam theory, which leads to the 
following expressions for the total strain energy TV , 
in terms of the transverse displacement W [15] and 
[9]:  

 ( ) ( )
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20 08 2
l l
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l x x
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Where 11( )effES bA=  and 
2

11 11 11( ) ( ( ))effEI b D B A= +  are the effective axial 
and bending stiffness respectively, 11A , 11B and 11D  
are given by: 
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h
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The expression for the total strain energy 
obtained is effective for replacing the (FGCB) 
problem with that of an equivalent isotropic beam 
problem [17]. 
 
4 DISCRETE MODEL, HAMILTON’S 

PRINCIPLE AND EXPLICIT METHOD 
 

As stated above, the present approach consists on 
replacing the (FGCB) by an equivalent 
homogeneous beam.  The characteristics of the 
equivalent beam have been calculated in section (3),  
allowing application of the semi analytical model 
developed previously to nonlinear structural 
vibration  (see for example references [15] and [16]) 
involving three tensors, namely the mass tensor mij, 
the linear rigidity tensor kij and the nonlinearity 
tensor bijkl. By application of Hamilton's principle 
and spectral analysis, the nonlinear vibration 

problem, reduced to a nonlinear algebraic system, is 
solved for increasing numbers of dof.  The present 
section is devoted to the application of a 
discretization procedure, similar to that used in [11] 
in order to express the general terms of the three 
tensors mentioned above (for more calculation 
details, please see  equations (28) to (30) and (56) in 
reference [11]).  In the following subsections, the 
general expressions for the general terms of the 
mass, linear and nonlinear rigidity tensors are given.  
Then, details are given concerning the application of 
Hamilton’s principle and the method of solution of 
the nonlinear algebraic system is presented.  The 
results are discussed in Section (5).  

 
4.1 Expressions for the general terms of the mass, 

linear and nonlinear rigidity tensors  
The coefficients of the mass matrix are written 

as:  
  , 1,...,ij ijm m i j Nδ= =  (13) 

The longitudinal and torsional spring stiffness 
was calculated in [11]: 
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The rigidity matrix [KccN] is symmetric and given 
by: 
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l
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 (16) 

The expressions for the components of the 
nonlinear rigidity tensor bijkl are: 
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The other values are equal to zero. The solution 

process is identical to that used in [11]. 
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4.2 Hamilton’s principle 
Hamilton’s principle is a general variational 

principle allowing the equations of motion of any 
mechanical system to be obtained. For a 
conservative system, it is symbolically written as: 
 

2 /

0

( ) 0TV T d t− =∫
π ω

δ  (21) 

where VT and T are the system strain and kinetic 
energy discretized expressions obtained by writing 
the transverse displacement wi of mass i as: 
 

( ) ( )nl nl
disc disccos cosi i j ijw A t a t= =ω Φ ω

  
(22)

 
where Ai is the modulus of the displacement wi 
expressed in the displacement basis DB, and ai is the 
modulus of the displacement wi expressed in the 
modal basis MB. 
Replacing T and VT (VT=Vl+Vnl) in this equation by 
their expressions given in [11], integrating the time 
functions over a period of vibration, and calculating 
the derivatives of the function obtained with respect 
to the ai’s, leads to the following set of nonlinear 
algebraic equations in MB [15]: 

23 +2 -2 ( ) =0 , , , =1,Nnl
ir irijkri j k i i disca a a b a k a m i j k rω (23) 

which can be written in a matrix form as: 
 
 ( ) { } { } { } { }23 +2 -2( ) = 0nl

discB a a K a M aω⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (24) 

 
4.3 Explicit method 

A general presentation of the method of solution 
of the algebraic system of equations (23) is 
presented in [11]. The formulation is based on an 
approximation which consists on assuming, when 
the first nonlinear mode shape is under examination, 
that the contribution vector { } [ ]1 2 N= .....Ta a a a   can 

be written as{ } [ ]1 2 N= ε ...ε ...εT
ia a , with εi  for 

i=2,…..,N are small compared to 1a  . Neglecting in 

the expression ijkri j ka a a b  of equation (23), which 
involves summation for the repeated indices i, j, k 
over the range {1,2,…,N}, the first, the second and 
third order terms with respect to sε , i.e., terms of the 

type 2
111 εva b vr , of the type 11ε ε ijri ja b

 
or of the 

type ε ε ε ijkri j k b , so that the only remaining term is 
3

1111 ra b
 
, leads to : 

( )nl 2
disc 111

3 3
-( ) + =0 for = 2,...,12jrjr rjk m a b r Ndiscω ε (25) 

The contributions { } 1disc 1 2= ...T
Na a⎡ ⎤⎣ ⎦ε ε ε in the 

modal basis are calculated explicitly in [16] 

 
3
1disc

3
1112 for 2,...,2(( ) - )

a b r r Nr nl m kdisc rr rr

= =ε
ω

 (26) 

Equations (26) are useful for analyzing the 
amplitude dependence of the nonlinear mode shape. 
When only the amplitude dependence of the 

nonlinear frequencies nl
discω is of a main concern, it 

may be well estimated, as shown in [16] for an 
interesting range of vibration amplitudes, by the 
single mode approach, applied in the modal basis, 
which leads to:  

 

 211 1111
1

11 11

31
2

nl
disc disc

k b a
m k

ω = +  (26) 

where 1disca is the contribution of the first linear 
mode to the fundamental nonlinear mode shape, 
written in the modal basis and used as a vibration 
parameter.  
 
5. NUMERICAL RESULTS AND 

DISCUSSIONS  
 

In the present work, the functionally graded 
beam is supposed to be made of the material 
considered in [17] (h = b = 0,1; L/h = 50). The top 
surface of the FG beam is ceramic rich Si3N4 
(Ec=322.03 GPa, ρc=2370 kg/m3, υc = 0,24), whereas 
the bottom surface of the FG beam is metal rich 
(Em=207.08 GPa, ρm=8166 kg/m3, υm = 0,3178).  In 
Table 1, the intermediate parameters allowing the 
calculation of * *nl l

disc discω ω  are given 

( ( ) ( )eff effR EI ES= ). In Tables 2 to 4, the 
fundamental nonlinear to linear frequency ratios 

* *nl l
disc discω ω of the (FGCB) considered in the present 

numerical simulation, are given and compared with 
the published results in [9] and [17] for various 
vibration amplitudes.  

 
Table 1: Intermediate parameters used in the 

calculation of * *
nl lω ω  

k A11 B11 D11(ES)eff (EI) eff R ρ

0,5 32,118 0,096 0,026 3,2118 0,0026 0,0284 4302

1 29,745 0,118 0,024 2,9745 0,0025 0,0289 5268

2 27,396 0,117 0,023 2,7396 0,0024 0,0295 6234

 

Table 2: Nonlinear to linear frequency ratios * *
nl lω ω  

of a FG clamped beam at various amplitudes k = 0.5 
  

*w
(x* = 0.5)

Present [9] [17]

0 1.000 1.000 1.000
1 1.0175 1.023 1.056
2 1.0725 1.088 1.210
3 1.155 1.187 1.429
4 1.2675 1.313 1.689
5 1.395 1.457 1.974
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Table 3:  Nonlinear to linear frequency ratios * *
nl lω ω  

of a FG clamped beam at various amplitudes k =1 
                *w

(x* = 0.5)
Present [9] [17]

0 1.000 1.000 1.000
1 1.0225 1.023 1.056
2 1.0725 1.087 1.208
3 1.155 1.186 1.426
4 1.2675 1.311 1.685
5 1.395 1.454 1.968

 
Table 4:  Nonlinear to linear frequency ratios 

* *
nl lω ω of a FG clamped beam at various amplitudes k=2 

*w
(x* = 0.5)

Present [9] [17]

0 1.000 1.000 1.000
1 1.0197 1.022 1.055
2 1.0725 1.085 1.203
3 1.1575 1.181 1.417
4 1.2675 1.303 1.671
5 1.3925 1.443 1.949
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Fig. 4. Comparison between the backbone 
curves obtained via the discrete system and 

those based on the continuous theory for 
(FGCB) taken from references [9 and 17] in 

the case k=0.5, 1 or 2 
 

It is noted in Figure 4 that the fundamental 
nonlinear frequency parameters found for the 
(FGCB) by the present discrete model are in a good 
agreement with previously published results in [9], 
based on the continuous theory for (FGCB), 
showing the validity of the equivalent discrete model 
for the FGCB. The solution given in [17] 
overestimates the frequencies of the (FGCB), 
especially for high values of the dimensionless 
amplitude, due to the assumptions made in the 
approximate solution procedure adopted.  
Examining Tables 2 to 4, it may be noted that the 
ratios of the (FGCB) nonlinear to linear frequency 
ratios do not change with k, while the nonlinear 
frequency itself depend on k as shown in Figure 5, 
which may be expected due to the effect of the 
constituent fractions on the beam global rigidity.   
Curves are given in Figure 4 for various values of 
the number N of dof used in the discrete model, i.e. 

N= 5, 11. It can be concluded that it is unnecessary 
to use a high number of dof since the model with 11 
dof is good enough. The results obtained for the 
linear and nonlinear frequencies of the discrete 
system compare well with those based on the 
continuous beam theory.  
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Figure 5: Comparison between the dimensional 
backbone curves obtained via the discrete 

system for (FGCB) for different values of the 
ceramic percentage. 

 
6. CONCLUSION  
 

The present study deals with the problem of 
geometrically nonlinear free vibrations of a (FGCB). 
Using Hamilton’s principle and spectral analysis, 
and neglecting the axial inertia and damping, a 
homogenization procedure has been proposed which 
reduced the problem studied to that of an equivalent 
isotropic homogeneous beam with effective bending 
and axial stiffness parameters. Using a multimode 
approach, the nonlinear frequency ratios 

* *
nl lω ω calculated here have been compared to those 

given in [17] for isotropic and FG beams. An 
overestimate of the natural frequencies has been 
noted in the results given in [17], due to the 
approximations made in the solution adopted.  On 
the other hand, the discrete model proposed in the 
present paper, shown in Figure 2, may be 
representative of the flexural vibration of a (FGCB) 
with various types of discontinuities. The values of 
the torsional stiffness C2, C3,...,CN+1 of springs 2, 
3,..., N+1 and the masses m1, m2,..., mN should be 
estimated in each case, depending on the type of 
singularities, such as point masses located at various 
positions of the beam [14] or a variation in the beam 
stiffness. 
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