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Abstract  
In the present paper, the frequencies and mode shapes of a clamped beam carrying a point mass, located 

at different positions, are investigated analytically and a parametric study is performed.  The dynamic 
equation is written at two intervals of the beam span with the appropriate end and continuity conditions. After 
the necessary algebraic transformations, the generalised transcendental frequency equation is solved 
iteratively using the Newton Raphson method. Once the corresponding program is implemented, 
investigations are made of the changes in the beam frequencies and mode shapes for many values of the mass 
and mass location.   Numerical results and plots are given for the clamped beam first and second frequencies 
and mode shapes corresponding to various added mass positions. The effect of the geometrical non-linearity 
is then examined using a single mode approach in order to obtain the corresponding backbone curves giving 
the amplitude dependent non-linear frequencies. 
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1. INTRODUCTION  
 

Studying the vibrations of beams supporting 
point masses is not a new topic. Indeed, many 
researchers have studied this problem in the linear 
regime and have presented results both analytically 
and experimentally [1 to 10]. In the present work, 
the first purpose was the development of a 
parametric model enabling engineers and designers, 
when dimensioning a machine or a bridge for 
example, to easily choose the value and the position 
of the mass which may added in order to control the 
frequency and avoid undesirable resonances. The 
second objective was the investigation of the effect 
of the geometrical nonlinearity induced by large 
vibration amplitudes on the amplitude dependent 
nonlinear frequencies, mode shapes and curvatures 
of “the clamped beam with an added point mass”, 
denoted in what follows as CBAPM. The first part 
of the article deals with the linear case for a 
clamped beam supporting one point mass, for 
which the results obtained are summarized in tables 
or graphs, for various values of the mass and mass 
location.  In the second part, the effect of the 
geometrical non-linearity is investigated, in the 
neighbourhood of the first and second modes, by 
combining in each case the CBAPM linear mode 
examined, calculated in the first part, with the non-
linear single mode approach, based on the semi 
analytical method for non-linear structural 
vibrations developed previously [12].  This allowed 
various backbone curves to be drawn, 

corresponding to various values of the mass and 
mass location. 

The multi-mode approach is then used, in two 
cases, to check the amplitude dependence of the 
non-linear modes and associated curvatures.  

 

 
Fig. 1. The clamped beam with a point mass 

 
2. FREE VIBRATIONS OF A CBAPM 

(LINEAR CASE)  
 
2.1. Theoretical formulation 

The uniform beam, clamped at both ends, with a 
point mass m, shown in fig.1, is made of a material 
of mass density ρ, Young’s modulus E, length L, 
cross-sectional area S, radius of gyration r and 
second moment of area of cross section I.  Let x be 
the coordinate along the beam neutral axis 
measured from the right end, u the coordinate of 
the added mass position, and W(x,t) the beam 
transverse deflection, measured from its 
equilibrium position.   Assuming harmonic motion, 
the beam transverse displacement may be 
expressed as: 

W( x,t ) w( x )sin( t )= ω                  (1) 
The free vibration of the CBAPM is governed by 
the following differential equation: 
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The general solution for transverse vibrations in 
the first and second span, can be written as: 
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for i= 1, 2, ...  are the mode shape parameters of the 
CBAPM. The constants aj, bj, cj, dj are determined 
by the continuity and end conditions, as follows: 
     At the beam left clamped end: 

1 0( ) 0iw ηη = =                             (8) 

1

0
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d η

η
η =

=                            (9) 

At the beam right clamped end: 
2 1( ) 0iw ηη = =                          (10) 

2
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d η

η
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    At the position ξ, the beam continuity equations: 
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Where 

mM
SLρ

=                                (16) 

Equations 8 to 11 constitutes a linear system 
with eight equations and eight unknowns. To avoid 
having only the trivial zero solution, the 
determinant of the system must vanish, which gives 
the frequency equation, leading to the linear 
frequencies and mode shapes of the CBAPM. The 
Newton–Raphson algorithm was used in the present 
paper to find the roots of the frequency equation, 
which are summarised in Tables1 and 2. 

 
3. APPLICATIONS 
 
3.1. A uniform beam with one point mass 

 A parametric study is performed in order to 
quantify the effect of both the added mass and its 
location on the CBAPM first and second 
frequencies and mode shapes, with their associated 
curvatures.  
 

Table1: First eigenvalues of the CBAPM for different 
values of the mass and mass locations 

 The added masses 
η M=0.25 M=0.5 M=1

0 4.7300407 4.7300407 4.7300407
0.05 4.7292508 4.7284553 4.7268474

0.1 4.7192868 4.7081653 4.6848083

0.15 4.6845584 4.6368121 4.5364706
0.2 4.6148728 4.4994416 4.2820554

0.25 4.5167386 4.3252078 4.0152076
0.3 4.4100531 4.1576632 3.7951258

0.35 4.314193 4.0213819 3.6322703
0.4 4.2409346 3.9239959 3.5220348

0.45 4.1956826 3.8661884 3.4585011
0.5 4.1804404 3.8470713 3.4377627

 
Table 2: second eigenvalues of the CBAPM for different 

values of the mass and mass locations 
 The added masses 
η M=0.25 M=0.5 M=1

0 7.8532046 7.8532046 7.8532046
0.05 7.844187 7.8347451 7.8145012

0.1 7.7426364 7.6164936 7.3377608

0.15 7.4876528 7.1496358 6.6519083
0.2 7.2372484 6.8350764 6.3987003

0.25 7.1313711 6.7751212 6.4487924
0.3 7.1747075 6.8938119 6.6557936

0.35 7.3280757 7.1251253 6.9564789
0.4 7.5448333 7.4213136 7.315858

0.45 7.757099 7.7137368 7.6737227
0.5 7.8532046 7.8532046 7.8532046
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Figure 2 shows the variation in the first and 
second frequencies due to the presence of an added 
mass located at a position u, when u varies from 0 
to 1. It can be seen that the fundamental frequency 
is affected, as may be expected, by the presence of 
the added mass in the vicinity of the beam centre, 
while the second frequency is affected by a mass 
present around u=L/4.  These results are 
summarised in Tables 1 and 2 for three values of 
the added mass m. Figures 3 to 6 show the effect of 
the added mass on the clamped beam normalized 
first and second mode shapes and the associated 
curvatures, which are related to the beam bending 
moments and stresses, for various mass locations 
and for various values of the mass located at u=L/2 
and u=L/4 respectively. 

 

 
Fig. 2 Effect of the added mass location on 
the linear frequencies associated to (a) the 
first mode (b) the second mode, for M = 
0.25, 0.5 and 1         
      

 
Fig. 3(a) First mode shape for various mass   

locations for M = 0.5. 
 

 
     Fig. 3(b) Curvatures associated to the first mode 
shape for M = 0.5 at various locations. 
 

 
Fig. 4(a) First normalized mode shape for 
various values of the mass located at the 
middle of the beam (u=L/2). 

 
 

 
Fig. 4(b) Curvatures associated to the first 
mode for various values of the mass located at 
the middle of the beam (u=L/2). 
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Fig. 5(a) Second mode shape for various mass 
locations and M=0.5 

 

 
Fig. 5(b) Curvatures associated to the second 
mode for various mass locations and M=0.5 

 

 
Fig. 6(a) Second normalized linear mode 
shape for various values of the mass located at 
the quarter of the beam (u=L/4) 

 
 
4. GEOMETRICALLY NON-LINEAR 

VIBRATION OF A CBAPM 
 

The total kinetic energy of the CBAPM can be 
expressed as: 

( ) ( ) 22
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2 2

L
jw x ,tx,t wT S dx m

t t
ρ

⎛ ⎞∂⎛ ⎞ ∂= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∫   (17) 

The beam total strain energy can be written as 
the sum of the strain energy due to the bending 
denoted as Vlin, plus the axial strain energy due to 
the axial load induced by the large deflections de In 
which ∂ indicates the variation of the integral. 
Introducing the assumed series (20) into the energy 

condition (27) via equations (21) to (23) reduces the 
problem to that of finding the minimum of the 
function Φ given by:noted as VNlin [12-13]. 

 
Fig. 6(b) Curvatures associated to the second 
mode for various values of the mass located at 
the quarter of the beam (u=L/4) 
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To develop the non-linear theory, the transverse 
displacement function is expanded as a series of N 
basic spatial functions (the CBAPM linear modes 
calculated above): 

i i i iw( x,t ) q ( t )w ( x ) a w sin( t )= = ω         (20) 
Where the usual summation convention for 

repeated indices is used. One obtains after 
discretization of the expressions (17-19): 
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The dynamic behavior of the CBAPM is 
governed by Hamilton’s principle, which is 
symbolically written as: 

2

0
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In which ∂ indicates the variation of the 
integral. Introducing the assumed series (20) into 
the energy condition (27) via equations (21) to (23) 
reduces the problem to that of finding the minimum 
of the function Φ given by: 

2
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with respect to the undetermined constant ai. 
Integrating the trigonometric functions 2sin ( t )ω , 

4sin ( t )ω and 2cos ( t )ω  over a period of vibration 
leads to the following expression: 

2
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      Φ appears in Equation (29) as a function of the 
undetermined constant, ai, i=1, …, N. Equation (27) 
reduces to:

 

0
ra

∂Φ
=

∂
    r = 1, 2, …, N                  (30) 

Generally, and this is the case for all of the 
applications previously made of the present theory, 
the tensors kij and mij are symmetric, and the tensor 
bijkl is such that: bijkl= bklij ,   bijkl= bjikl. Taking into 
account these properties of symmetry, it appears 
that equations (30) are equivalent to the following 
nonlinear algebraic system: 

22 3 2 0i ir i j k ijkr i ira k a a a b a m+ − ω =        (31) 

Putting { }( )ij k l ijklb A a a b= , the nonlinear 
geometrical rigidity matrix [B] is defined. Each 
term of matrix [B] is a quadratic function of the 
column matrix of coefficients { } [ ]TnaaaA ...21= .  
Introducing matrix [B] in equations (31) leads to 
the following matrix equation: 

[ ]{ } { }( ) { } [ ]{ }22 3 2K A B A A M A⎡ ⎤+ = ω⎣ ⎦    (32) 

Where [K] and [M] are the classical rigidity and 
mass matrices respectively. It should be noticed 
that, by neglecting the nonlinear 
term, { }( ) { }B A A⎡ ⎤

⎣ ⎦ , equation (32) reduces to the 

classical eigenvalue problem: 
[ ]{ } [ ]{ }2K A M A= ω                  (33) 

Equation (32) is an extension of the Rayleigh-
Ritz formulation to the nonlinear case.  It has to be 
solved numerically, or explicitly [12]. Finally, one 
may obtain, via simple transformations, the 
following nonlinear algebraic system [11-12]:   
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To obtain non-dimensional parameters, we put:   
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and α is the non-dimensional parameter: 
2

4
Sr

I
α =                               (44)            

Substituting these equations into equation (34) 
leads to: 
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The non-linear algebraic system (45) can be 
solved using an iterative method as in [13] or 
explicitly with the so-called in [11] first and second 
formulations. 

 
4.1. Single mode approach (SMA) 

From equation (32), one can calculate the 
frequency ω by multiplying the two hand sides of 
the equation from the left by {A}T, which gives: 

{ } [ ]{ } { } { }( ) { }

{ } [ ]{ }
2

3
2

T T

T

A K A A B A A

A M A

⎡ ⎤+ ⎣ ⎦
ω =    (46) 

The (SMA) consists of neglecting all the basic 
function contributions except a single ‘‘resonant’’ 
mode in order to reduce the multi-degree-of-
freedom system to a single one. The (SMA) is often 
used in the literature [12], due to the great 
simplification it introduces in the theory and 
because the error it introduces in the estimation of 
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the amplitude dependent nonlinear frequencies 
remains small.  Applying the (SMA) to equation 
(46) leads to: 

2 23
2

k ba
m m

ω = +                       (47) 

In which k=krr, m=mrr and b=brrrr correspond to 
the single mode in the neighbourhood of which the 
non-linear effect is examined, i.e. the rth linear 
mode calculated in section 3 of the CBAPM.  
Figures 7 and 8 give the various backbone curves 
corresponding to various values of the mass and 
mass location for the CBAPM first and second non-
linear modes, corresponding r=1 and r=2 
respectively. It can be seen that the added mass 
accentuates the non-linear hardening effect when its 
location is closer to u =L/2 for the first nonlinear 
mode and u=L/4 for the second nonlinear mode. On 
the other hand, for a given location of the added 
mass, increasing the mass leads to a reduction in the 
hardening effect, which can be understood, by 
considering equation (47).  
 

 
Fig. 7(a) First nonlinear mode Backbone 

curves for various values of the mass located 
at the middle  

 

 
Fig. 7(b) First nonlinear mode Backbone 

curves for various locations of the mass M=0.5  

 

 
Fig. 8(a) Second nonlinear mode Backbone 

curves for various values of the mass located 
at the middle  

 

 
Fig. 7(b) second nonlinear mode Backbone 

curves for various locations of the mass M=0.5  
 
4.2. Multi-mode approach (MMA) 

A multimode analysis is made in the present 
section to non-linear vibrations of two clamped 
beams with an added mass M=0.5 located at ξ=0.5 
and ξ=0.25 denoted as CBA0.5PM and 
CBA0.25PM respectively. In each case, 10 linear 
modes are determined using the parameter βi, 
computed numerically using the standard Newton-
Raphson iterations and summarised in Tables 3 and 
5. The modes obtained have been normalized in 
such a manner that the corresponding mass matrix 
equals the identity matrix.  Figures 8 and 9 shows 
the symmetrical and anti-symmetrical linear mode 
shapes used in the non-linear analysis as basic 
functions for i=1 to 10, M=0.5 and ξ=0.5. Figures 12 
and 13 shows in the same way the symmetrical and 
anti-symmetrical linear mode shapes used in the 
non-linear analysis as basic functions for i=1 to 10, 
M=0.5 and ξ=0.25. 
The parameters * *

ij ijm k ,  and *
ijklb   of equations (40 to 

42) were computed numerically by using Simpson’s 
rule in the range [0,1]. The non-linear algebraic 
system (45) has been solved using the second 
formulation [11], which can be explained as 
follows:  
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The basic approximation behind this formulation 
consists on writing the contribution vector to non-
linear mode as: { } [ ]1 3 10, ,...,A a ε ε= and neglecting 
in the expression i j k ijkra a a b of equations (45) 
second order and third order terms with respect to 
ei, i.e., terms of the type 1 1j k jkra bε ε and i j k ijkrbε ε ε . 
 

Table 3: Symmetric and anti-symmetric eigenvalues 
parameters (M=0,5 and ξ=0,5) 
βiL  

i Symmetric   i Anti-symmetric 
1 3.847071303   2 7.853204624

3 9.999905785   4 14.13716549

5 16.09984075   6 20.42035217

7 22.29314344   8 26.70365446

9 28.51961166   10 32.96211166
 

 
Fig. 8. Symmetrical CBAPM functions for 
i=1,3,5,7,9 (M=0.5 and ξ=0.5) 
 

 

 
Fig. 9. Anti-symmetrical CBA05PM linear 
mode shapes for i=2,4,6,8,10 (M=0,5 and 
ξ=0,5) 
 

This permits one to approximate the non-linear 
algebraic system (45) by an equivalent linear 
system, as detailed in [11].  The CBA0.5PM basic 
functions contributions obtained by this method for 
a1=1, 4, 6, and 10 in the case of M=0.5 and ξ=0.5 are 
summarised in Table 4. The corresponding normalised 
non-linear modes and curvatures are shown in Figures 
10 and 11 respectively. It can be noticed in table 4 that 
the contributions of antisymmetric functions are, as may 
be expected, very small compared to those of the 
symmetric functions. Also, Figures 10 and 11 exhibit the 
amplitude dependence of the CBA0.5PM first non-
linear mode shape and associated curvatures, which 
show that the (SMA), although it leads to good estimates 
of non-linear frequencies, may underestimate the non-
linear stresses in the beam examined and justifies, when 
the stresses are of the main interest, use of the (MMA).   
The CBA0.25PM basic functions contributions 
obtained by this method for a1=1, 4, 6, and 10 in the case 
of M=0.5 and ξ=0.25 are summarised in Table 5. The 

corresponding normalised non-linear modes and 
curvatures are shown in Figures 14 and 15 respectively. 
The results obtained confirm the conclusions mentioned 
above, related to the use of (SMA) and (MMA). 
 
 Table 4. Basic functions coefficient contribution
a1 1.00E+00 4.00E+00 6.00E+00 1.00E+01
a2 -4.08E-05 -1.52E-04 -2.07E-04 -2.54E-04
a3 -2.64E-04 -1.60E-02 -5.02E-02 -1.91E-01
a4 3.18E-07 1.96E-05 6.30E-05 2.54E-04
a5 -1.43E-04 -8.86E-03 -2.87E-02 -1.18E-01
a6 -5.37E-09 -2.15E-07 -2.30E-07 4.12E-06
a7 -4.86E-06 -3.35E-04 -1.22E-03 -6.45E-03
a8 3.41E-08 2.20E-06 7.50E-06 3.53E-05
a9 9.72E-06 6.26E-04 2.12E-03 9.90E-03

a10 4.42E-08 2.82E-06 9.49E-06 4.35E-05
 
 

 
Fig. 10. The normalized first non-linear mode 
shape of a CBA05PM (M=0.5 and ξ=0.5) 

 
 

 
Fig. 11. The first non-linear curvatures of the 
CBAPM (M=0.5 and ξ=0.5) 

 
Table. 5 summarise the symmetric and anti-
symmetric eigenvalues in the case M=0.5 and 
ξ=0.25. 
 

Table 5: Symmetric and anti-symmetric eigenvalues 
parameters (M=0.5 and ξ=0.25) 
βiL  

i Symmetric   i Anti-symmetric

1 4.32520777   2 6.77512116

3 10.2269194   4 13.97746152

5 17.0516317   6 19.21667971

7 22.7158396   8 26.53359815

9 29.5559992   10 31.63599915
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Fig. 12. Symmetrical CBA0.25PM functions 
for i=1,3,5,7,9 (M=0.5 and ξ=0.25) 

 

 
Fig. 13. Anti-symmetrical CBA0.25PM 
functions for i=2,4,6,8,10 (M=0.5 and ξ=0.25) 

 
 Table 6. Coefficient contribution
a1 3.81E-03 1.80E-01 4.53E-01 1.16E+00
a2 1.00E+00 4.00E+00 6.00E+00 1.00E+01
a3 4.76E-04 2.72E-02 7.90E-02 2.44E-01
a4 7.40E-04 4.51E-02 1.41E-01 5.13E-01
a5 -5.99E-05 -3.88E-03 -1.30E-02 -5.68E-02
a6 2.24E-05 1.47E-03 4.99E-03 2.24E-02
a7 -6.46E-05 -4.22E-03 -1.43E-02 -6.27E-02
a8 1.99E-05 1.33E-03 4.57E-03 2.12E-02
a9 -1.13E-05 -7.61E-04 -2.66E-03 -1.26E-02
a10 -2.91E-05 -1.95E-03 -6.78E-03 -3.18E-02

 
 

 
Fig. 14. The normalized non-linear second 
mode shapes (M=0.5 and ξ=0.25) 

 

 
Fig. 15. The second non-linear curvatures of 
the CBAPM (M=0.5 and ξ=0.25) 

 

5.  ONCLUSION 
 

A parametric study has been performed and 
results have been quantified for the effects of an 
added point mass, at various beam locations, on the 
frequencies and the first two linear modes of the 
new system. On the other hand, investigations were 
carried out in order to determine quantitatively how 
far do “beam with an added point mass” 
frequencies deviate from the linear ones, when the 
geometrical nonlinearity is taken into account. 
Using the linear modes calculated in the first part of 
the paper and a single mode approach (SMA), 
various backbone curves have been obtained, 
corresponding to different values of the added 
mass, and added mass location. 

The theoretical formulation of the multimode 
approach (MMA) has then been presented and 
numerical solutions have been determined using the 
approximate procedure, defined in [11] and labelled 
second formulation.  The results show the 
amplitude dependence of the non-linear modes and 
associated curvatures in all of the cases examined. 
This confirms that the linear theories may 
underestimate the induces stresses when large 
vibration amplitudes are involved. 
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