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Abstract

This study develops an intelligent method for diagnosing and predicting disc cutter deflection wear faults during
rock excavation processes. The proposed method integrates wavelet time-frequency graph encoding with an
Inception-Bidirectional Gated Recurrent Unit (Bi-GRU) model through big data analysis techniques. The approach
utilizes large-scale vibration signal data to effectively extract time-frequency characteristics of non-stationary
signals through wavelet time-frequency graphs, enhancing the model's fault identification capability under complex
working conditions. The one-dimensional vibration signal is mapped into a two-dimensional time-frequency graph
and input into the Inception-BiGRU model. The spatial features are extracted by using the multi-scale convolution
of the Inception module. Meanwhile, the dynamic evolution law is captured by combining the Bi-GRU bidirectional
time series modeling to achieve the deep integration of spatial-temporal features. The Inception-BiGRU model
demonstrates excellent robustness in multi-condition tests, maintaining a diagnostic accuracy consistently exceeding
98% and reaching a maximum of 99.35%. In multi-class fault identification, the accuracy for normal and severely
deflected cutters reaches 99%. Meanwhile, minor misjudgments occur in cases of mild and moderate deflection,
with overall identification precision exceeding 97%. A comparative evaluation against various encoding methods
and traditional algorithms demonstrates that the Inception-BiGRU model outperforms baseline models in both
accuracy and stability, achieving an average accuracy of 98.63% with a variance of only 0.03. The proposed model
improves average accuracy by 1.84% and reduces variance by 50% compared to baseline models. The research
results verify the effectiveness and engineering application potential of the proposed method in diagnosing and
predicting disc cutter faults. This study provides technical support for advancing the intelligent operation and
maintenance of milling machines while offering a feasible path for future multimodal sensor fusion and early fault

warning.
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1. INTRODUCTION

The milling machine serves as a critical piece of
equipment in modern tunnel and underground
engineering, with its rock-breaking efficiency being
closely related to the health condition of disc cutter
components. As the core element directly contacting
rock masses and performing cutting tasks, the wear
state of disc cutters significantly affects construction
progress, equipment stability, and maintenance costs
[1-3]. Under long-term complex working conditions,
disc cutters often experience various forms of wear,
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including edge wear, local spalling, and skew wear. In
particular, skew wear tends to lead to concentrated
stress on the cutter ring, deviation of cutting
trajectories, and additional vibration and impact loads.
This form of wear results from axial misalignment
caused by uneven force distribution on the cutter
handle or cutterhead. This makes it one of the most
significant ~wear types affecting equipment
performance. Skew wear is characterized by strong
concealment, rapid development, and wide-ranging
impacts. In its early stage, fault features are often
difficult to identify through manual observation. As
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skew wear further intensifies, it significantly reduces
rock-breaking efficiency; it also causes fatigue of
structural components, increased unstable vibration of
the cutterhead, and even serious equipment accidents
such as abnormal detachment of disc cutters.
Additionally, unplanned downtime caused by skew
wear directly leads to construction delays and
economic losses, seriously affecting project progress
and construction safety. Therefore, intelligent
diagnosis and prediction technologies for disc cutters'
skew wear hold significant engineering importance for
enhancing the reliability and intelligence level of
large-scale tunneling equipment. Traditional fault
identification methods based on manual experience or
simple threshold judgments fail to accurately reflect
the disc cutters' actual working conditions, exhibiting
problems such as time lag and high misjudgment rates
[4-6]. Consequently, conducting intelligent fault
diagnosis and prediction research focusing on
abnormal wear behavior of disc cutters of milling
machines during rock-breaking processes has become
a crucial approach for enhancing construction
intelligence and ensuring operational safety.

With the widespread application of high-frequency
vibration sensors and multi-channel data collection
systems, vibration signals during rock-breaking
processes of milling machines can be monitored in real
time with high temporal resolution. Thus, it forms
large-scale time-series data characterized by non-
stationarity, multiple working conditions, and high
levels of background noise. Since skew wear changes
the contact state and load transfer path of the
cutterhead-rock mass system, it correspondingly
presents typical dynamic features in vibration signals;
these features include energy band transfer, enhanced
transient impact, and changes in low-frequency
characteristics. However, traditional signal processing
methods such as wavelet packet decomposition have
limited descriptive capabilities when dealing with
highly non-stationary signals; this makes it difficult to
fully reflect the time-frequency evolution laws of skew
wear [7, 8]. Deep learning methods such as the
artificial neural network (ANN), convolutional neural
network (CNN), and recurrent neural network (RNN)
have shown remarkable advantages in time-series data
modeling and image identification, providing technical
support for disc cutter fault diagnosis [9, 10]. In disc
cutter fault diagnosis, integrating time-frequency
feature extraction capability with time-series modeling
capability has become an important direction for
improving diagnosis accuracy.

Existing disc cutter fault diagnosis methods have
improved recognition efficiency to a certain extent.
However, they still generally have three limitations. 1.
Most methods rely on manually constructed time-
domain (TD) or frequency-domain (FD) features,
which fail to fully characterize the non-stationarity,

transient impact, and multi-scale dynamic changes
caused by skew wear. 2. Some deep learning models
lack adaptability to signal distribution differences
under diverse working conditions, leading to
significant performance degradation under actual
conditions such as variable loads and variable speeds.
3. When CNN or RNN is used alone, either they cannot
effectively capture time-frequency multi-scale
structural features, or they face problems such as
gradient decay and high computational cost in long-
sequence modeling. To address the above
shortcomings, this study proposes a model based on
Continuous Wavelet Transform (CWT) and Inception-
Bidirectional Gated Recurrent Unit (Bi-GRU). It aims
to achieve systematic improvements in feature
expression capability, working condition adaptability,
and model efficiency. (1) CWT is used to construct
two-dimensional (2D) time-frequency  graphs,
overcoming the insufficient description of non-
stationary signals by traditional features and realizing
fine-grained expression of skew wear features. (2) The
Inception structure with multi-scale convolution is
introduced; this enables the model to extract complex
weak features from different receptive fields and
breaks through the limitation of insufficient
recognition capability of traditional single-scale
networks. (3) Bi-GRU with higher computational
efficiency is adopted to realize time-series dependency
modeling while reducing computational overhead,
improving the feasibility of on-site engineering
deployment of the model. Through the above
improvements, this study enhances the recognizability
and state discrimination ability of skew wear of disc
cutters in milling machines. It also provides a
promotable technical path for intelligent monitoring of
large-scale construction equipment under complex
working conditions.

2. RELATED WORK

With the continuous development of mechanical
equipment fault diagnosis technologies, researchers
have made significant progress in improving fault
identification accuracy and system robustness. Chen et
al. developed an enhanced transfer learning method for
mechanical fault diagnosis by incorporating a dynamic
softmax function with an angular margin penalty to
adjust the model's feature representation capability.
They incorporated trend block learning to capture
trend characteristics in vibration signals, thereby
improving the diagnostic network's robustness and
feature richness for target data [11]. This method
provided theoretical references for enhancing feature
representation and robustness in this study. Sahu et al.
systematically reviewed 190 studies over the past two
decades. They categorized data-driven diagnostic
methods into supervised, semi-supervised, and



DIAGNOSTYKA, Vol. 27, No. 1 (2026) 3
Wang K, Duan J, Sun Q, Han L, Tang J, Li J. Intelligent diagnosis and fault prediction of rock breaking ...

unsupervised learning approaches while thoroughly
analyzing their respective advantages and applicable
scenarios [12]. Their work offered systematic guidance
for establishing the supervised learning framework in
this study. Kibrete et al. conducted a comprehensive
analysis of multi-sensor data fusion technology in
rotating machinery fault diagnosis. Their research
presented fundamental concepts and conducted in-
depth application analyses, offering valuable resources
for researchers, practitioners, and policymakers to
advance intelligent fault diagnosis technology [13].
Their multi-source information integration concept
inspired methodological considerations for complex
signal feature extraction.

In the field of deep learning-driven fault diagnosis
and prediction research, Wang et al. integrated deep
transfer learning with digital twin technology. Their
work achieved significant improvements in both
clarity and authenticity of magnetic resonance imaging
[14]. This concept indirectly validated the adaptation
capability of deep models to complex feature
structures and provided methodological support for the
design of deep networks and image encoding in this
study. He et al. proposed a cross-domain framework
for motor-level compound fault diagnosis that required
no target domain information, employing a time-
frequency self-contrastive learning strategy to enhance
domain-invariant feature extraction. Their approach
generated  homogeneous  and  heterogencous
information from time and frequency domains as self-
contrastive pairs. Subsequently, the data is integrated
through multi-scale spatial convolutional structures
and cross-time-frequency information interaction
strategies [15]. Thus, their research offered valuable
references for multi-scale feature fusion and time-
frequency information interaction in this study.
Mahesh et al. constructed an optimized 1D CNN
utilizing varying kernel sizes. By automatically
learning the relevant features from raw sensor data,
complex patterns could be captured without manual
feature engineering, enabling effective prediction and
identification of bearing problems [16]. Their research
provided technical insights for reducing manual
intervention and improving automatic feature
extraction capability in this study.

Existing studies still have limitations in time-
frequency feature extraction of vibration signals,
model adaptability under multiple working conditions,
and the design of deep network structure. On one hand,
most methods are insufficiently sensitive to fine-
grained changes in non-stationary signals, making it
difficult to extract complex fault features such as disc
cutter deflection wear. On the other hand, some models
exhibit poor adaptability to working condition changes
and insufficient generalization ability. Concurrently,
most studies rely on single encoding methods or ignore
time-series dependency information. This study

constructs a diagnostic model by fusing CWT time-
frequency graphs with an Inception-BiGRU deep
architecture. It also combines parallel convolution for
multi-scale feature extraction and bidirectional gated
recurrence for time-series dependency modeling. This
approach significantly enhances the accuracy and
robustness of disc cutter deflection wear fault
identification, expanding the application boundaries of
deep learning in intelligent diagnosis of complex
mechanical equipment.

3. DIAGNOSTIC AND PREDICTIVE MODEL
OF DISC CUTTER DEFLECTION WEAR
FAULTS IN MILLING MACHINES

3.1 Fault diagnosis and prediction model based on
Inception-BiGRU

(1) Inception network structure

To effectively extract time-frequency features
from vibration signals, this study first employs CWT
to convert 1D disc cutter vibration signals into 2D
wavelet time-frequency graphs. This method
preserves the TD and FD information of non-
stationary signals within a unified representation
space. Compared with traditional time-series analysis
methods such as the Fourier transform (FT) or
autoregressive models, CWT time-frequency graphs
can simultaneously present the transient impact
characteristics and long-term trend changes of
signals. They are suitable for non-stationary vibration
signals of disc cutter skew wear faults under complex
working conditions. Through a visualized 2D time-
frequency representation, the model can directly
capture the dynamic energy distribution of vibration
signals across different frequency bands, thus
improving the distinguishability of fault categories
and early recognition capability. Since the
transformed data essentially takes the form of images
with clear spatial structural features, using CNN as the
primary feature extraction tool offers significant
advantages. The CNN is a feedforward neural
network structure widely applied in deep learning; it
is characterized by local connectivity, weight sharing,
and spatial dimensionality reduction, making it
particularly suitable for feature extraction tasks on
image-like data [17]. The convolutional layer
performs sliding operations with convolutional
kernels over input feature maps to extract spatial
features from local regions. The activation layer
introduces nonlinear representation capabilities to
improve the network's ability to fit complex patterns.
Common activation functions (e.g., Sigmoid and
Tanh) suffer from gradient vanishing as their
derivatives approach zero for large input absolute
values [18]. This study employs ReLU as an
activation function, which features a constant gradient
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in the positive region, alleviating the gradient
vanishing issue and improving training stability for
deep networks [19]. The joint operation of the
convolutional and activation layers can be expressed
as:

L - l l
1 = f G, ki + ) (1)
represents the jth output feature map of the /th
-

i

®
%j
layer; x Y refers to the ith input feature map of the
previous layer; kl.(]l.) is the corresponding convolution

kernel; bj(l) stands for the bias term; f(*) denotes the

activation function.

The pooling layer is employed to downsample the
convoluted feature map to decrease the
dimensionality, reduce the computational effort, and
suppress the risk of overfitting [19]. Maximum
pooling is the most widely used pooling method,
which is calculated as follows:

pi; = max{a;,|jW <n < jW + w} (2)
p;,;j refers to the output of the jth pooling unit in the
ith feature map; a;, denotes the input element in the
pooling window; w is the width of the pooling
window; W represents the pooling step.

In CNN, increasing network depth and width can
remarkably improve model expressiveness, but it also
brings the risk of parameter explosion and overfitting.
The Inception network structure introduces a parallel
mechanism of multi-scale convolutional kernels
without significantly increasing computational
complexity, enhancing the model's adaptability to
features of different sizes [20-22]. A typical Inception
module integrates 1x1, 3x3, and 5x5 convolution
operations as well as 3x3 max-pooling operations.
Each branch processes the same input in parallel and
fuses features in the channel dimension, achieving the
unity of width expansion and feature diversity. Figure
1 shows the structural diagram of a typical Inception
module. Among them, parallel paths jointly construct
a multi-scale feature learning framework, providing
high-quality feature inputs for subsequent sequence

modeling.
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Fig. 1. Inception network structure

The Inception network in Figure 1 draws
inspiration from the Network in Network (NIN)
architecture, using 1x1  convolutions  for
dimensionality reduction in the depth direction. This
approach reduces the number of parameters and
introduces additional nonlinear transformation
capabilities, enhancing the network's representational
efficiency. The Inception module can simultaneously
extract local details and global contextual features.
Thus, it can demonstrate high robustness and
identification ability when processing complex
nonlinear time-frequency patterns such as disc cutter
deflection wear faults.

(2) Bi-GRU

The time-frequency graphs generated by wavelet
transforms contain rich image structural information
in the spatial dimension while preserving the dynamic
evolution laws of signals in the temporal dimension.
For such 2D representational structures with temporal
dependency, relying solely on CNN for spatial feature
extraction is insufficient to capture the evolutionary
patterns in the temporal dimension. The gated
recurrent unit (GRU), an improved RNN structure, is
characterized by fewer parameters, high training
efficiency, and suitability for time-series modeling. It
exhibits stronger stability in modeling long-term
dependencies and effectively mitigates the gradient
vanishing problem [23]. The bidirectional GRU (Bi-
GRU) further expands information acquisition paths
by encoding sequences through parallel forward and
backward GRU networks. Thus, Bi-GRU extracts
global temporal features from both past and future
directions to enhance the model's representational
capability and prediction performance [24].

In GRU, the hidden state update at each moment is
controlled by two gate structures: the update and reset
gates. The update gate regulates the proportion of
information fusion between the current and previous
states. In contrast, the reset gate determines the degree
of reliance on the current input in relation to the
previous state. The calculation for the update gate is
as follows:

Zy = O-(vazxt + bxz + thht—l + bhz) (3)

The calculation for the reset gate is:

1 = 0(WypXe + by + Wirhy_1 + byy) 4)

The candidate hidden state is calculated as
follows:
hy = tanh(Wynx; + byn + 17:°(Whnhe—q + bpp)) (5)

The equation for updating the final hidden state is:

he = (1 = z,)°h, + 2,°h,_y (6)
x; represents the input vector at moment #; h;,_
indicates the hidden state of the previous moment, and
the initial state is set to an all-zero vector; o (*) stands
for the Sigmoid activation function; tanh(*) refers to
the hyperbolic tangent activation function; W and b
are the weight matrices and bias terms corresponding
to each gate. © denotes the Hadamard product.
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The Bi-GRU structure comprises two GRUES,
which independently process the input data in the
forward and reverse directions of the time series.
Hidden state sequences in the two directions are
obtained, which are denoted as ﬁt and Et. Finally, a
comprehensive output representation is generated by
concatenation:

Hy = [he; he] (7

The bidirectional structure can integrate the
context information before and after the current

moment. Moreover, it has a stronger ability to capture
the complex temporal dynamic characteristics of the
disc cutter vibration signal under abnormal wear and
tear. Figure 2 illustrates the network structure of the
Bi-GRU model.

Input
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Fig. 2. The Bi-GRU structure

The output of the Bi-GRU model in Figure 2
provides multi-dimensional  temporal feature
representations for each time instant, offering
sufficient temporal dependency support for
subsequent fault identification. This effectively
enhances the model's capability to capture the time-
series characteristics of disc cutter vibration signals,
improving the accuracy and robustness of fault
diagnosis.

(3) The Inception-BiGRU fault diagnosis and
prediction model

During the rock-breaking process of disc cutters,
vibration signals exhibit complex non-stationary
characteristics, whose time-frequency features are
influenced by both multi-scale spatial variations and
temporal dependencies. While the CNN is suitable for
extracting local spatial structure information, it
struggles to model long-term dependencies in time
series. To comprehensively extract the discriminative
information of disc cutter deflection wear faults from
vibration time-frequency graphs, this study proposes

a fault diagnosis and prediction model fusing the
Inception module with Bi-GRU. The overall
architecture is plotted in Figure 3. The model fully
integrates the spatial feature extraction capability of
Inception with the temporal modeling capability of
Bi-GRU to achieve joint learning of spatial and
temporal information.

ik g L e ., &

Input Convolutional Layer Pooling Layer Inception module

* ]
=
Output €—— -0 T

Fully Connected Layer

Bi-GRU

Fig. 3. Schematic diagram of the structure of the Inception-
BiGRU model

The input to the Inception-BiGRU model in
Figure 3 is a 2D time-frequency graph processed by
CWT. The input first enters the convolutional layer to
extract basic spatial features, including underlying
textures and edges, combined with a max-pooling
layer to perform down-sampling on local regions.
This helps reduce feature dimensions and suppress
local noise disturbances. The Inception module is then
introduced; its internal parallel 1x1, 3x3, 5x5
convolution kernels and pooling branches allow the
model to capture multi-scale features at different
receptive fields. Thus, the model's ability is enhanced
to represent complex textures and irregular structures.
To reduce computational complexity, the Inception
module introduces 1x1 convolution in the channel
dimension for dimensionality reduction. This reduces
the number of parameters while maintaining multi-
scale feature extraction capability. The entire module
is designed to be lightweight, making it suitable for
deployment in resource-constrained milling machine
control systems. This structure improves the
collaborative perception of network width and depth,
further excavating the spatial hierarchical features in
time-frequency graphs. The high-dimensional feature
maps output by the Inception module are further
compressed and semantically enhanced through
convolution and pooling operations, then unfolded
into 1D vectors for input to the Bi-GRU module.

The Bi-GRU performs sequence modeling in both
forward and backward temporal directions, obtaining
sequence representations containing contextual
dependency information through the concatenation of
bidirectional hidden states. Compared with traditional
Long Short-Term Memory (LSTM) networks, Bi-
GRU has fewer parameters and higher computational
efficiency, while retaining the ability to model long-
sequence dependencies. This ensures diagnostic
accuracy while reducing inference time. To further
reduce the computational burden, the model performs
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down-sampling on the high-dimensional feature maps
output by the Inception module before inputting them
into Bi-GRU. This compresses the sequence length
and reduces feature dimensions while preserving key
discriminative information. Besides, this model uses
an end-to-end feature sharing strategy. The fault
diagnosis and fault prediction modules share the same
feature  representation,  avoiding  redundant
calculations and improving overall inference
efficiency. After the spatial and temporal feature
extraction is completed, two parallel fully connected
modules are introduced at the end of the model to
undertake the tasks of fault diagnosis and fault
prediction, respectively. Based on Softmax, the fault
diagnosis module outputs the current status category,

and the output is:
. _ exp(WiTx+bi)
P(y - l|X) - Zjexp(W]Tx+bj) (8)

x denotes the Bi-GRU output vector; W; and b; refer
to the parameter of the fully connected layer;
P(y = i]x) indicates the probability that the input
image belongs to category i. This module is
responsible for fault diagnosis and prediction.

The overall model is trained in an end-to-end
manner through joint optimization. The loss function
considers both classification loss and regression error
to ensure the simultaneous enhancement of diagnostic
and predictive performance. The spatial multi-scale
feature extraction capability of the Inception network,
the temporal dependency modeling capability of Bi-
GRU, and the strategies of feature map down-
sampling and end-to-end feature sharing are deeply
integrated. Thus, the Inception-BiGRU model can
accurately identify and predict abnormalities in the
early stage of disc cutter skew wear. It has good
engineering practicality and generalization ability,
while maintaining efficient operation in on-site
environments with limited computational resources.

3.2 Experimental materials and settings

A standardized rock-breaking test platform is
constructed under laboratory conditions for data
collection to improve the fault trend prediction
model's generalization ability and disc cutter
deflection wear state identification. Each disc cutter
undergoes five groups of rock-breaking tests with
controlled variables, where the penetration depth
increases by 0.5 mm sequentially. During each group
of experiments, vibration acceleration signals of the
disc cutter in three axial directions are synchronously
collected. It obtains original TD data covering four
working conditions: normal, mild, moderate, and
severe deflection wear. To handle potential sample
imbalance among different skew wear states, the
following strategies are adopted in the data
preprocessing and training phases. First, sliding
windows and overlapping sampling are used to

expand the number of samples for all categories. The
sampling step is set to 4096 points, and the length of
a single sample is 16384 points. Through this method,
3000 independent samples are constructed for each
disc cutter skew wear state. Second, weighted
processing is applied to the class imbalance problem
during model training. Slightly higher weights are
assigned to severe skew wear samples to ensure the
loss function fully considers the contribution of a
small number of samples during optimization, thereby
reducing classification bias. Additionally, data
augmentation techniques are employed to perform
random, slight horizontal translation (5% pixels),
small-scale scaling (scaling factor 0.9-1.1), and
random Gaussian noise injection (standard deviation
of 1% of the maximum image value) on time-
frequency graphs. This further enhances the diversity
of minority class samples and improves the model's
generalization ability for small sample sizes across
different working conditions.

After collecting raw vibration signals, denoising is
first performed. The wavelet threshold denoising
method is adopted to apply soft threshold processing
to high-frequency noise coefficients. This effectively
suppresses  sensor noise and environmental
interference while retaining transient impact
characteristics and low-frequency trend information
in disc cutter vibration signals. The denoised signals
are then subjected to sliding window overlapping
sampling to generate training samples, ensuring
sufficient and representative samples for each skew
wear state. To eliminate dimensional differences
between different channels and samples, all samples
are normalized before being input into the model.
After processing, CWT maps one-dimensional
vibration signals into 2D time-frequency graphs, fully
capturing the transient characteristics and frequency
evolution laws of the signals. CWT's time-frequency
transformation of the signal x(t) can be written as:

w(a,b) = \/% :: x(t)e (%) dt 9)
a refers to the scale factor, which controls the
frequency resolution; b denotes the translation factor,
which represents the offset on the time axis; ¢ (t) is
the selected wavelet basis function. The transform
exhibits adaptive scaling and multi-resolution
properties, making it well-suited for capturing
transient features in vibration signals. In CWT, the
Morlet wavelet basis function is selected. The range
of its center frequency and scale factor is adjusted
through experiments, and finally determined as a€[1,
64]. This range can cover the main frequency feature
bands of disc cutter vibration signals, ensuring that
both low-frequency impacts and high-frequency
transient information are fully expressed. By
adjusting different scale combinations, it is found that
the time-frequency graphs generated within this range
achieve the best performance in fault state
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distinguishability and model training convergence
speed. In a specific implementation, the 2D images
generated after wavelet transformation are unified to
a size of 60x60 pixels for constructing model inputs.
Samples of each deflection wear state are divided into
training and test sets at a ratio of 4:1, with 2400
samples for training and 600 samples for model
testing. During the training phase, the model performs
classification tasks and introduces a prediction
module for the disc cutter performance degradation
trend. This module outputs the amplitude response or
characteristic index change trends in several future
time windows through a regression approach,
enhancing the model's predictive capability.

The Inception-BiGRU model training is
developed wusing the PyTorch deep learning
framework. All experiments are completed in the
local environment. In terms of network structure
design, the model complexity is controlled to match
the data scale. The Inception module performs
dimensionality reduction through 1x1 convolution,
effectively reducing the number of parameters.
Meanwhile, Dropout layers are introduced after each
convolutional layer in the Inception module and
before the Bi-GRU layer, with a dropout rate of 0.5 to

prevent model overfitting. Parameters such as the
convolution kernel size, Inception module branches,
pooling stride, and number of convolutional layer
channels in the model network structure are optimized
through grid search and cross-validation. The
combination of convolution kernel sizes 1x1, 3x3,
and 5x5 is selected to balance local texture and global
structural feature extraction; the maximum pooling
stride and number of convolution output channels
achieve a balance between validation set accuracy and
training time, ensuring high precision while reducing
computational load. The Bi-GRU's number of hidden
units and layers is determined through multiple
rounds of experiments on the training and validation
sets; a single-layer Bi-GRU structure with 64 units is
finally adopted. Sensitivity analysis results comparing
different hidden units [32, 64, 128] and layers [1, 2,
3] show that the single-layer Bi-GRU with 64 units
achieves the optimal balance in accuracy, Fl-score,
and training efficiency; it avoids parameter
redundancy and overfitting risks caused by excessive
layers or overly large unit counts. Specific results are
exhibited in Table 1.

Table 1. Sensitivity analysis results of hidden units and layers of the Bi-GRU

Numbe:n(i)tfshldden Layers Average accuracy (%) F1 score Average training time/epoch (s)
32 1 0.965 0.956 18.5
32 2 0.968 0.958 29.2
32 3 0.970 0.960 41.0
64 1 0.986 0.985 22.1
64 2 0.987 0.986 345
64 3 0.987 0.986 483
128 1 0.987 0.986 37.8
128 2 0.988 0.987 55.4
128 3 0.988 0.987 74.1

Table 2. Experimental environment and parameter settings

Item/Parameter name

Configuration/Setting values

Operating system Windows 10
Programming language Python 3.8
Experimental platform Deep learning framework PyTorch 1.x
environment Central processing unit Intel Core i5-10400F
Memory 16 GB
Graphics processing unit NVIDIA GeForce GTX1650 4 GB
Sample length 16384 points
Overlap step size 4096 points
Image size 60x60
.. Batch size 32
Model training parameters Learning rate 57%107
Epoch 200
Loss function Cross-Entropy Loss
Optimizer Adam
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In the model training phase, two key strategies
actively prevent overfitting. (1) Early stopping: The
loss on the validation set is continuously monitored.
Training is terminated when the validation set loss
stops decreasing for 15 consecutive epochs, and the
model weights with the best performance on the
validation set are rolled back. This effectively
prevents the model from overlearning noise and
irrelevant details in the training set. (2) L2 weight
decay: An L2 regularization term is set in the Adam
optimizer with a weight decay coefficient of 1x107°.
It encourages the model to learn simpler and more
generalizable patterns by penalizing large weight
values of the model. Before training, all image data
undergoes unified normalization processing to ensure
consistent distribution across input channels and
eliminate training biases caused by dimensional
differences. The entire model simultaneously outputs
fault state classification results during the training
phase, adopting a joint loss optimization strategy to
enhance the model's multi-task learning capability.
Accuracy and F1 score are selected as the main
evaluation indicators for the model's diagnostic and
predictive performance. These indicators
comprehensively measure the classification model's
accuracy and robustness in identifying multi-category
disc cutter deflection wear states.

4. RESULTS AND ANALYSIS

4.1 Analysis of model fault diagnosis and
prediction results

Figure 4 illustrates the variations in accuracy and

loss function throughout the training and testing
phases of the Inception-BiGRU model.
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Fig. 4. The curve of the training process curve of the
Inception-BiGRU model

Figure 4 shows that the accuracy of the Inception-
BiGRU model steadily increases to approximately
99% during training, accompanied by a pronounced
reduction in the loss function, confirming the model's
strong fitting ability. The test set accuracy remains

stable at around 95% with minimal fluctuations,
indicating strong generalization ability. In the later
training stage, the loss further decreases, and the
accuracy stabilizes, without obvious overfitting. This
confirms the effectiveness and robustness of the
model structure in disc cutter vibration signal
identification tasks. High generalization performance
means the model can adapt to signal changes under
different stratum conditions, impact loads, and
vibration interference. It can provide a reliable
decision-making basis for the online monitoring
system of milling machines, thereby reducing
unplanned downtime and improving construction
efficiency.

To verify the model's diagnostic performance
under variable working conditions, test experiments
are conducted with different disc cutter speeds and
penetration depths, with diagnostic results indicated
in Figure 5.
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Fig. 5. Diagnosis results of different working conditions

In Figure 5, the Inception-BiGRU model
maintains an identification accuracy of over 98%
across various working conditions of diverse disc
cutter speeds and penetration depths. The model's
maximum value reaches 99.35%, demonstrating
stable performance. With the increase in penetration
depth, the accuracy slightly improves overall,
indicating that deep rock-breaking signals contain
more identifiable features. Different disc -cutter
speeds have little impact on the results. The model
shows good robustness to speed changes, strong
adaptability to complex working conditions, and
practical application potential. This indicates that the
model is not only applicable to laboratory conditions
but also competent for highly complex on-site
environments such as tunnel construction and
underground pipe gallery excavation. Particularly, its
ability to maintain high reliability under deep
penetration and high-load working conditions enables
it to identify the wear trend of disc cutters. This
capability is crucial when stratum conditions change
suddenly, or operation intensity increases, as it helps
avoid reduced rock-breaking efficiency or equipment
damage caused by aggravated wear.
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Fig. 6. Accuracy of the Inception-BiGRU model's fault
prediction confusion matrix

The model's identification capability in multi-
classification tasks is further evaluated by drawing a
fault prediction confusion matrix based on the test set,
as demonstrated in Figure 6.

Figure 6 shows that the proposed Inception-
BiGRU model achieves a prediction accuracy of 99%
for both normal and severely deflected wear disc
cutters. The proposed model has a minimal
probability of misjudgment, demonstrating extremely
high identification reliability. Partial confusion occurs
in mild and moderate deflection wear disc cutters,
with prediction accuracies of 97.7% and 97.2%,
respectively, indicating some feature overlap in the
feature space. However, the overall identification
accuracy remains above 97%, confirming the model's
good discrimination capability and engineering
practical applicability. Severe skew wear is usually
the main factor leading to disc cutter failure, abnormal
equipment vibration, and construction interruption.
The model's highly reliable identification of severe
skew wear can effectively support proactive
maintenance and tool replacement strategies, thereby
reducing economic losses caused by unplanned
downtime. Meanwhile, the model's ability to
distinguish between mild and moderate skew wear
means it can identify wear evolution trends. This
capability transforms maintenance from a passive
response to an active prediction, allowing it to serve
the equipment health management system.

4.2 Comparative analysis of diverse coding

methods

The wavelet time-frequency graph is compared
with commonly used image encoding methods in the
fault diagnosis. These methods include grayscale
images, Gramian Angular Difference Field (GADF),
Gramian Angular Summation Field (GASF), and
original vibration signals. The accuracy and F1 score
results are suggested in Figure 7.
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identification performance

Figure 7 reveals that by comparing different
encoding methods, the CWT image performs best in
fault diagnosis, with an accuracy of 0.986 and an F1
score of 0.985. Meanwhile, CWT represents
improvements of 3.46% and 3.96% compared to the
original signals, respectively, and substantially
outperforms other image encoding methods. The
grayscale image performs slightly worse with an F1
score of 0.937, while GADF and GASF exhibit
similar performance, both significantly lower than
CWT. This demonstrates that CWT can more
effectively extract the time-frequency features of non-
stationary vibration signals, facilitating accurate
discrimination of disc cutter deflection wear states.
Therefore, the CWT image encoding method shows
remarkable advantages in feature representation
capability and classification performance. This
finding illustrates that CWT is an optimal choice at
the signal analysis level; it also demonstrates the
potential to improve diagnostic stability and accuracy
in engineering applications. Since disc cutter
vibration signals are inherently strongly non-
stationary, wavelet time-frequency graphs can capture
transient impacts and wear features. This enables the
model to accurately identify different wear levels and
improve the reliability of on-site diagnosis. Therefore,
the CWT-encoded model is better suited for
integration into real-time monitoring systems,
contributing to  enhanced operational and
maintenance intelligence.

4.3 Comparative analysis of different algorithms
Common models such as Support Vector Machine
(SVM), DNN, CNN, Residual Network (ResNet),
CNN-BiGRU, and CNN-LSTM are selected for
performance comparison with the proposed
Inception-BiGRU model. All CNN hyperparameters
are consistent with those of the Inception-BiGRU
model. Each model undergoes ten identical training
and testing cycles to reduce the impact of random
errors, with the ten test results depicted in Figure 8.
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Table 3. Comparison of downtime and economic losses before and after applying the intelligent diagnostic method

. Average downtime Monthly failure Economic loss Total monthly
Condition o . X
per incident frequency per downtime economic loss
Without using predictive 6 hours 8 20,000 yuan 160,000 yuan
methods
Using predictive
methods 4 hours 8 13,300 yuan 106,400 yuan
720 engineering applications, a simulation case is
1007 " designed and calculated based on typical milling
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Fig. 8. The results of ten tests of different models

In Figure 8, the Inception-BiGRU model
demonstrates the best comprehensive performance,
with an average accuracy of 0.9863 and a variance
of only 0.03, indicating stable performance.
Compared with the best-performing CNN, the
average accuracy is improved by 1.84%, and the
variance is reduced by 50%. In contrast, SVM has
the lowest accuracy of 0.7742 with large
fluctuations (variance = 0.35). Although DNN,
CNN-LSTM, and CNN-BiGRU all achieve
accuracies above 0.96, their stability is slightly
poorer, with variances of 1.08, 0.39, and 0.67,
respectively. ResNet shows the most unstable
performance, with a variance of 1.78. In summary,
Inception-BiGRU outperforms other models in both
accuracy and robustness, making it the most suitable
for disc cutter fault diagnosis. Stable recognition
performance helps reduce false alarms and missed
detections, providing a more reliable basis for
predictive maintenance on engineering sites while
improving operational continuity and safety.

4.4 Practical application and economic benefit

analysis

Skew wear faults of milling machine cutterheads
often lead to equipment downtime in tunnel boring
and underground engineering, resulting in substantial
non-productive  time and directly increasing
construction costs and economic losses. Based on
engineering practice experience, each fault shutdown
delays the construction schedule while increasing
labor, material, and maintenance costs. To intuitively
evaluate the proposed method's economic value in

machine operating parameters and fault frequencies.
It is assumed that in a tunnel construction project, the
milling machine operates 8 hours per day and 20 days
per month. Without predictive intervention, the
cutterhead experiences mild to moderate skew wear
faults on average once every two weeks, with each
shutdown for maintenance taking approximately 6
hours. The direct economic loss caused by a single
shutdown (including labor, equipment idleness, and
construction delay costs) is about 20,000 yuan.

After applying the Inception-BiGRU intelligent
diagnosis method for real-time monitoring and
prediction, it is assumed that 80% of potential faults
can be identified in advance. This enables planned
maintenance and reduces the unplanned downtime per
fault from 6 hours to 4 hours. According to simulation
calculations, the comparison of monthly downtime
and economic losses is detailed in Table 3.

The simulation case shows that through early
diagnosis and planned maintenance, the monthly
economic loss can be reduced from 160,000 yuan to
approximately 106,400 yuan; it saves 53,600 yuan
(about 33.5% of the total loss without the method).
This analysis indicates that the Inception-BiGRU
intelligent diagnosis method has economic benefits
in practical engineering. It reduces unplanned
downtime while improving the equipment
utilization rate and construction efficiency of
milling machines. Meanwhile, this simulation result
provides a quantitative reference for the promotion
and application of the method in intelligent
operation and maintenance systems. This further
highlights its engineering value and practical
application potential.

5. CONCLUSION

This study focuses on the common fault of skew
wear in disc cutters in milling machines, which has
significant engineering implications for tunnel and
underground construction projects. It proposes an
Inception-BiGRU-based intelligent diagnosis and
prediction model. It systematically explores the
application potential of multi-scale time-frequency
features of vibration signals in identifying complex
wear states. Affected by complex loads, rock mass
inhomogeneity, and dynamic impact conditions, the
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fault characteristics of disc cutter skew wear are
characterized by strong concealment, complex
evolution patterns, and significant signal non-
stationarity. This study proposes encoding vibration
signals into 2D time-frequency graphs via CWT to
present the dynamic evolution process of skew
wear. It aims to address the problem that traditional
methods struggle to capture their time-frequency
variation laws. By combining the multi-scale
convolution structure of Inception with the temporal
dependency modeling capability of Bi-GRU, more
effective characterization of different wear degrees
is achieved. Multi-working condition tests reveal
that the model exhibits strong robustness to different
disc cutter speeds and penetration depths, with
diagnostic accuracy stably maintaining above 98%,
illustrating excellent adaptability. In the fault multi-
classification experiment, the model accurately
identifies normal and severe deflection wear states.
Concurrently, minor confusion exists between mild
and moderate deflection wear states, reflecting the
continuity and complexity of fault states in actual
working conditions. Comparisons with multiple
encoding methods suggest that wavelet time-
frequency graphs can more effectively capture the
time-frequency features of vibration signals,
markedly improving the model's diagnostic
performance. Multi-model comparisons validate the
advantages of Inception-BiGRU in terms of
accuracy and stability, demonstrating its strong
potential for application in disc cutter fault
diagnosis.

The Inception-BiGRU model, constructed based
on vibration signals in this study, exhibits high
accuracy and robustness in diagnosing and predicting
disc cutter skew wear. However, relying on a single
vibration data source still has certain limitations.
Vibration characteristics affect the wear and fault
development of disc cutters. They are also closely
related to multiple factors, including cutting force,
cutterhead temperature, equipment load, rock mass
hardness, and construction conditions. A single
vibration signal may fail to reflect the interaction
among these complex factors. Especially in the early
stages of minor or sudden faults, diagnostic features
may not be significant enough, thus affecting the
model's sensitivity and prediction accuracy.
Consequently, future work can consider multi-modal
fusion of vibration signals with data from other
sensors (such as force sensors and temperature
sensors) and equipment operating parameters.
Through collaborative modeling of multi-source
information, the model's ability to identify minor or
complex faults and its robustness can be further
improved. This extension helps comprehensively
characterize the dynamic evolution process of disc
cutter wear. Meanwhile, it provides a development

direction for constructing a more accurate and
intelligent fault diagnosis and prediction system for
milling machines.
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