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Abstract 

Information extraction is a very important problem nowadays. In diagnostics, it is particularly useful 

when one desires to isolate information about machine damage from a measured diagnostic signal. The 

method presented in this paper utilizes the idea that is based on a very important topic in numerical algebra, 

which is nonnegative matrix factorization. When applied to the matrix of multidimensional representation of 

the measured data, it can extract very useful information about the events which occur in the signal and are 

not recognizable otherwise. In the presented methodology, we use the algorithm called Semi-Binary 

Nonnegative Matrix Factorization (SB-NMF), and apply it to a time-frequency representation of the real-life 

vibration signal measured on faulty bearing operating in a belt conveyor driving station. Detected impulses of 

local damage are clearly identifiable. Performance of the algorithm is very satisfying in terms of time 

efficiency and output signal quality. 
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WYKRYWANIE USZKODZEŃ LOKALNYCH ELEMENTÓW ŁOŻYSK TOCZNYCH  

POPRZEZ KLASTERYZACJĘ SPEKTROGRAMU ZA POMOCĄ PÓŁBINARNEJ  

NIEUJEMNEJ FAKTORYZACJI MACIERZY 
 

 Streszczenie  

Ekstrakcja informacji jest aktualnym kierunkiem badań. Jest ona szczególnie użyteczna, kiedy próbuje 

się wyizolować informację na temat uszkodzenia maszyny z zarejestrowanego sygnału diagnostycznego. 

Metoda zaprezentowana w niniejszej pracy bazuje na bardzo ważnym zagadnieniu algebry numerycznej, 

jakim jest nieujemna faktoryzacja macierzy. Kiedy jest ona zastosowana do analizy macierzy będącej 

wielowymiarową reprezentacją sygnału wejściowego, może wyizolować informację istotną z punktu 

widzenia procesów zachodzących w sygnale, a która nie jest rozpoznawalna w inny sposób. Przedstawiona 

metodologia korzysta z algorytmu znanego jako półbinarna nieujemna faktoryzacja macierzy, zastosowanego 

do reprezentacji czasowo-częstotliwościowej rzeczywistego sygnału drganiowego, zmierzonego na 

uszkodzonym łożysku pracującym w stacji napędowej przenośnika taśmowego. Wykryte impulsy związane z 

uszkodzeniem lokalnym zostały wyraźnie zidentyfikowane. Działanie algorytmu jest satysfakcjonujące w 

kwestii wydajności obliczeniowej oraz jakości otrzymanego wyniku. 

 

Słowa kluczowe: dane drganiowe, analiza czasowo – częstotliwościowa, nieujemna faktoryzacja macierzy, wykrywanie 

uszkodzeń lokalnych 

 
1. INTRODUCTION 

 

Detection and diagnostics of fault in rotating 

machines is an open subject for a long time. For 

this type of analysis a vibration signal is still the 

most frequent medium. Local damage in rotating 

machinery is a form of change in machine condition 

that causes cyclic, impulsive and non-stationary 

contribution in a machine vibration response. One 

can find some reviews of gears and bearings 

diagnostics in the literature 789. In the vibration 

signal acquired from such machines, most of the 

time one will not be able to notice any improper 

behavior going on. Impulsive disturbances in time 

domain are in many cases buried in the signal 

among other vibration sources produced by the 

operating machine 1011 121718. It is often 

necessary to incorporate multidimensional 

representations of the information being carried, as 

well as efficient methods for their analysis. In many 

cases, time-frequency representation of the signal is 

much easier to analyze and interpret, because short 

impulsive excitation manifests itself as wideband 

disturbance in the spectrum. In this paper, we 
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utilize  multidimensionality of time-frequency 

representation of the measured vibration signal, in 

combination with Nonnegative Matrix Factorization 

(NMF) method for information extraction 1236. 

The investigated data is a vibration acceleration of 

the damaged bearing operating within a driving 

station of the belt conveyor. NMF algorithm will be 

performed on the spectrogram of the considered 

signal. The presented method uses a certain matrix 

factorization algorithm as a way to perform 

clustering of individual spectra to extract 

information of impulsive signal behavior.  

It should be noted that so called AI methods, 

especially artificial neural networks, are frequently 

used in diagnostics, mainly for bearing data 

classification 131415. Regarding those, it is worth 

mentioning that NMF could be applied to whole 

spectra as well as extracted features. 

 

2. METHODOLOGY 

 

A general outline of the algorithm is presented 

in Fig. 1. First, an input signal is transformed into a 

time-frequency representation (spectrogram). The 

spectrogram is a square absolute value of the short-

time Fourier transform (STFT) defined as follows 

20: 

,)(),( /2
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where w(t-τ) is a shifted window and xk is the input 

signal. In the next step, we use the Semi-Binary 

NMF (SB-NMF) algorithm to group spectra vectors 

across all timestamps of the spectrogram. One of 

matrices produced by NMF carries information 

about the timestamp occurrence within clusters, 

which allows to construct so-called “partial output 

spectrograms”. They are matrices of zeros with 

appropriate spectra vectors distributed amongst 

them. 

As a result of this step we obtain J partial 

spectrograms where J is predefined number of 

clusters. The inverse short-time Fourier transform 

(ISTFT) is performed on all of them 21, and the one 

of maximum kurtosis is selected for further 

processing. 

At this point obtained selected signal reveals 

presence at correct timestamps of impulses 

occurrence, but those areas do not look like 

impulses yet. To extract correct form of the 

impulses, highpass filtration is required. It gets rid 

of low-frequency high-energy frequency 

components and preserves impulse present in a 

wide band of the spectrum. 

 

 

Fig. 1. Procedure flowchart 

 

2.1. Semi-Binary NMF 

Let 
TI

TyyY


R],,[= 1   denote the 

spectrogram, where I is the number of frequency 

bins, and T is the number of timestamps. The 

spectra vectors }{ ty  can be grouped according to 

their frequency profile similarity, which can be 

performed in many ways. Since all the vectors are 

nonnegative and could be sparse, a good choice 

seems to be the usage of NMF. There are several 

NMF-based techniques that can be applied for 

clustering problems, e.g. convex-NMF, spectral 

clustering with NMF, probabilistic NMF, projective 

NMF, kernel NMF 234. Assuming the vectors 

}{ ty  form K disjoint clusters, this task can be 

achieved with the semi-binary NMF that is intended 

for hard-clustering of nonnegative data. The 

theoretical foundations for this algorithm have been 

given in 1. In this method, the data can be 

represented by the following model:   

 ,= XAY                              (1) 

 where 
JI

A


R  contains the centroids, and 

TJ
X



R  has such a property that: 1=:, jtxjt   

and 0=stx  for js = . Hence, if TJ < , X is a 

binary and row-orthogonal matrix. Motivated by 

the properties of A and X, we assume the factor A is 
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estimated by solving the Nonnegatively constrained 

Least-Square (NNLS) problem:   

0,..s,
2

| || |
2

1
min  AtFXAY
A

                   (2) 

and the factor X  by minimization of  
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                             (3) 

subject to the binary and orthogonality constraints. 

To enforce a binary solution, we expressed   

by a logistic regression function, i.e. 


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=)( with the parameter . 

The problem (2) can be solved with any NNLS 

algorithm – we used the modified active-set 

method, originally introduced by Lawson and 

Hanson 5. The estimation of X is much more 

challenging due to the non-convexity of the 

constraints. In our approach, the factor X is 

estimated by maximizing the Gibbs–Boltzmann 

statistics 22 associated with the objective function 

in (3). Hence: 
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 where T
~

 is a temperature parameter controlling 

the ascent towards a global maximum of )( tF xP . 

One can show that ,
*

><lim 0
~

txtxT
F

P   where 

*
tx  is an exact solution.  

Assuming the greedy search strategy for 

maximization of (4), we proposed the modified 

update rule for X:   

 ,/. ReeRX
T

JJ                       (5) 

 where JJ

Je R,1][1,=   is a vector of all ones, 

and the symbols ./  and   denote the component-

wise division and Kronecker product, respectively. 

The elements of matrix 
TJ

jtrR


R]~[=  are 

computed by the formulae:   
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 The update rule (5) with (6) and (7) is 

computationally more efficient than in 2. The 

temperature schedule is motivated by simulated 

annealing methods, and set according to the 

exponential rule:  sTTT  exp0=
~

, where T  

and   are initial parameters, and s  is the iterative 

step. 

3. APPLICATION TO REAL DATA 

 

Belt conveyor systems used in mining industry 

are very specific class of machines considering 

their structure, power and time-varying exploitation 

load 1618. Amount of installed drive units depends 

on the design of a particular application. There are 

several elements critical from the diagnostic point 

of view, such as gearbox, coupling, electric motor, 

drive pulley, non-drive pulley, idlers and belt itself. 

In this paper, we focus on rolling bearing of the 

drive pulley. In Fig. 2 time series of signal recorded 

on the faulty pulley bearing is presented, and Fig. 3 

shows the spectrogram of the signal. This data has 

been already analyzed in recent papers, where 

several methods for local damage diagnostics have 

been proposed, see review in 18. The sampling 

frequency is equal to 19.2 kHz and the 

measurement is 2.5 seconds long. The spectrogram 

is obtained for the Hamming 512-sample length 

window with 450 overlapping samples and 512 

FFT points. One can notice several wide-band 

excitations on the spectrogram at carrier frequency 

band 1-6 kHz that occur with the modulation 

frequency of 12.7 Hz (and its multiples). This 

stands for outer race local damage. 

 

 
Fig. 2. Raw input signal 

 

Fig. 3. Spectrogram of the input signal 

 

As a next step, Semi-binary NMF algorithm 

groups the spectra into three clusters (see Fig. 4) 

and transform them back to time-series form using 

ISTFT. Third cluster is selected for further analysis 

based visual inspection (manually) or based on 

maximum kurtosis of obtained signals 

(automatically). The selected signal has zero value 

everywhere except for places where impulses occur 

(see Fig. 5 a). In those places ISTFT produced 

portion of the signal that comes from the 

spectrogram slices assigned to a particular place 

(typically 3-8 slices per impulse), and hence they 
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carry information from the original signal (slightly 

suppressed by ISTFT windowing, see Fig. 6 a). 

 

 
Fig. 4. Partial spectrograms constructed 

based on clustering results. Third 

spectrogram is selected for further analysis 

 

The methodology is based on nonnegative 

matrix factorization of the spectrogram, but it 

should be mentioned that the algorithm can be 

applied to other multidimensional representations 

of the input signal. It operates according to the idea 

that some matrix factorization algorithms can be 

interpreted as multidimensional clustering tools 

with one of the output matrices being a posterior 

probability of item appearance in certain clusters. 

 

 
Fig. 5. Recovered time series: a) after ISTFT 

transformation from selected partial 

spectrogram, b) after further highpass filtration 

 

To extract proper shape of the impulse we 

perform filtration of obtained signal with finite 

impulse response (FIR) highpass filter using the 

Kaiser window with the cutoff frequency equal to 

1300 Hz (obtained as optimal for maximizing SNR 

value), the stopband attenuation of -15 dB 

(parameters optimized for the highest SNR). It 

removes low-frequency high-energy components 

from the signal, and retains the information about 

the actual impulse (see Fig. 6 b). 

 
Fig. 6. Example of impulse shape before 

and after filtration 

 

Obtained filtered signal contains detected 

impulses caused by local damage of the bearing 

(see Fig. 5 b). Further analysis of signal structure 

(e.g. spectral analysis) and correlating the results 

with the knowledge about the machine kinematics 

can provide information leading to identification of 

precise origin of the damage. 

 

3.1. Comparison to Spectral Kurtosis 

Spectral Kurtosis (SK) proposed by Antoni and 

Randall is one of the most popular and powerful 

approach to identify informative frequency band 7. 

We will use SK as a reference method to compare it 

with NMF-based approach. As SK is well known 

we will not provide details related to description of 

the method. 

In Fig. 7 the normalized (3 is subtracted) 

kurtosis value distributed along frequency is 

presented for our signal. An informative band could 

be roughly identified between (0.05-0.3) of 

normalized frequency that gives informative 

frequency band c.a. (1000-6000) Hz. Fig. 7 was 
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used as the basis for filter design, and final SK-

based enhanced signal is presented in Fig. 8 
 

 
Fig. 7. Spectral Kurtosis (distribution of 

kurtosis along frequency bins) 

 

 
Fig. 8. Result of filtering using Spectral 

Kurtosis 

 

 
Fig. 9. Comparison of output signals' 

envelope spectra after SK filtration and 

after processing with our method 

 

As it could be seen indeed one might notice 

impulsive nature of the signal, however some noise 

level is still present in the signal. For both 

enhancement techniques, the final form for 

diagnostic decision making is envelope spectrum. 

In Fig. 9 two envelope spectra estimated for signal 

presented in Fig. 5 b (NMF-based - red color) and 

in Fig. 8 (SK-based – blue color) are shown.  

 

4. CONCLUSIONS 

 

In this paper, we introduced a new approach to 

local damage detection in rotary machines based on 

impulsive acceleration signal. Investigated input 

data is a real-life vibration signal measured on 

faulty bearing in belt conveyor driving station. 

 

Utilizing this idea, spectrogram slices along the 

timestamps for consecutive frequency bins can be 

treated as multidimensional points in feature 

frequency space, and the NMF-based algorithm 

assigns them to certain clusters. As a 

postprocessing step, highpass filtration is performed 

to clear and enhance the shape of actual impulses. 

By using this methodology the impulses hidden in 

the signal are extracted in a clearly visible and 

distinguishable way. The proposed algorithm is 

automatic and can be applied to other vibration 

signals as well. 
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