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Summary 

In this paper, the author analyzed an applicability of selected types of time-frequency distributions that 
belong to Cohen’s class and their reassignments for signals similar to those obtained during machinery 
diagnostics. At the first step of performed studies a synthetic multicomponent signal that contains both 
stationary and non-stationary components was analyzed using algorithms based on various time-frequency 
distributions. This allows for evaluating effectiveness of identification of particular components by applied 
time-frequency distributions and selecting a group of the most effective algorithms. At the second step, the 
selected time-frequency distributions were applied for analysis of signals acquired during diagnosis of rolling 
bearings in order to verify the effectiveness of identification of components responsible for a priori known 
faults occurred in bearings. 
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ZASTOSOWANIE DYSTRYBUCJI CZASOWO-CZĘSTOTLIWOŚCIOWYCH  

W DIAGNOSTYCZNYM PRZETWARZANIU SYGNAŁÓW: STUDIUM PRZYPADKU 
 

Streszczenie 
W niniejszym artykule autor analizuje stosowalność wybranych typów dystrybucji czasowo-

częstotliwościowych, które należą do klasy Cohena i ich wersji redefiniowanych dla sygnałów zbliżonych do 
takich, które są otrzymywane podczas diagnostyki maszyn. W pierwszym kroku przeprowadzonych badań 
syntetyczny wieloskładowy sygnał, zawierający zarówno stacjonarne jak i niestacjonarne składowe, był 
analizowany z wykorzystaniem algorytmów opartych na różnych dystrybucjach czasowo-
częstotliwościowych. Pozwoliło to na ocenę efektywności identyfikacji poszczególnych składowych przez 
zastosowane dystrybucje czasowo-częstotliwościowe oraz wybór grupy najefektywniejszych algorytmów. W 
drugim kroku wybrane dystrybucje czasowo-częstotliwościowe zostały zastosowane do analizy sygnałów 
pozyskanych podczas diagnostyki łożysk tocznych w celu weryfikacji efektywności identyfikacji składowych 
odpowiedzialnych za wystąpienie uszkodzeń w łożyskach, znanych a priori. 

 
Słowa kluczowe: dystrybucja czasowo-częstotliwościowa, przetwarzanie sygnałów, identyfikacja wieloskładowa, 

diagnostyka łożysk tocznych 
 

1. INTRODUCTION 
 

Machinery being operated usually reveals 
vibrations which is a relevant and often used source 
of diagnostic information. However, the most of 
machines generates highly non-stationary 
multicomponent signals due to presence of 
components whose statistical features change in time 
as well as presence of transient components and 
noise. Several methods used in diagnostics of rotor 
machinery are focused on acquisition of such non-
stationary signals (usually acquired during run-up or 
run-down of a machine) [1-3] which is a rich source 
of diagnostic information. Due to the variability of 
time and frequency features simultaneously in such 
signals the classical methods of signal analysis in 
time and frequency domains separately are 
inappropriate since they assume stationarity in 
whole analyzed band of a given domain. Thus, the 

development of methods of joint time-frequency 
(TF) analysis began extremely important for signal 
processing issues addressed to machinery 
diagnostics. 

Many efficient methods of TF analysis have been 
developed to-date. The earliest approach of linear 
TF representation is the Short-Time Fourier 
Transform (STFT): 

( ) ( ) ( ) ( ) ττπττ d2exp,STFT ∫
+∞

∞−

−−= fjtwxftx , (1) 

where x(t) is a signal, w(τ–t) is a window function 
centered at time t with a window length of τ, j is an 
imaginary unit and f is a frequency; which assumes 
local stationarity in a fixed-size window translated 
over the signal domain. This means that STFT has a 
fixed resolution, where the time and frequency 
resolution depend on each other, i.e. when the time 
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resolution is high the frequency resolution is low, 
and vice-versa. This property is related to the 
Heisenberg uncertainty principle. Further approach 
of linear TF representation is the Continuous 
Wavelet Transform (CWT): 

( ) ( ) ττψτ d1,CWT ∫
+∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

tx
a

atx ,      (2) 

where the term ψ([τ–t]/a) is a kernel function 
obtained from dilating and translating of a wavelet 
basis ψ(t) and a is the normalization factor used for 
maintaining energy conservation (usually a = 2 [4]). 
Compared to STFT, CWT has much better 
resolution properties and ability of localization of 
singularities in analyzed signal due to a possibility 
of application of various (almost arbitrary) basis 
functions, and dilation and scaling properties [5]. 

Another group of TF representations, developed 
in parallel to the above-mentioned linear TF 
representations, is a group of bilinear and higher-
order TF representations which belong to Cohen’s 
class of TF distributions (TFDs). The fundamental 
distribution for the mentioned class (on which it is 
based) is the Wigner-Ville distribution (WVD): 

( ) ∫
+∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ +=

2
*

2
,WVD ττ txtxftx  

( ) ττπ d2exp fj−⋅ ,          (3) 
where x* is a complex conjugate of a signal x. This 
TFD is based on determination of autocorrelation 
function for further determination of a power 
spectrum of a signal, similarly as other TFDs 
belonged to the Cohen’s class. WVD is a non-linear 
(quadratic) distribution, which means that a sum of 
multiple signal components is not equal to a sum of 
their WVDs [3]. Since WVD satisfies the most of 
the mathematical properties and features of optimal 
TF localization (see [6] for instance), this 
distribution is optimal in theoretical sense. Due to 
this fact, WVD is commonly applied in a wide range 
of practical signal processing problems, like 
identification of components in transient signals [7], 
rotating machinery fault detection [8-10], detection 
of part loose in reactor coolant systems [11], texture 
segmentation [12], seismic attenuation estimation 
[13] and many others. 

However, there are several drawbacks occurred 
in practical applications of WVD. The main problem 
of application of WVD to multicomponent signal is 
an existence of cross-term interferences which may 
mask low-energy components, especially in the case 
of large dispersion of energy level of individual 
components [14]. In order to remove unwanted 
cross-term interferences, and improve TF resolution 
and separation ability of particular signal 
components several distributions have been 
developed, such as Cohen’s class distributions. Such 
improvements were focused on design of 
appropriate kernel functions which allow matching 

their properties to a specific non-stationary signal 
processing task. 

The enhancement of resolution and minimizing 
the cross-term interferences was reported in many 
practical studies, when the TFDs of the mentioned 
class was used instead of WVD. The improved 
TFDs have found many applications, including noise 
reduction [15], diagnosis of rotor machinery 
[9,14,16-18] and combustion engines [19], 
inspection of electrical power systems [20], 
characterization of complex physical processes [21], 
and many others. This is also proven by several 
comparative studies performed on synthetic 
multicomponent signals as well as on real signals 
acquired during machinery operation [3, 9, 22-28]. 
Nevertheless, the mentioned comparative studies are 
usually limited to the analysis of multicomponent, 
but still quite simple signals, and few TFDs. 

The aim of this paper is a joint analysis of most 
of TFDs belonged to Cohen’s class in terms of 
theoretical foundations as well as their application to 
identification of components in a multicomponent 
signal. For this purpose, the synthetic 
multicomponent signal with all types of components 
occurred in machinery during operation was 
generated and analyzed using various TFDs in order 
to characterize them in the view of admissibility in 
applications of signal processing in technical 
diagnostics problems. Further, selected TFDs were 
applied to the signals measured during operation of 
rolling bearings in order to verify the results of 
studies on synthetic signal as well as their 
effectiveness in identification of particular 
components in signals that represent their normal 
condition and a priori known faults. This leads to the 
alternative methodology of diagnosis of rolling 
bearing with respect to the common methods ( see 
e.g. [29]). 

 
2. THEORETICAL BACKGROUND 

 
2.1. Cohen’s class TFDs 

 
The main idea of development of the TFDs that 

belong to the Cohen’s class was an improvement of 
resolution of resulting TF distributions of signals as 
well as removing the unwanted cross-term 
interferences. All of these TFDs are resulted from 
smoothing of the WVD, where the only difference is 
an addition of a specific kernel function. Cohen, in 
his review paper [30], proposed a general form of a 
class of the discussed TFDs, which has the following 
form: 

( ) ( ) ( ) =′′′′′−′−= ∫ ∫
+∞

∞−

+∞

∞−

ftftffttft xx dd,WVD,,CCD φ  

( ) ( ) ( )[ ] υττυπυτυτ dd2exp,,∫ ∫
+∞

∞−

+∞

∞−

−Φ ftjAx ,  (4) 

where 
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( ) ( ) ( )[ ] υττυπυτφ dd2exp,, ∫ ∫
+∞

∞−

+∞

∞−

−Φ= ftjft ,  (5) 

( ) ∫
+∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ +=

2
*

22
1, ττ
π

υτ txtxAx  

( ) ttj d2exp πυ−⋅ ,                  (6) 
is the ambiguity function and ( )υτ ,Φ  is a kernel 
function in an ambiguity domain specific for 
particular types of distributions. From the great 
variety of available Cohen’s TFDs 12 of them 
(including WVD presented above) were selected for 
further analyzes. The kernel functions for the basic 
Cohen’s TFDs are as follows [6]: 

• Spectrogram: 
( ) ( )υτυτ ,,S xA=Φ ,          (7) 

• Rihaczek: 
( ) ( )πυτυτ jexp,RD =Φ ,          (8) 

• Page: 
( ) ( )τπυυτ jexp,PD =Φ ,          (9) 

• Margenau-Hill: 
( ) ( )πυτυτ cos,MHD =Φ ,        (10) 

• Born-Jordan: 
( ) ( )πυτυτ sinc,BJD =Φ ,          (11) 

• Choi-Williams: 

( ) ( )( )2
CWD 2exp, σπυτυτ −=Φ ,  (12) 

where σ is a temporal scaling parameter, 
• Zhao-Atlas-Marks: 

( ) ( )( ) ( )πβτσπυτυτ 2cos2exp, 2
ZAMD −=Φ ,   (13) 

where β is a spectral scaling parameter [31]. 
In order to improve TFDs presented above, 

several modifications of them have been developed. 
One type of such modifications is a type of pseudo-
TRDs, e.g. pseudo Wigner-Ville distribution 
(PWVD), pseudo Page distribution (PPD) and 
pseudo Margenau-Hill distribution (PMHD). Such 
representations include a window function h(τ) 
which allows suppressing the interferences between 
signal components. The kernel functions for three 
latter cases are as follows [6]: 

• PWVD: 
( ) ( )τυτ h=Φ ,PWVD ,      (14) 

• PPD: 
( ) ( ) ( )τπυτυτ jh exp,PPD =Φ ,      (15) 

• PMHD: 
( ) ( ) ( )πυττυτ cos,PMHD h=Φ .     (16) 

For further enhancement of a resulting 
distribution, the smoothed PWVD (SPWVD) was 
introduced [32]. The difference lies in introducing 
an additional window function g(t) which allows 
smoothing in time and frequency domains 
independently. Following this, the kernel function 
for this case takes a form [6]: 

( ) ( ) ( )υτυτ gh ˆ,SPWVD =Φ ,           (17) 
where ⋅̂  denotes Fourier transform. 
 
 
2.2. Reassigned TFDs 
 

Besides the effectiveness of improvements of 
initial WVD by smoothing operations performed in 
different ways for CCDs, some of cross-term 
interferences may remain in a time-frequency (or 
time-scale) plane. In order to overcome this 
drawback the reassignment method was proposed in 
[33], which is based on moving the mean energy of  

( )ftx ,CCD  or ( )atx ,ACD  at their specific 
locations – ( )ft,  or  ( )at,  to the center of gravity 
of a distribution [3]. Following this, one can obtain 
the reassigned Cohen’s class distribution: 

( ) ( ) ( )( )∫ ∫
+∞

∞−

+∞

∞−

−′= ftttftft xx ,ˆ,CCD,RCCD δ

( )( ) ftftff dd,ˆ−′⋅δ ,  (18) 
where 

( )
( ) ( )

( ) ( ) υτυτυτφ

υτυτυττφ

dd,WVD,

dd,WVD,

,ˆ

∫ ∫

∫ ∫
∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−

−−

−−

−=

ft

ft

tftt

x

x

, 

(19)

( )
( ) ( )

( ) ( ) υτυτυτφ

υτυτυτυφ

dd,WVD,

dd,WVD,

,ˆ

∫ ∫

∫ ∫
∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−

−−

−−

−=

ft

ft

fftf

x

x

.

(20) 
Following this reassignment method various 

Cohen’s class distributions with enhanced 
parameters can be obtained. For further studies the 
following 4 reassigned distributions were selected: 
reassigned PMHD, PWVD, SPWVD and reassigned 
spectrogram, whose forms can be obtained from 
(18). 

 
3. ANALYSIS OF SYNTHETIC 
MULTICOMPONENT SIGNAL 
 
3.1. Description of the synthetic signal 

 
The synthetic signal was modeled in the Matlab® 

environment and contains the following 
components. Firstly, three harmonics with 
frequencies of 100 Hz, 140 Hz, and 180 Hz, 
respectively were composed together. Next, fourth 
harmonic with a frequency of 300 Hz and duration 
of 4 s was added to the rest. In the fourth second two 
chirp signals, linear (with a starting frequency of 300 
Hz and ending frequency of 100 Hz) and quadratic 
(with a starting frequency of 300 Hz and ending 
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frequency of 500 Hz), respectively, were simulated 
with a duration of 6 s. Additionally, two pulse 
signals with magnitudes of 10 and 5, and appearance 
at fifth and eighth second, respectively, were added 
to the signal. Finally, noise with a magnitude of 0.1 
was added to the rest of components. The particular 
components of the signal are described by the 
following equations: 

( ) ( )tfAtx 3,,113,,1 2sin KK π= ,               (18a) 
( ) ( )14114 2sin tfAtx π= ,                         (18b) 
( ) ( )( )225125 2sin ttfAtx π= , ( ) 2525 ktftf += , (18c) 

( ) ( )( )226126 2sin ttfAtx π= , ( ) 2
2626 ktftf += ,(18d) 

( ) ∏= )( 327 tAtx , ( ) ∏= )( 438 tAtx ,             (18e) 
( ) )rand(49 tAtx = ,                     (18f) 

and are added up. A total duration of the signal is 10 
s with a step of 0.001 s. In order to visualize the 
modeled multicomponent signal the spectrogram 
was chosen (see Fig.1). Moreover, the spectrogram 
was selected as a reference of time-frequency 
representation with respect to the considered TFDs. 
 

 
Fig.1. Spectrogram of the modeled multicomponent 

signal 
 
In the presented spectrogram, one can observe 

that sudden change of fifth and sixth components 
from zero- to non-zero-value at fourth second causes 
an appearance of additional peak which is quite 
similar to the pulse signals at fifth and eighth 
second. All components are clearly visible in this 
spectrogram. 

 
3.2. Component identification in a synthetic 
signal – a comparative study 

 
In order to observe the performance of various 

TFDs described in section 2, the comparative study 
was performed. For this purpose the Time-
Frequency Toolbox for use with Matlab® [34] was 
used. The modeled multicomponent signal was 
subjected to transformation into time-frequency 
domain using above-described TFDs. The resulting 
time-frequency representations are shown in Figs. 2-
16. 

 
Fig.2. Time-frequency representation of the 

synthetic signal using WVD 

 
Fig.3. Time-frequency representation of the 

synthetic signal using RD 
 

 
Fig.4. Time-frequency representation of the 

synthetic signal using PD 
 

 
Fig.5. Time-frequency representation of the 

synthetic signal using MHD 
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Fig.6. Time-frequency representation of the 

synthetic signal using BJD 
 

From the presented representations one can 
observe that there is a group of TFDs which detects 
harmonic and pulse components (only in the case of 
RD) well, but remains insensitive to non-stationary 
components in the analyzed signal. This can be 
observed for Rihaczek, Page and Margenau-Hill 
distributions (Figs.3-5). 

 
Fig.7. Time-frequency representation of the 

synthetic signal using CWD 
 

 
Fig.8. Time-frequency representation of the 

synthetic signal using ZAMD 
 

 
Fig.9. Time-frequency representation of the 

synthetic signal using PWVD 
 

Another group of TFDs from the considered 
ones, namely Wigner-Ville (Fig.2), pseudo-Wigner-
Ville (Fig.9), and reassigned pseudo-Wigner-Ville 
(Fig.15) distributions, detects all types of 
components well, but produces artefacts in the time-
frequency representations (caused by interference of 
two auto-terms in (3)) which makes the proper 
interpretation of the resulting spectrum difficult.  

 
Fig.10. Time-frequency representation of the 

synthetic signal using PPD 

 
Fig.11. Time-frequency representation of the 

synthetic signal using PMHD 
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Fig.12. Time-frequency representation of the 

synthetic signal using SPWVD 
 

 
Fig.13. Time-frequency representation of the 
synthetic signal using reassigned spectrogram 

 

  
Fig.14. Time-frequency representation of the 

synthetic signal using reassigned PMHD 

 
Fig.15. Time-frequency representation of the 

synthetic signal using reassigned PWVD 
 

 
Fig.16. Time-frequency representation of the 

synthetic signal using reassigned SPWVD 
 

This induces another problem with WVD-type 
spectra – the appearance of negative values that has 
no physical justification which is their serious 
drawback. 

Observing BJD, CWF and ZAMD spectra (Figs. 
6-8), which have similar formulations – see (11)-
(13), one can conclude that both harmonic and non-
stationary components of the analyzed signal are 
well localized in time and frequency, however the 
blurring of the identified components discredits 
these distributions from further consideration. 
Moreover, the pulse components are almost 
undetectable in the considered spectra. 

The pseudo versions of particular distributions 
contain a window function in their definitions that 
allows reducing interference terms and causes that 
the resulting spectra are smoother in frequency. This 
improves significantly the detectability of 
components in spectra (cf. Fig.4 and Fig.10, Fig.5 
and Fig.11). 

The smoothed version of the pseudo-WVD 
contains two independent windows in order to 
perform smoothing both in time and frequency 
domains which, as a result, gives precise localization 
of harmonics, non-linear and transient components 
of the signal (see Fig.12). Note that in this case very 
good localization of the pulse components is 
observed, and in the same time the peak in fourth 
second is almost undetectable. One can also notice 
that the reassigned version of SPWVD (Fig.16) does 
not contribute to any improvements with respect to 
SPWVD. 

The reassignment allows for obtaining TFD 
spectra with better concentration of energy both in 
time and frequency domains, which improves their 
readability. In the following study the effects of 
reassignment is not clearly visible, however, 
considering theoretical fundamentals of the 
reassignment procedure [6] it is suitable to consider 
the reassigned versions of TFDs. 

Based on the performed comparative study one 
can select the following TFDs which detected well 
all components of the synthetic signal typical in 
vibroacoustic diagnostics of machinery: reassigned 
spectrogram, reassigned PMHD, and reassigned 
SPWVD. These TFDs were applied for signal 
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components detection in rolling bearings, described 
in the next section. 

 
4. IDENTIFICATION OF COMPONENTS OF 
ROLLING BEARINGS VIBRATION SIGNALS 

 
The signals of radial acceleration were acquired 

on the laboratory test rig with a rolling bearing from 
the top of the tested bearing casing (SKF® type 
SNL) using the PCB® Piezotronics T352C34 
piezoelectric accelerometer. The tested bearing 
considered in this study contained 9 rolling elements 
and a fault of rolling element. The duration of each 
measurement was 4.8 s with a sampling frequency of 
51.2 kHz. The rotational speed of the test rig equaled 
1603 rpm. Further details on acquisition, resonant 
frequencies and properties of a signal can be found 

in [35]. The time-domain  representation of the 
analyzed signal is presented in Fig.17. 

In order to identify typical signal components of 
the tested bearing, in particular the components 
responsible for occurrence of the damage of rolling 
element, the time-frequency spectra were 
determined using TFDs selected in the previous 
section. The resulting spectra are presented in 
Fig.18. The frequency range was limited to 1250 Hz. 

The presented spectra show the occurrence of 
three harmonic components (with central 
frequencies of 450 Hz, 650 Hz and 1095 Hz) and 
pulse components which repeat periodically and 
result from the damage of the rolling elements. 
These periodic impacts excite natural frequencies of  

 

 
Fig.17. Time-domain representation of the analyzed signal or the rolling bearing with the fault 

 
the bearing elements. They also may excite 
sidebands around the resonance frequencies (which 
is one of the reasons of blurring the harmonics on 
the spectra presented in Fig.18) as well as 
occurrence of components which are the 
multiplications of bearing defect frequencies. 
 

 

 

 
Fig.18. Spectrum of vibration signal of bearing 

obtained using a) reassigned spectrogram, 
b) reassigned PMHD, c) reassigned SPWVD 

 
One can also observe in Fig.18 that the 

considered TFDs selected in the previous sections 
are suitable for detection of all above-mentioned 
components, however, the detectability of these 
components differs. The spectrum obtained using 
reassigned spectrogram distribution allows for 
detection of three harmonics and pulses, however all 
of these components are blurred which may cause 
difficulties in localization both in time and 
frequency domains. The reassigned PMHD makes 
possible detection of pulse components with the 
highest magnitudes only, while the rest of pulse 
components as well as harmonic components are 
weakly detectable. The best results were obtained 
from the reassigned SPWVD which provides good 
sharpness of both types of components, and thus, 
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provides good localization in time and frequency 
domains. Considering this, in the case of diagnosing 
rolling bearings the reassigned SPWVD seems to be 
the most accurate distribution from the previously 
analyzed ones, however, at the expense of 
computational complexity. 

 
5. CONCLUSIONS 
 

The performed studies allow comparing various 
types of TFDs and their applicability in 
vibroacoustic diagnostics problems. Based on 
comparative study performed on synthetic 
multicomponent signal with stationary and non-
stationary components it was possible to analyze a 
performance of 16 TFDs belonged to Cohen’s class, 
and their smoothed and reassigned versions. Based 
on these results it was possible to select the most 
suitable TFDs that allow detecting all types of 
desired components. The selected TFDs was applied 
to obtain spectra of vibration signal of rolling 
bearing with faulty rolling element. The final 
analysis shows the best effectiveness of the 
reassigned SPWVD which can be applied in similar 
analyses. 
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