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Summary 

In this paper we present a study on Li-Ion Battery (LIB) modelling, including battery ageing profile, as a 

ground for development of state of health (SoH) prediction and monitoring system. An influence of LIB age-

ing was included by the mean of ageing module, based on voltage, resistance and capacity characteristics, re-

sulting from preliminary experimental measurements. Our model, based on equivalent circuit model (ECM) 

and parameter estimation procedure, was implemented in MATLAB software and then validated. The simula-

tion results are used for battery SoH estimation, which may be use in a future to optimize the conditions of 

LIB cycling and therefore extend the battery lifetime.   
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ESTYMACJA STANU BATERII LITOWO – JONOWYCH  

– MODELOWANIE STARZENIA I BADANIA EKSPERYMENTALNE 
 

Streszczenie  

Niniejszy artykuł przedstawia badania nad stworzeniem modelu baterii litowo – jonowej, uwzględniają-

cego procesy starzenia baterii, jako podstawę do budowy systemu monitorowania stanu baterii. Wpływ pro-

cesów starzenia został uwzględniony za pomocą specjalnego modułu, zdefiniowanego przy pomocy parame-

trów (tj. charakterystyki napięciowe, impedancyjne, pojemnościowe) uzyskanych na drodze pomiarów ekspe-

rymentalnych. Opracowany model, oparty na równoważnym dwugałęziowym modelu elektrycznym RC, zo-

stał zaimplementowany w środowisku MATLAB, a następnie poddany walidacji. Wyniki przeprowadzonych 

symulacji wykorzystano do opracowania algorytmu estymacji stanu baterii, który w przyszłości może posłu-

żyć do optymalizacji warunków pracy ogniw litowo – jonowych. 

 

Słowa kluczowe: baterie Li – Ion, model ECM, monitorowanie stanu baterii, starzenie 

 

1. INTRODUCTION 

 

One of the most demanding world energy chal-

lenge is focused on increasing production of power, 

derived from sustainable energy sources. Using an 

ambient energy sources, instead of a burning fuels, 

seems to be a smart idea, which may help produce 

cost-effective and environmentally-friendly devices. 

Unfortunately, since the abundance of sustainable 

energy sources is fluctuating through a day, an ap-

plication of this sources requires an accompanying 

solutions for energy capturing and storage [1]. For 

now, the most common solution involves an applica-

tion of Lithium-Ion batteries (LIBs), used for a 

broad range of electronic products for new energy 

technology purposes (i.e. electric vehicles). High 

energy and power density, low self-discharge rate, 

relative long lifetime and safety, caused an enhanced 

interest of the companies, which willingly taking the 

advantages of this attractive energy solution. Taking 

together, it seems that energy storage systems, based 

on LIBs, established themselves as a leading candi-

date for the next generation of automotive, aerospace 

and other energy demanding applications. 

Unfortunately, the LIB during its performance is 

subjected to degradation process. Moreover, the rate 

of degradation depends on operating environment 

factors, therefore it may be different for the same 

cells working under vary conditions. In general, the 

LIB ageing is caused by the layer of solid electrolyte 

intercalation interphase (SEI), which overgrowth 

leads to significant reduction in LIB performance or 

may even cause a battery failure. From this point of 

view, there is an undeniable need to estimate the 

state of health (SoH) of battery, in order to predict 

the number of cycles left to the end of its lifetime.  

In the recent years, an extensive studies have 

been carried out to find a satisfactory way of battery 

SoH estimation. Among many reported studies, the 

most promising one is concern with the theory of 
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crack propagation on the battery electrodes, which 

may reflect in the nonlinear relationship between 

cycling stress and temperature [2]. Regardless of the 

research methodology, the general idea of SoH is 

based on comparison of results of LIB ageing model 

simulations with experimental measurements. If the 

real-time measured data are convergent with simula-

tion results, the battery health may be assess as nor-

mal. If not, it means that some failures occurred.  

An applied model should also include all electrical 

parameters of the circuit load and other parameters 

i.e. representing charging and discharging character-

istic.    
 

 

 
 

Fig. 1. The sequence of presented study 

 

The aim of our study is to develop a system for 

LIBs state of health prediction and monitoring, in 

order to attempt an extension of LIB life, avoid 

unexpected failures and improve the control of pow-

er management systems. Also, the precise definition 

of ageing model may help to find the most efficient 

conditions for long-term LIB operation. In this paper 

we propose a method, where ageing parameters are 

applied to the equivalent circuit model (ECM) struc-

ture. Our simulation model, implemented in a 

MATLAB software, is based on the 2RC branch 

ECM and on the parameter estimation procedure 

(which provides a circuit parameters, allowing to 

recreate a load dependences on SoC, voltage and 

temperature) [3]. A developed ECM model is subse-

quently combined with ageing module. As a re-

sponse for constantly changing initial ECM parame-

ters, the ageing module is adjusting during the LIB 

operation, provides an estimation of the left LIB 

lifetime. The simulation results are compared with 

experimental measurements and, after model valida-

tion, are used for further SoH prediction (fig. 1.)  

 

 

 

 

 

2. THE AGEING OF LI-ION BATTERIES 

 

The ageing of materials and structures, is an 

extremely important aspect, which should be 

included in most of the type of condition and health 

monitoring studies [4–6]. The degradation issue may 

be considered through a different scale, starting with 

an atomic scale [7], through a micro [8], up to the 

macro scale [9]. Regardless the scale of the problem, 

as well as the materials and methods under 

investigation, the major idea of all studies is the 

same –  attempt to assess how hard degradation 

affects on the material properties and, as a result, on 

the construction/device lifetime. The same problem 

relates Lithium-Ion Batteries (LIBs) – during LIB 

performance, each component of the cell is subjected 

to ageing, therefore the LIB efficiency during its 

lifetime is decreasing. A possible mechanisms of 

degradation are different for different LIB 

components – the current collector is subjected to 

corrosion, the electrolyte to decomposition, the 

separator usually melts and the cathode undergoes 

metal dissolution [10]. However, in general is 

assumed, that the most significantly differences in 

ageing mechanisms are noticeable between the 

anode and the cathode.  

The ageing of anodes is usually concerns with the 

changes in graphite structure (carbon is a commonly 

choice for LIBs anodes), causing deterioration of the 

anode properties in time and use. The changes reveal 

during battery cycling, as well as during storage, and 

might be asses by well-defined electrochemical 

parameters i.e. state/change in state of charge 

(SoC/ΔSoC), state of health (SoH), capacity fade or 

resistance rise [11]. Except changes in anode 

structure, the adverse effects of LIB ageing may also 

concern changes at the Solid-Electrolyte Interphase 

(SEI) level. In fact, the studies of ageing influence 

on the SEI layer are one of the most commonly 

reported studies concerning LIB batteries – the 

examples may be found in [12–15]. Also, in case of 

metal-cored electrodes, the LIB ageing effects may 

result from mechanical disintegration within the 

electrode – some details about changes in anode 

volume, reactivity of binder materials or current 

collector corrosion are reported, respectively, in  

[16–18]. On the other hand, the ageing of the entire 

LIB may partly results from cathode ageing. The 

inseparably conjugated phenomena, such as 

structural changes of positive active material, 

dissolution reaction or modification of surface film, 

have an irreversibly influence on the LIB lifetime. 

Therefore, a studies in a field of cathode ageing, are 

mostly focused on cathode structural aspects [19], 

ageing neutralization [20] or surface electrolyte 

reactions (including gas generation mechanism) 

[21], [22]. 

 An additional information about causes, 

mechanisms and possible effects of LIB ageing are 

described in great details in overview available in 

[23]. Also, a comprehensive review on LIB ageing 
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mechanisms, supplemented by estimations for 

automotive applications was reported in [24]. 

Finally, in a reference to the aim of our study, one of 

the latest extensive review about state of health 

estimation methods for LIB, may be found in [25].  

 

3. PRELIMINARY MEASUREMENTS 

 

3.1. The object of a study 

 

The object of our study were Lithium-Ion batter-

ies (LIBs) from Sony Energy Devices, model 

US18650V3. This model, due to its high capacity (in 

relation to its weight) and relatively small dimen-

sions, is commonly used in many applications. The 

nominal voltage of this battery is estimated at 3.7 V. 

Other key parameters of the cell are presented in 

table 1.  
 

Tab. 1. US18650V3 key parameters 

 

Product Category Li-Ion rechargeable battery 

Model name   US18650V3 

Nominal capacity   2150 mAh 

Nominal voltage   3.7 V 

Lower/Upper cut-off   2.5 / 4.2 V 

Work temperature   -10°C ... 50°C 

Materials & Ingredients Information 

Cathode 

 Lithium Nickel Cobalt Manganese 

Oxides (active material) 

 Polyvinyldiene 

 Graphite (active material) 

Anode 

 Graphite 

 Polyvinyldiene Fluoride (binder) 

 Organic Solvent (non-aqueous liquid) 

 Lithium Salt 

 

Among materials used in considered cells, an 

important role plays Lithium Nickel Cobalt Manga-

nese Oxides (NMC). A NMC cells are commonly in 

battery – they could be found in electric vehicles, e-

bikes, various power tools and similar mobile devic-

es. The NMCs have a good performance, excellent 

specific energy and the lowest self-heating rate from 

set of well-known battery [26], [27]. 

 

3.2. Measurements on LIB performance 

 

Preliminary measurements of battery cycles 

(charging and discharging) were performed in order 

to investigate an actual state of batteries. As a result 

we obtained a voltage, temperature and resistance 

characteristics, which were used to calculate the 

ageing factors for development of simulation model. 

Moreover, the results would help to verify the gen-

eral correctness of implemented program and find 

parameters for its further improvements.  

 

3.2.1. Measurement circuit 

 

The scheme of measurement circuit is presented 

in fig. 2. In order to provide stable and constant 

temperature of surrounding we applied an environ-

mental chamber. Due to the different nature of the 

expected temperature fluctuation (the changing tem-

perature of cell as well as the temperature of envi-

ronment) we applied 2 thermocouples sensors. Ap-

plied measurement devices provided appropriate 

high frequency data acquisition, what improved 

correctness of measured magnitudes.  

 

 
 

 

1. Computer with battery-testing program in LabView 

2. Measurement card cDAQ battery from National Instruments with    

    additional modules 

3. Programmable electronic load from Array 3710A 

4. Digital switching mode regulated power supply Manson SPD2210 

 

Fig. 2. A measurement circuit – scheme 

 

3.2.2. Measurement algorithm  

 

The measurements were performed on a single 

cell, at the constant temperature conditions (23°C). 

First, each lithium-ion battery was treated by nomi-

nal magnitudes of voltage and current, provided by 

cells manufacturer to improve propriety of per-

formed model. Each run included a charging of cell 

by constant current (CC) – constant voltage (CV) 

approach and discharging with a 1C rate by constant 

value, with a 1C rate, down to the cut-off value. 

During charging state, the cell was powered by a 

constant value of current, until it achieved a charge 

voltage equals 4.2 V. Then the current fell, while the 

voltage was maintained at the same value (4.2V). 

The cell was fully-charged when cut-off current fell 

under determined value. The details of charging and 

discharging dependencies are presented in tab. 2.  

 
Tab. 2. Charging and discharging details 

 

Charge Voltage  4.2 V 

Charge Current  2.15 A 

Cut-off current 0.1 A 

Discharge Current 2.15 A 

Cut-off voltage 2.5 V  (0% SoC) 

Environment temperature 23oC 
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Since, the process of lithium-ion batteries testing 

is time-consuming, the progress in measurements for 

1C rate was strictly determined by imposed condi-

tions. In order to accelerate the process of cycling, 

we applied discharging with 2C rate in the same 

temperature of 23°C. The comparison between cy-

cles with 1C and 2C rate of discharging is presented 

in fig. 3. At the end, the program of battery cycling 

was closed in the loop and repeated as many times 

as it was possible (approx. 1500 cycles).   

 

3.2.3. Results 

 

All acquired data were saved, resampled and fil-

tered, in order to calculate an average cycle parame-

ters. Based on that, we performed an average cycle 

for which we obtained all needed characteristics.  

The most valuable results come from current 

characteristic of average cycle. Based on discharging 

stage in cycle of lithium-ion battery, it is possible to 

calculate the noticeable magnitude of battery output, 

which has great impact on cell performance. This 

parameter is called the capacitance and may be cal-

culated from current line by reading further samples 

and adding them together. In addition, the response 

of tested cell on determined environment conditions 

and charge/discharge approach, gave us the voltage 

characteristic. Based on the drop of voltage we were 

able to calculate the internal cell resistance, which 

directly describes the energy wasted in form of heat 

generated and emitting during process. The depend-

ency between determined current and battery re-

sponse during one absolute cycle is presented below. 

The measurements on the single cell also caused its 

temperature changes, what may be observed in fig. 

4. During discharging the temperature was rising 

rapidly and the emitted heat reached the peak (ap-

prox. 42oC) when the voltage achieved cut-off value 

(0% SoC). A measured voltage equal to 2.5 V trig-

gered a 120 seconds of stabilization step and after 

which the charging stage is coming. Thus, an initial 

magnitude of voltage, measured after stabilization, is 

equal to 3.2 V. 

 

 
 

Fig. 3. Voltage characteristic for 1C charge 

and 2 C discharge 

 

The battery temperature have not hesitate so rap-

idly as the voltage, and it was estimated on 40°C. 

Then, the temperature fell down, despite the fact of 

applying a constant current (when charging with 

high power). The temperature was established when 

the constant voltage stage came and the current 

started to fall. This, according to Joule Law, was  the 

reason of lower heat emittance. Based on tempera-

ture changes it is easy to predict a value of an energy 

wasted (emitted as a heat) during cycle. The simi-

larity of temperature characteristics for several dif-

ferent runs (fig. 4), clearly shows that conditions of 

the battery performance were approximately the 

same. Moreover, if the cell demonstrates comparable 

response for each cycle, it may be considered as a 

validation of this factor for other defined conditions.  

 

 
 

Fig. 4. Battery temperature characteristics 

 

Based on the simulations of the battery lifetime, 

assuming 1C-rate charge and 2C-rate discharge, the 

degradation factor was calculated in common of 

capacitance fall (assuming starting point as a 100% 

SoC). For the first few hundred cycles, the drop in 

degradation factor seemed to be unnoticeable, thus 

the value of SoH parameter was close to a 100%. A 

5% fall of SoH value was noted around 1000th cycle. 

After that, the rate of SoH drop was accelerated, 

reaching a 80% of SoH about 1500th cycle. Howev-

er, due to the smooth character of the curve present-

ed in fig. 5, there was no specific number of cycles 

which might be considered as a breakthrough in SoH 

decrease. 
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Fig. 5. Decreasing trend of SoH, as a 

response to LIB capacity fall 

 

An internal resistance directly defines the effi-

ciency of a single cell, which internal parameter 

allows for current flow. The fact is also, that a lower 

internal resistance results in a higher applicable C-

rate of battery discharge, which has a great impact 

on LIB efficiency. Figures 6 presents a voltage char-

acteristics of pulse discharge, with a 1C and 2C rate 

respectively. Test runs of pulse discharge (from 

100% - 0% SoC) were performed in room tempera-

ture (23oC) with load time equals 180s and stabiliza-

tion time about 21 minutes. Following this scheme, a 

discharging could be performed exactly with 20 

pulses (for 1C rate) and 10 pulses (for 2C rate). 
 

 
 

Fig. 6. Voltage characteristic during pulse 

discharge by 1C/2C rate 
 

 

It is worth to mention, that temporary increases 

in voltage, observed in fig. 6, are resulting only from 

stabilization of the cell. The speed of voltage in-

creases, occurring after load stages, directly defines 

both: the resistance and parameters of equivalent 

circuit model (ECM). Moreover, the speed of stabi-

lization characterizes individually each type of cell 

and precisely defines its performance, understood as 

its capability to return to initial conditions. 

 

 
 

Fig. 7. Resistance characteristic during 

pulse discharge by 1C/2C rate 

 

The pulse discharge approach allows to deter-

mine some parameters for a single cell. For example, 

based on the ratio of the first voltage value before 

loading to the last value during pulse discharge, it is 

possible to calculate an internal resistance during 

this short period of time. A resistance characteristics, 

corresponding with voltage characteristics from fig. 

6, are presented in fig. 7. The comparison between 

resistance characteristics  (fig. 7) shows that higher 

current causes an earlier rise of resistance. In the end 

(10% SoC) of both, 1C and 2C rate cases, a re-

sistance rapidly increases, what also causes a higher 

voltage drop and the temperature rise. Therefore,  

discharging battery down to 0% of SoC is unprofita-

ble – it generates unwanted heat and also accelerates 

an ageing.  

 

4. A LITHIUM-ION BATTERY MODELLING 

 

The major problem with existing battery models 

is, due to imposed simplifications, they do not pro-

vide a prediction of battery cycle life. On the other 

hand, a battery cycle life has strongly nonlinear 

dependency with the depth of discharge (DOD) 

parameter, which may be easily determined by em-

pirical battery testing [2]. Because in already report-

ed models, there is no leading nonlinear mechanism 

for this damage parameter (as a function of DOD), 

the resulting loss of capacity is assumed as a linear 

function of charge throughput.  

In order to prepare an accurate prediction of bat-

tery degradation, it is desired to apply electrochemi-

cal models. In our studies, electrochemical nonline-

arities has been recognized as a set of functions, 

depending on the battery usage profile. The parame-

ters value for ageing function were taken from a 

preliminary measurements (section 3) performed in 

a various conditions as well as from the studies re-

ported in [28]. Referring to model reported in paper 

[17], we combined two aspects of Li-Ion cell model-

ling and simulation – battery ageing and the predic-

tion of  battery behavior in working system. The 

former aspect was considered through  
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a electrochemical model, the latter through an equiv-

alent circuit model (ECM). A possible inputs and 

outputs for our model are summarized in a table 3. 

 
Tab. 3. Possible inputs and output of applied model 

 

 

4.1. An ECM-based model  

 

A program, developed in MATLAB® environ-

ment, was capable to estimate SoC and SoH while 

reading in the real-time discharge and charge battery 

parameters and use test battery profile simulation as 

well. Data could be provided from the preliminary 

measurements (section 3) or from already reported 

practical applications. The damage parameters were 

applied to the empirical equivalent circuit model 

(ECM) structure based on approach developed by 

Huira et. al [3]. Ageing parameters were derived 

from review article, available in [28], and then fine-

tuned to suit measured data from multiple cycles.  

Thermal model [26] was used to model the bat-

tery temperature. The cooling of the cell was as-

sumed through the convection and the heating came 

from internal resistance. Created model of a single 

cell was multiplied and connected in order to 

achieve a battery pack characteristic. Figure 8 pre-

sents a general structure of developed MATLAB 

Battery Model. 

 

 
 

Fig. 8. Scheme of implemented battery 

model 

 

Simulation model for estimation of SoC of a lithi-

um-ion cell was implemented in MATLAB as a 

Simulink ECM block diagram. A scheme of applied 

equivalent circuit model with two RC branches is 

presented in fig. 9. ECM was combined with ageing 

module, which during battery lifetime, was able to 

adjust model parameters (R1, R2, R3, C1, C2). The 

initial values of ECM elements were based on model 

developed by Huira et al. [3] and during simulation 

were constantly altered. The parameters fine-tuning 

used an estimation procedure  ([3], [29]), which 

allowed to simulate load dependencies of ECM 

components (implemented as lookup tables) on 

battery SoC and on battery voltage. Using this ap-

proach, we were able to include a needed compensa-

tion, resulting from an adverse changes in battery 

capacity. 

 

 
Fig. 9. Equivalent circuit model (ECM) 

diagram 

 

4.2. Model validation - simulation results 

 

A validation of the ECM model and degradation 

prediction algorithm, was performed by the mean of 

series of simulations. The general information flow 

during validation is presented in fig. 10. 

 

 
Fig. 10. The sequence of simulation 

 

In order to check and adjust model parameters, 

each simulation was performed with a conjunction 

with an appropriate experimental test. The proper 

model adjustment was necessary to prepare satisfy-

ing characteristics of charge/discharge before simu-

lation of battery degradation.  

To validate the parameters of ECM, we run a set 

of simulations of discharge employing different load 

values. The results are shown in figure 11. We also 

performed a simulations of discharge for various 

temperatures, in order to provide a data for heat 

transfer and voltage/capacity temperature influence 

validation. A discharge voltage characteristics for 

three different environment temperatures are pre-

sented in fig. 12. In both case, all obtained results 

stay in agreement with discharge load/temperature 

characteristic data from battery datasheet. Therefore 

we concluded, that our model correctly reproduces 

the behavior of real battery cell and might be used 

for future comparison with experimental data.  
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Fig. 11. Load dependency on  

    LIB discharge curves 

 

 

 
 

Fig. 12. Temperature dependency on  

          LIB discharge curves 

 

Due to the ECM validity, we were able to initiate 

the state of health (SoH) estimation algorithm. The 

results of multiple simulations were prepared for 

further comparison with the long-run experimental 

tests on real LIBs. In case of detection of any differ-

ence in future, the changes will be thoroughly exam-

ined and the code for LIB ageing will be improved.  

 

5. STATE OF HEALTH MONITORING 

(SOH) 
 

The idea of assessment of SoH is based on model 

-assisted approach to diagnostics [30]. According 

this idea, the simulation results are compared with 

experimental results at each cycle of battery charg-

ing/discharging, and the correlation between model 

and experiments is tested. If the correlation is rela-

tively small, the model is updated at each cycle. 

Updated model is used for further prediction of 

remaining battery life. Additionally, the difference 

between experiments and simulations may be ana-

lyzed and thus help with SoH assessment.  

As long as the current SoH of the Lithium-Ion bat-

tery can be estimated with methods based only on 

present data, the accurate lifetime estimation relay 

on the precision of the ageing model. The main 

factors, like  operation temperature, depth of dis-

charge (DoD) or current rate [31] which influence 

battery ageing (and cause a fade of capacity), should 

therefore be deeply discussed and included into a 

battery model. 

 

 

 
 

Fig. 13. A block diagram for SoH 

estimation algorithm 

 

5.1. SoH estimation – algorithm 

 

SoH parameters estimation is a subsystem, using 

ageing function able to estimate a number of full 

cycles (in 20°C) which left, until the battery reaches 

assumed level of original capacity (usually 80%). 

Our SoH simulation model includes so-called cycle 

equivalent counter (Coulomb counting) which al-

lows to consider one battery cycle as a sum of con-

secutive partial discharges, performed until the loss 

of total charge (Q) is equal to the battery capacity 

(fig. 13). When this condition is satisfied, the equiv-

alent cycle number increases and mean values of 

discharge current, as well as a mean temperature 

during equivalent cycle, is calculated. The results are 

then compared with battery look-up tables and also 

with ageing parameters based on experimental 

measurements. Therefore, after each full cycle, the 

SoH (number of left cycles) may be estimated and 

provided together with the correction of ECM pa-

rameters. A block diagram, for SoH estimation algo-

rithm described above, is presented in fig. 14 

 

5.2. SoH estimation – results    

 

The results of SoH estimation provide a number 

of left full cycles, determined after each full 

discharge. A minimum SoC and temperature range, 

occurring during each iteration, is used to compute 

ageing and capacity loss. Simulation model uses a 

look-up tables to store ageing factors, as well as a 

function derived from experimental measurements, 
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for calculation of SoH changes. In order to provide a 

practical guidance for a LIBs users, we also create a 

spatial graph of usable energy. A 3D surface, 

presented in fig. 14, shows conjugated temperature 

and DoD dependence on total useful battery 

capacity.  

According to our experimental measurements, 

the best working condition for tested LIB cell are:  

the temperature range between 25 – 40°C and 

minimum value of SoC between 30 – 60%.  

 

 
 

 

Fig. 14. DoD and temperature dependence 

on total useful capacity of LIB 

 

An influence of current load dependency on age-

ing is assumed as a linear function, defined on the 

1C and 2C–rate measurements (section 3), where 1C 

charge/discharge run was taken as a reference point. 

Constructed function (fig. 15) was added to the SoH 

estimation function. For future purposes, more accu-

rate and representative function, should be based on 

the wider range of current load dependencies.  

 

 
 

Fig. 15. Linear function of load 

dependence on LIB ageing 

 

 

6. CONCLUSIONS 

 

The health monitoring is constantly evolving 

branch of modern engineering. Today, there is 

plenty of research, using health monitoring 

approach, in order to develop the real time 

assessment of state of vary objects – starting from 

small mechanical components (i.e. bearings), ending 

with large scales constructions (such as bridges or 

buildings). The health monitoring may also be 

applied to estimate the state of single energy devices 

(batteries) or even entire power management system. 

In our study, we applied the state of health 

monitoring, to develop a method for prediction of a 

lifetime for lithium-ion battery (LIB). For this 

purpose, we developed a computational model of 

LIB, based on the 2RC branch of equivalent circuit 

model (ECM). The ECM model was extended with 

thermal influence module and ageing function, 

including adverse effects of LIB degradation. The 

definition of ageing function was supported by 

experimental measurements, providing all needed 

parameters and characteristics. However, such of 

determination of ageing influence, may be not 

satisfied the needed accuracy for results of 

simulation, and thus may mislead the validation. 

Therefore, the accuracy resulting from our model, 

may vary, when input parameters are going beyond a 

standard usage range. It also remains an open 

research question: how properly define a LIB model 

including all internal (material, structural etc.) and 

external (temperature, input/output parameters) 

influences, with required level of accuracy? 

Nevertheless, we believe that our model, as a 

conjugation of existing models with preliminary 

measurements, is able to give a fuller description of 

LIB performance and form a solid ground for future 

development of more comprehensive state of health 

monitoring solutions.   
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