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Abstract 

This study develops an intelligent method for diagnosing and predicting disc cutter deflection wear faults during 

rock excavation processes. The proposed method integrates wavelet time-frequency graph encoding with an 

Inception-Bidirectional Gated Recurrent Unit (Bi-GRU) model through big data analysis techniques. The approach 

utilizes large-scale vibration signal data to effectively extract time-frequency characteristics of non-stationary 

signals through wavelet time-frequency graphs, enhancing the model's fault identification capability under complex 

working conditions. The one-dimensional vibration signal is mapped into a two-dimensional time-frequency graph 

and input into the Inception-BiGRU model. The spatial features are extracted by using the multi-scale convolution 

of the Inception module. Meanwhile, the dynamic evolution law is captured by combining the Bi-GRU bidirectional 

time series modeling to achieve the deep integration of spatial-temporal features. The Inception-BiGRU model 

demonstrates excellent robustness in multi-condition tests, maintaining a diagnostic accuracy consistently exceeding 

98% and reaching a maximum of 99.35%. In multi-class fault identification, the accuracy for normal and severely 

deflected cutters reaches 99%. Meanwhile, minor misjudgments occur in cases of mild and moderate deflection, 

with overall identification precision exceeding 97%. A comparative evaluation against various encoding methods 

and traditional algorithms demonstrates that the Inception-BiGRU model outperforms baseline models in both 

accuracy and stability, achieving an average accuracy of 98.63% with a variance of only 0.03. The proposed model 

improves average accuracy by 1.84% and reduces variance by 50% compared to baseline models. The research 

results verify the effectiveness and engineering application potential of the proposed method in diagnosing and 

predicting disc cutter faults. This study provides technical support for advancing the intelligent operation and 

maintenance of milling machines while offering a feasible path for future multimodal sensor fusion and early fault 

warning. 

 

Keywords: milling machine; disc cutter deflection wear; fault diagnosis; inception; gated recurrent unit; wavelet time-frequency 

graph 

 

1. INTRODUCTION  

 

The milling machine serves as a critical piece of 

equipment in modern tunnel and underground 

engineering, with its rock-breaking efficiency being 

closely related to the health condition of disc cutter 

components. As the core element directly contacting 

rock masses and performing cutting tasks, the wear 

state of disc cutters significantly affects construction 

progress, equipment stability, and maintenance costs 

[1-3]. Under long-term complex working conditions, 

disc cutters often experience various forms of wear, 
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including edge wear, local spalling, and skew wear. In 

particular, skew wear tends to lead to concentrated 

stress on the cutter ring, deviation of cutting 

trajectories, and additional vibration and impact loads. 

This form of wear results from axial misalignment 

caused by uneven force distribution on the cutter 

handle or cutterhead. This makes it one of the most 

significant wear types affecting equipment 

performance. Skew wear is characterized by strong 

concealment, rapid development, and wide-ranging 

impacts. In its early stage, fault features are often 

difficult to identify through manual observation. As 
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skew wear further intensifies, it significantly reduces 

rock-breaking efficiency; it also causes fatigue of 

structural components, increased unstable vibration of 

the cutterhead, and even serious equipment accidents 

such as abnormal detachment of disc cutters. 

Additionally, unplanned downtime caused by skew 

wear directly leads to construction delays and 

economic losses, seriously affecting project progress 

and construction safety. Therefore, intelligent 

diagnosis and prediction technologies for disc cutters' 

skew wear hold significant engineering importance for 

enhancing the reliability and intelligence level of 

large-scale tunneling equipment. Traditional fault 

identification methods based on manual experience or 

simple threshold judgments fail to accurately reflect 

the disc cutters' actual working conditions, exhibiting 

problems such as time lag and high misjudgment rates 

[4-6]. Consequently, conducting intelligent fault 

diagnosis and prediction research focusing on 

abnormal wear behavior of disc cutters of milling 

machines during rock-breaking processes has become 

a crucial approach for enhancing construction 

intelligence and ensuring operational safety. 

With the widespread application of high-frequency 

vibration sensors and multi-channel data collection 

systems, vibration signals during rock-breaking 

processes of milling machines can be monitored in real 

time with high temporal resolution. Thus, it forms 

large-scale time-series data characterized by non-

stationarity, multiple working conditions, and high 

levels of background noise. Since skew wear changes 

the contact state and load transfer path of the 

cutterhead-rock mass system, it correspondingly 

presents typical dynamic features in vibration signals; 

these features include energy band transfer, enhanced 

transient impact, and changes in low-frequency 

characteristics. However, traditional signal processing 

methods such as wavelet packet decomposition have 

limited descriptive capabilities when dealing with 

highly non-stationary signals; this makes it difficult to 

fully reflect the time-frequency evolution laws of skew 

wear [7, 8]. Deep learning methods such as the 

artificial neural network (ANN), convolutional neural 

network (CNN), and recurrent neural network (RNN) 

have shown remarkable advantages in time-series data 

modeling and image identification, providing technical 

support for disc cutter fault diagnosis [9, 10]. In disc 

cutter fault diagnosis, integrating time-frequency 

feature extraction capability with time-series modeling 

capability has become an important direction for 

improving diagnosis accuracy. 

Existing disc cutter fault diagnosis methods have 

improved recognition efficiency to a certain extent. 

However, they still generally have three limitations. 1. 

Most methods rely on manually constructed time-

domain (TD) or frequency-domain (FD) features, 

which fail to fully characterize the non-stationarity, 

transient impact, and multi-scale dynamic changes 

caused by skew wear. 2. Some deep learning models 

lack adaptability to signal distribution differences 

under diverse working conditions, leading to 

significant performance degradation under actual 

conditions such as variable loads and variable speeds. 

3. When CNN or RNN is used alone, either they cannot 

effectively capture time-frequency multi-scale 

structural features, or they face problems such as 

gradient decay and high computational cost in long-

sequence modeling. To address the above 

shortcomings, this study proposes a model based on 

Continuous Wavelet Transform (CWT) and Inception-

Bidirectional Gated Recurrent Unit (Bi-GRU). It aims 

to achieve systematic improvements in feature 

expression capability, working condition adaptability, 

and model efficiency. (1) CWT is used to construct 

two-dimensional (2D) time-frequency graphs, 

overcoming the insufficient description of non-

stationary signals by traditional features and realizing 

fine-grained expression of skew wear features. (2) The 

Inception structure with multi-scale convolution is 

introduced; this enables the model to extract complex 

weak features from different receptive fields and 

breaks through the limitation of insufficient 

recognition capability of traditional single-scale 

networks. (3) Bi-GRU with higher computational 

efficiency is adopted to realize time-series dependency 

modeling while reducing computational overhead, 

improving the feasibility of on-site engineering 

deployment of the model. Through the above 

improvements, this study enhances the recognizability 

and state discrimination ability of skew wear of disc 

cutters in milling machines. It also provides a 

promotable technical path for intelligent monitoring of 

large-scale construction equipment under complex 

working conditions. 

 

2. RELATED WORK 

 

With the continuous development of mechanical 

equipment fault diagnosis technologies, researchers 

have made significant progress in improving fault 

identification accuracy and system robustness. Chen et 

al. developed an enhanced transfer learning method for 

mechanical fault diagnosis by incorporating a dynamic 

softmax function with an angular margin penalty to 

adjust the model's feature representation capability. 

They incorporated trend block learning to capture 

trend characteristics in vibration signals, thereby 

improving the diagnostic network's robustness and 

feature richness for target data [11]. This method 

provided theoretical references for enhancing feature 

representation and robustness in this study. Sahu et al. 

systematically reviewed 190 studies over the past two 

decades. They categorized data-driven diagnostic 

methods into supervised, semi-supervised, and 
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unsupervised learning approaches while thoroughly 

analyzing their respective advantages and applicable 

scenarios [12]. Their work offered systematic guidance 

for establishing the supervised learning framework in 

this study. Kibrete et al. conducted a comprehensive 

analysis of multi-sensor data fusion technology in 

rotating machinery fault diagnosis. Their research 

presented fundamental concepts and conducted in-

depth application analyses, offering valuable resources 

for researchers, practitioners, and policymakers to 

advance intelligent fault diagnosis technology [13]. 

Their multi-source information integration concept 

inspired methodological considerations for complex 

signal feature extraction. 

In the field of deep learning-driven fault diagnosis 

and prediction research, Wang et al. integrated deep 

transfer learning with digital twin technology. Their 

work achieved significant improvements in both 

clarity and authenticity of magnetic resonance imaging 

[14]. This concept indirectly validated the adaptation 

capability of deep models to complex feature 

structures and provided methodological support for the 

design of deep networks and image encoding in this 

study. He et al. proposed a cross-domain framework 

for motor-level compound fault diagnosis that required 

no target domain information, employing a time-

frequency self-contrastive learning strategy to enhance 

domain-invariant feature extraction. Their approach 

generated homogeneous and heterogeneous 

information from time and frequency domains as self-

contrastive pairs. Subsequently, the data is integrated 

through multi-scale spatial convolutional structures 

and cross-time-frequency information interaction 

strategies [15]. Thus, their research offered valuable 

references for multi-scale feature fusion and time-

frequency information interaction in this study. 

Mahesh et al. constructed an optimized 1D CNN 

utilizing varying kernel sizes. By automatically 

learning the relevant features from raw sensor data, 

complex patterns could be captured without manual 

feature engineering, enabling effective prediction and 

identification of bearing problems [16]. Their research 

provided technical insights for reducing manual 

intervention and improving automatic feature 

extraction capability in this study. 

Existing studies still have limitations in time-

frequency feature extraction of vibration signals, 

model adaptability under multiple working conditions, 

and the design of deep network structure. On one hand, 

most methods are insufficiently sensitive to fine-

grained changes in non-stationary signals, making it 

difficult to extract complex fault features such as disc 

cutter deflection wear. On the other hand, some models 

exhibit poor adaptability to working condition changes 

and insufficient generalization ability. Concurrently, 

most studies rely on single encoding methods or ignore 

time-series dependency information. This study 

constructs a diagnostic model by fusing CWT time-

frequency graphs with an Inception-BiGRU deep 

architecture. It also combines parallel convolution for 

multi-scale feature extraction and bidirectional gated 

recurrence for time-series dependency modeling. This 

approach significantly enhances the accuracy and 

robustness of disc cutter deflection wear fault 

identification, expanding the application boundaries of 

deep learning in intelligent diagnosis of complex 

mechanical equipment. 

 

3. DIAGNOSTIC AND PREDICTIVE MODEL 

OF DISC CUTTER DEFLECTION WEAR 

FAULTS IN MILLING MACHINES 

 

3.1 Fault diagnosis and prediction model based on 

Inception-BiGRU 

 

(1) Inception network structure 

To effectively extract time-frequency features 

from vibration signals, this study first employs CWT 

to convert 1D disc cutter vibration signals into 2D 

wavelet time-frequency graphs. This method 

preserves the TD and FD information of non-

stationary signals within a unified representation 

space. Compared with traditional time-series analysis 

methods such as the Fourier transform (FT) or 

autoregressive models, CWT time-frequency graphs 

can simultaneously present the transient impact 

characteristics and long-term trend changes of 

signals. They are suitable for non-stationary vibration 

signals of disc cutter skew wear faults under complex 

working conditions. Through a visualized 2D time-

frequency representation, the model can directly 

capture the dynamic energy distribution of vibration 

signals across different frequency bands, thus 

improving the distinguishability of fault categories 

and early recognition capability. Since the 

transformed data essentially takes the form of images 

with clear spatial structural features, using CNN as the 

primary feature extraction tool offers significant 

advantages. The CNN is a feedforward neural 

network structure widely applied in deep learning; it 

is characterized by local connectivity, weight sharing, 

and spatial dimensionality reduction, making it 

particularly suitable for feature extraction tasks on 

image-like data [17]. The convolutional layer 

performs sliding operations with convolutional 

kernels over input feature maps to extract spatial 

features from local regions. The activation layer 

introduces nonlinear representation capabilities to 

improve the network's ability to fit complex patterns. 

Common activation functions (e.g., Sigmoid and 

Tanh) suffer from gradient vanishing as their 

derivatives approach zero for large input absolute 

values [18]. This study employs ReLU as an 

activation function, which features a constant gradient 
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in the positive region, alleviating the gradient 

vanishing issue and improving training stability for 

deep networks [19]. The joint operation of the 

convolutional and activation layers can be expressed 

as: 

𝑥𝑗
(𝑙)

= 𝑓(∑ 𝑥𝑖
(𝑙−1)

∙ 𝑘𝑖𝑗
(𝑙)

+ 𝑏𝑗
(𝑙)

𝑖∈𝑀𝑗
)     (1) 

𝑥𝑗
(𝑙)

 represents the jth output feature map of the lth 

layer; 𝑥𝑖
(𝑙−1)

 refers to the ith input feature map of the 

previous layer; 𝑘𝑖𝑗
(𝑙)

 is the corresponding convolution 

kernel; 𝑏𝑗
(𝑙)

 stands for the bias term; 𝑓(∗) denotes the 

activation function. 

The pooling layer is employed to downsample the 

convoluted feature map to decrease the 

dimensionality, reduce the computational effort, and 

suppress the risk of overfitting [19]. Maximum 

pooling is the most widely used pooling method, 

which is calculated as follows: 

𝑝𝑖,𝑗 = max{𝑎𝑖,𝑛|𝑗𝑊 ≤ 𝑛 ≤ 𝑗𝑊 + 𝑤} (2) 

𝑝𝑖,𝑗 refers to the output of the jth pooling unit in the 

ith feature map; 𝑎𝑖,𝑛 denotes the input element in the 

pooling window; w is the width of the pooling 

window; W represents the pooling step. 

In CNN, increasing network depth and width can 

remarkably improve model expressiveness, but it also 

brings the risk of parameter explosion and overfitting. 

The Inception network structure introduces a parallel 

mechanism of multi-scale convolutional kernels 

without significantly increasing computational 

complexity, enhancing the model's adaptability to 

features of different sizes [20-22]. A typical Inception 

module integrates 1×1, 3×3, and 5×5 convolution 

operations as well as 3×3 max-pooling operations. 

Each branch processes the same input in parallel and 

fuses features in the channel dimension, achieving the 

unity of width expansion and feature diversity. Figure 

1 shows the structural diagram of a typical Inception 

module. Among them, parallel paths jointly construct 

a multi-scale feature learning framework, providing 

high-quality feature inputs for subsequent sequence 

modeling. 

Input

1×1 Conv

1×1 Conv

1×1 Conv

Average 

Pooling

5×5 Conv

3×3 Conv 3×3 Conv

Concatente

1×1 Conv

 
Fig. 1. Inception network structure 

The Inception network in Figure 1 draws 

inspiration from the Network in Network (NIN) 

architecture, using 1×1 convolutions for 

dimensionality reduction in the depth direction. This 

approach reduces the number of parameters and 

introduces additional nonlinear transformation 

capabilities, enhancing the network's representational 

efficiency. The Inception module can simultaneously 

extract local details and global contextual features. 

Thus, it can demonstrate high robustness and 

identification ability when processing complex 

nonlinear time-frequency patterns such as disc cutter 

deflection wear faults. 

(2) Bi-GRU 

The time-frequency graphs generated by wavelet 

transforms contain rich image structural information 

in the spatial dimension while preserving the dynamic 

evolution laws of signals in the temporal dimension. 

For such 2D representational structures with temporal 

dependency, relying solely on CNN for spatial feature 

extraction is insufficient to capture the evolutionary 

patterns in the temporal dimension. The gated 

recurrent unit (GRU), an improved RNN structure, is 

characterized by fewer parameters, high training 

efficiency, and suitability for time-series modeling. It 

exhibits stronger stability in modeling long-term 

dependencies and effectively mitigates the gradient 

vanishing problem [23]. The bidirectional GRU (Bi-

GRU) further expands information acquisition paths 

by encoding sequences through parallel forward and 

backward GRU networks. Thus, Bi-GRU extracts 

global temporal features from both past and future 

directions to enhance the model's representational 

capability and prediction performance [24]. 

In GRU, the hidden state update at each moment is 

controlled by two gate structures: the update and reset 

gates. The update gate regulates the proportion of 

information fusion between the current and previous 

states. In contrast, the reset gate determines the degree 

of reliance on the current input in relation to the 

previous state. The calculation for the update gate is 

as follows: 

𝑧𝑡 = 𝜎(𝑊𝑥𝑧𝑥𝑡 + 𝑏𝑥𝑧 + 𝑊ℎ𝑧ℎ𝑡−1 + 𝑏ℎ𝑧) (3) 

The calculation for the reset gate is: 

𝑟𝑡 = 𝜎(𝑊𝑥𝑟𝑥𝑡 + 𝑏𝑥𝑟 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏ℎ𝑟) (4) 

The candidate hidden state is calculated as 

follows: 

ℎ̃𝑡 = tanh(𝑊𝑥𝑛𝑥𝑡 + 𝑏𝑥𝑛 + 𝑟𝑡°(𝑊ℎ𝑛ℎ𝑡−1 + 𝑏ℎ𝑛))  (5) 

The equation for updating the final hidden state is: 

ℎ𝑡 = (1 − 𝑧𝑡)°ℎ̃𝑡 + 𝑧𝑡°ℎ𝑡−1 (6) 

𝑥𝑡 represents the input vector at moment t; ℎ𝑡−1 

indicates the hidden state of the previous moment, and 

the initial state is set to an all-zero vector; 𝜎(∗) stands 

for the Sigmoid activation function; tanh(∗) refers to 

the hyperbolic tangent activation function; W and b 

are the weight matrices and bias terms corresponding 

to each gate. ° denotes the Hadamard product. 
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The Bi-GRU structure comprises two GRUs, 

which independently process the input data in the 

forward and reverse directions of the time series. 

Hidden state sequences in the two directions are 

obtained, which are denoted as ℎ⃗ 𝑡 and ℎ⃖⃗𝑡. Finally, a 

comprehensive output representation is generated by 

concatenation: 

𝐻𝑡 = [ℎ⃗ 𝑡; ℎ⃖⃗𝑡]  (7) 

The bidirectional structure can integrate the 

context information before and after the current 

moment. Moreover, it has a stronger ability to capture 

the complex temporal dynamic characteristics of the 

disc cutter vibration signal under abnormal wear and 

tear. Figure 2 illustrates the network structure of the 

Bi-GRU model. 

ht-1

X

σ 

σ X1-

tanh X

ht

x1,x2,···,xnxn,xn-1,···,x1

ht-1

X

σ 

σ X1-

tanh X

ht

x1,x2,···,xn

Fusion 

Layer

Reverse 

Order

Forward 

Order

Input 

Sequence

Output 

Sequence

rtrt

zt zt

GRU GRU

 
Fig. 2. The Bi-GRU structure 

 

The output of the Bi-GRU model in Figure 2 

provides multi-dimensional temporal feature 

representations for each time instant, offering 

sufficient temporal dependency support for 

subsequent fault identification. This effectively 

enhances the model's capability to capture the time-

series characteristics of disc cutter vibration signals, 

improving the accuracy and robustness of fault 

diagnosis. 

(3) The Inception-BiGRU fault diagnosis and 

prediction model 

During the rock-breaking process of disc cutters, 

vibration signals exhibit complex non-stationary 

characteristics, whose time-frequency features are 

influenced by both multi-scale spatial variations and 

temporal dependencies. While the CNN is suitable for 

extracting local spatial structure information, it 

struggles to model long-term dependencies in time 

series. To comprehensively extract the discriminative 

information of disc cutter deflection wear faults from 

vibration time-frequency graphs, this study proposes 

a fault diagnosis and prediction model fusing the 

Inception module with Bi-GRU. The overall 

architecture is plotted in Figure 3. The model fully 

integrates the spatial feature extraction capability of 

Inception with the temporal modeling capability of 

Bi-GRU to achieve joint learning of spatial and 

temporal information. 

 

Bi-GRU

Inception moduleConvolutional Layer Pooling Layer

Fully Connected Layer

Output

Input

 
Fig. 3. Schematic diagram of the structure of the Inception-

BiGRU model 

 

The input to the Inception-BiGRU model in 

Figure 3 is a 2D time-frequency graph processed by 

CWT. The input first enters the convolutional layer to 

extract basic spatial features, including underlying 

textures and edges, combined with a max-pooling 

layer to perform down-sampling on local regions. 

This helps reduce feature dimensions and suppress 

local noise disturbances. The Inception module is then 

introduced; its internal parallel 1×1, 3×3, 5×5 

convolution kernels and pooling branches allow the 

model to capture multi-scale features at different 

receptive fields. Thus, the model's ability is enhanced 

to represent complex textures and irregular structures. 

To reduce computational complexity, the Inception 

module introduces 1×1 convolution in the channel 

dimension for dimensionality reduction. This reduces 

the number of parameters while maintaining multi-

scale feature extraction capability. The entire module 

is designed to be lightweight, making it suitable for 

deployment in resource-constrained milling machine 

control systems. This structure improves the 

collaborative perception of network width and depth, 

further excavating the spatial hierarchical features in 

time-frequency graphs. The high-dimensional feature 

maps output by the Inception module are further 

compressed and semantically enhanced through 

convolution and pooling operations, then unfolded 

into 1D vectors for input to the Bi-GRU module. 

The Bi-GRU performs sequence modeling in both 

forward and backward temporal directions, obtaining 

sequence representations containing contextual 

dependency information through the concatenation of 

bidirectional hidden states. Compared with traditional 

Long Short-Term Memory (LSTM) networks, Bi-

GRU has fewer parameters and higher computational 

efficiency, while retaining the ability to model long-

sequence dependencies. This ensures diagnostic 

accuracy while reducing inference time. To further 

reduce the computational burden, the model performs 
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down-sampling on the high-dimensional feature maps 

output by the Inception module before inputting them 

into Bi-GRU. This compresses the sequence length 

and reduces feature dimensions while preserving key 

discriminative information. Besides, this model uses 

an end-to-end feature sharing strategy. The fault 

diagnosis and fault prediction modules share the same 

feature representation, avoiding redundant 

calculations and improving overall inference 

efficiency. After the spatial and temporal feature 

extraction is completed, two parallel fully connected 

modules are introduced at the end of the model to 

undertake the tasks of fault diagnosis and fault 

prediction, respectively. Based on Softmax, the fault 

diagnosis module outputs the current status category, 

and the output is: 

𝑃(𝑦 = 𝑖|𝑥) =
exp(𝑊𝑖

𝑇𝑥+𝑏𝑖)

∑ exp(𝑊𝑗
𝑇𝑥+𝑏𝑗)𝑗

 (8) 

x denotes the Bi-GRU output vector; 𝑊𝑖 and 𝑏𝑖 refer 

to the parameter of the fully connected layer; 

𝑃(𝑦 = 𝑖|𝑥) indicates the probability that the input 

image belongs to category i. This module is 

responsible for fault diagnosis and prediction. 

The overall model is trained in an end-to-end 

manner through joint optimization. The loss function 

considers both classification loss and regression error 

to ensure the simultaneous enhancement of diagnostic 

and predictive performance. The spatial multi-scale 

feature extraction capability of the Inception network, 

the temporal dependency modeling capability of Bi-

GRU, and the strategies of feature map down-

sampling and end-to-end feature sharing are deeply 

integrated. Thus, the Inception-BiGRU model can 

accurately identify and predict abnormalities in the 

early stage of disc cutter skew wear. It has good 

engineering practicality and generalization ability, 

while maintaining efficient operation in on-site 

environments with limited computational resources. 
 

3.2 Experimental materials and settings 

A standardized rock-breaking test platform is 

constructed under laboratory conditions for data 

collection to improve the fault trend prediction 

model's generalization ability and disc cutter 

deflection wear state identification. Each disc cutter 

undergoes five groups of rock-breaking tests with 

controlled variables, where the penetration depth 

increases by 0.5 mm sequentially. During each group 

of experiments, vibration acceleration signals of the 

disc cutter in three axial directions are synchronously 

collected. It obtains original TD data covering four 

working conditions: normal, mild, moderate, and 

severe deflection wear. To handle potential sample 

imbalance among different skew wear states, the 

following strategies are adopted in the data 

preprocessing and training phases. First, sliding 

windows and overlapping sampling are used to 

expand the number of samples for all categories. The 

sampling step is set to 4096 points, and the length of 

a single sample is 16384 points. Through this method, 

3000 independent samples are constructed for each 

disc cutter skew wear state. Second, weighted 

processing is applied to the class imbalance problem 

during model training. Slightly higher weights are 

assigned to severe skew wear samples to ensure the 

loss function fully considers the contribution of a 

small number of samples during optimization, thereby 

reducing classification bias. Additionally, data 

augmentation techniques are employed to perform 

random, slight horizontal translation (±5% pixels), 

small-scale scaling (scaling factor 0.9-1.1), and 

random Gaussian noise injection (standard deviation 

of 1% of the maximum image value) on time-

frequency graphs. This further enhances the diversity 

of minority class samples and improves the model's 

generalization ability for small sample sizes across 

different working conditions. 

After collecting raw vibration signals, denoising is 

first performed. The wavelet threshold denoising 

method is adopted to apply soft threshold processing 

to high-frequency noise coefficients. This effectively 

suppresses sensor noise and environmental 

interference while retaining transient impact 

characteristics and low-frequency trend information 

in disc cutter vibration signals. The denoised signals 

are then subjected to sliding window overlapping 

sampling to generate training samples, ensuring 

sufficient and representative samples for each skew 

wear state. To eliminate dimensional differences 

between different channels and samples, all samples 

are normalized before being input into the model. 

After processing, CWT maps one-dimensional 

vibration signals into 2D time-frequency graphs, fully 

capturing the transient characteristics and frequency 

evolution laws of the signals. CWT's time-frequency 

transformation of the signal 𝑥(𝑡) can be written as: 

𝑤(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜑 (

𝑡−𝑏

𝑎
) 𝑑𝑡

+∞

−∞
     (9) 

a refers to the scale factor, which controls the 

frequency resolution; b denotes the translation factor, 

which represents the offset on the time axis; 𝜑(𝑡) is 

the selected wavelet basis function. The transform 

exhibits adaptive scaling and multi-resolution 

properties, making it well-suited for capturing 

transient features in vibration signals. In CWT, the 

Morlet wavelet basis function is selected. The range 

of its center frequency and scale factor is adjusted 

through experiments, and finally determined as a∈[1, 

64]. This range can cover the main frequency feature 

bands of disc cutter vibration signals, ensuring that 

both low-frequency impacts and high-frequency 

transient information are fully expressed. By 

adjusting different scale combinations, it is found that 

the time-frequency graphs generated within this range 

achieve the best performance in fault state 
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distinguishability and model training convergence 

speed. In a specific implementation, the 2D images 

generated after wavelet transformation are unified to 

a size of 60×60 pixels for constructing model inputs. 

Samples of each deflection wear state are divided into 

training and test sets at a ratio of 4:1, with 2400 

samples for training and 600 samples for model 

testing. During the training phase, the model performs 

classification tasks and introduces a prediction 

module for the disc cutter performance degradation 

trend. This module outputs the amplitude response or 

characteristic index change trends in several future 

time windows through a regression approach, 

enhancing the model's predictive capability. 

The Inception-BiGRU model training is 

developed using the PyTorch deep learning 

framework. All experiments are completed in the 

local environment. In terms of network structure 

design, the model complexity is controlled to match 

the data scale. The Inception module performs 

dimensionality reduction through 1×1 convolution, 

effectively reducing the number of parameters. 

Meanwhile, Dropout layers are introduced after each 

convolutional layer in the Inception module and 

before the Bi-GRU layer, with a dropout rate of 0.5 to 

prevent model overfitting. Parameters such as the 

convolution kernel size, Inception module branches, 

pooling stride, and number of convolutional layer 

channels in the model network structure are optimized 

through grid search and cross-validation. The 

combination of convolution kernel sizes 1×1, 3×3, 

and 5×5 is selected to balance local texture and global 

structural feature extraction; the maximum pooling 

stride and number of convolution output channels 

achieve a balance between validation set accuracy and 

training time, ensuring high precision while reducing 

computational load. The Bi-GRU's number of hidden 

units and layers is determined through multiple 

rounds of experiments on the training and validation 

sets; a single-layer Bi-GRU structure with 64 units is 

finally adopted. Sensitivity analysis results comparing 

different hidden units [32, 64, 128] and layers [1, 2, 

3] show that the single-layer Bi-GRU with 64 units 

achieves the optimal balance in accuracy, F1-score, 

and training efficiency; it avoids parameter 

redundancy and overfitting risks caused by excessive 

layers or overly large unit counts. Specific results are 

exhibited in Table 1. 

 

 

Table 1. Sensitivity analysis results of hidden units and layers of the Bi-GRU 

Number of hidden 

units 
Layers  Average accuracy (%) F1 score Average training time/epoch (s) 

32 1 0.965 0.956 18.5 

32 2 0.968 0.958 29.2 

32 3 0.970 0.960 41.0 

64 1 0.986 0.985 22.1 

64 2 0.987 0.986 34.5 

64 3 0.987 0.986 48.3 

128 1 0.987 0.986 37.8 

128 2 0.988 0.987 55.4 

128 3 0.988 0.987 74.1 

 

Table 2. Experimental environment and parameter settings 

Item/Parameter name Configuration/Setting values 

Experimental platform 

environment 

Operating system Windows 10 

Programming language Python 3.8 

Deep learning framework PyTorch 1.x 

Central processing unit Intel Core i5-10400F 

Memory 16 GB 

Graphics processing unit NVIDIA GeForce GTX1650 4 GB 

Model training parameters 

Sample length 16384 points 

Overlap step size 4096 points 

Image size 60×60 

Batch size 32 

Learning rate 5.7×10-4 

Epoch 200 

Loss function Cross-Entropy Loss 

Optimizer Adam 
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In the model training phase, two key strategies 

actively prevent overfitting. (1) Early stopping: The 

loss on the validation set is continuously monitored. 

Training is terminated when the validation set loss 

stops decreasing for 15 consecutive epochs, and the 

model weights with the best performance on the 

validation set are rolled back. This effectively 

prevents the model from overlearning noise and 

irrelevant details in the training set. (2) L2 weight 

decay: An L2 regularization term is set in the Adam 

optimizer with a weight decay coefficient of 1×10⁻⁵. 

It encourages the model to learn simpler and more 

generalizable patterns by penalizing large weight 

values of the model. Before training, all image data 

undergoes unified normalization processing to ensure 

consistent distribution across input channels and 

eliminate training biases caused by dimensional 

differences. The entire model simultaneously outputs 

fault state classification results during the training 

phase, adopting a joint loss optimization strategy to 

enhance the model's multi-task learning capability. 

Accuracy and F1 score are selected as the main 

evaluation indicators for the model's diagnostic and 

predictive performance. These indicators 

comprehensively measure the classification model's 

accuracy and robustness in identifying multi-category 

disc cutter deflection wear states. 
 

4. RESULTS AND ANALYSIS 

 

4.1 Analysis of model fault diagnosis and 

prediction results 

 

Figure 4 illustrates the variations in accuracy and 

loss function throughout the training and testing 

phases of the Inception-BiGRU model. 
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Fig. 4. The curve of the training process curve of the 

Inception-BiGRU model 

 

Figure 4 shows that the accuracy of the Inception-

BiGRU model steadily increases to approximately 

99% during training, accompanied by a pronounced 

reduction in the loss function, confirming the model's 

strong fitting ability. The test set accuracy remains 

stable at around 95% with minimal fluctuations, 

indicating strong generalization ability. In the later 

training stage, the loss further decreases, and the 

accuracy stabilizes, without obvious overfitting. This 

confirms the effectiveness and robustness of the 

model structure in disc cutter vibration signal 

identification tasks. High generalization performance 

means the model can adapt to signal changes under 

different stratum conditions, impact loads, and 

vibration interference. It can provide a reliable 

decision-making basis for the online monitoring 

system of milling machines, thereby reducing 

unplanned downtime and improving construction 

efficiency. 

To verify the model's diagnostic performance 

under variable working conditions, test experiments 

are conducted with different disc cutter speeds and 

penetration depths, with diagnostic results indicated 

in Figure 5. 

0.5 1.0 1.5 2.0 2.5 3.0

98.4

98.6

98.8

99.0

99.2

99.4

T
h

e 
re

su
lt

es
 o

f 
ac

cu
ra

cy
 (

%
)

Penetration Depth (mm)

 Roller Speed 3mm/s

 Roller Speed 4mm/s

 Roller Speed 5mm/s

 
Fig. 5. Diagnosis results of different working conditions 

 

In Figure 5, the Inception-BiGRU model 

maintains an identification accuracy of over 98% 

across various working conditions of diverse disc 

cutter speeds and penetration depths. The model's 

maximum value reaches 99.35%, demonstrating 

stable performance. With the increase in penetration 

depth, the accuracy slightly improves overall, 

indicating that deep rock-breaking signals contain 

more identifiable features. Different disc cutter 

speeds have little impact on the results. The model 

shows good robustness to speed changes, strong 

adaptability to complex working conditions, and 

practical application potential. This indicates that the 

model is not only applicable to laboratory conditions 

but also competent for highly complex on-site 

environments such as tunnel construction and 

underground pipe gallery excavation. Particularly, its 

ability to maintain high reliability under deep 

penetration and high-load working conditions enables 

it to identify the wear trend of disc cutters. This 

capability is crucial when stratum conditions change 

suddenly, or operation intensity increases, as it helps 

avoid reduced rock-breaking efficiency or equipment 

damage caused by aggravated wear. 
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Fig. 6. Accuracy of the Inception-BiGRU model's fault 

prediction confusion matrix 

 

The model's identification capability in multi-

classification tasks is further evaluated by drawing a 

fault prediction confusion matrix based on the test set, 

as demonstrated in Figure 6. 

Figure 6 shows that the proposed Inception-

BiGRU model achieves a prediction accuracy of 99% 

for both normal and severely deflected wear disc 

cutters. The proposed model has a minimal 

probability of misjudgment, demonstrating extremely 

high identification reliability. Partial confusion occurs 

in mild and moderate deflection wear disc cutters, 

with prediction accuracies of 97.7% and 97.2%, 

respectively, indicating some feature overlap in the 

feature space. However, the overall identification 

accuracy remains above 97%, confirming the model's 

good discrimination capability and engineering 

practical applicability. Severe skew wear is usually 

the main factor leading to disc cutter failure, abnormal 

equipment vibration, and construction interruption. 

The model's highly reliable identification of severe 

skew wear can effectively support proactive 

maintenance and tool replacement strategies, thereby 

reducing economic losses caused by unplanned 

downtime. Meanwhile, the model's ability to 

distinguish between mild and moderate skew wear 

means it can identify wear evolution trends. This 

capability transforms maintenance from a passive 

response to an active prediction, allowing it to serve 

the equipment health management system. 

 

4.2 Comparative analysis of diverse coding 

methods 

The wavelet time-frequency graph is compared 

with commonly used image encoding methods in the 

fault diagnosis. These methods include grayscale 

images, Gramian Angular Difference Field (GADF), 

Gramian Angular Summation Field (GASF), and 

original vibration signals. The accuracy and F1 score 

results are suggested in Figure 7. 
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Fig. 7. The influence of encoding methods on 

identification performance 

 

Figure 7 reveals that by comparing different 

encoding methods, the CWT image performs best in 

fault diagnosis, with an accuracy of 0.986 and an F1 

score of 0.985. Meanwhile, CWT represents 

improvements of 3.46% and 3.96% compared to the 

original signals, respectively, and substantially 

outperforms other image encoding methods. The 

grayscale image performs slightly worse with an F1 

score of 0.937, while GADF and GASF exhibit 

similar performance, both significantly lower than 

CWT. This demonstrates that CWT can more 

effectively extract the time-frequency features of non-

stationary vibration signals, facilitating accurate 

discrimination of disc cutter deflection wear states. 

Therefore, the CWT image encoding method shows 

remarkable advantages in feature representation 

capability and classification performance. This 

finding illustrates that CWT is an optimal choice at 

the signal analysis level; it also demonstrates the 

potential to improve diagnostic stability and accuracy 

in engineering applications. Since disc cutter 

vibration signals are inherently strongly non-

stationary, wavelet time-frequency graphs can capture 

transient impacts and wear features. This enables the 

model to accurately identify different wear levels and 

improve the reliability of on-site diagnosis. Therefore, 

the CWT-encoded model is better suited for 

integration into real-time monitoring systems, 

contributing to enhanced operational and 

maintenance intelligence. 

 

4.3 Comparative analysis of different algorithms 

Common models such as Support Vector Machine 

(SVM), DNN, CNN, Residual Network (ResNet), 

CNN-BiGRU, and CNN-LSTM are selected for 

performance comparison with the proposed 

Inception-BiGRU model. All CNN hyperparameters 

are consistent with those of the Inception-BiGRU 

model. Each model undergoes ten identical training 

and testing cycles to reduce the impact of random 

errors, with the ten test results depicted in Figure 8. 
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Table 3. Comparison of downtime and economic losses before and after applying the intelligent diagnostic method 

Condition 
Average downtime 

per incident 

Monthly failure 

frequency 

Economic loss 

per downtime 

Total monthly 

economic loss 

Without using predictive 

methods 
6 hours 8 20,000 yuan 160,000 yuan 

Using predictive 

methods 
4 hours 8 13,300 yuan 106,400 yuan 
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Fig. 8. The results of ten tests of different models 

 

In Figure 8, the Inception-BiGRU model 

demonstrates the best comprehensive performance, 

with an average accuracy of 0.9863 and a variance 

of only 0.03, indicating stable performance. 

Compared with the best-performing CNN, the 

average accuracy is improved by 1.84%, and the 

variance is reduced by 50%. In contrast, SVM has 

the lowest accuracy of 0.7742 with large 

fluctuations (variance = 0.35). Although DNN, 

CNN-LSTM, and CNN-BiGRU all achieve 

accuracies above 0.96, their stability is slightly 

poorer, with variances of 1.08, 0.39, and 0.67, 

respectively. ResNet shows the most unstable 

performance, with a variance of 1.78. In summary, 

Inception-BiGRU outperforms other models in both 

accuracy and robustness, making it the most suitable 

for disc cutter fault diagnosis. Stable recognition 

performance helps reduce false alarms and missed 

detections, providing a more reliable basis for 

predictive maintenance on engineering sites while 

improving operational continuity and safety. 

 

4.4 Practical application and economic benefit 

analysis 

Skew wear faults of milling machine cutterheads 

often lead to equipment downtime in tunnel boring 

and underground engineering, resulting in substantial 

non-productive time and directly increasing 

construction costs and economic losses. Based on 

engineering practice experience, each fault shutdown 

delays the construction schedule while increasing 

labor, material, and maintenance costs. To intuitively 

evaluate the proposed method's economic value in 

engineering applications, a simulation case is 

designed and calculated based on typical milling 

machine operating parameters and fault frequencies. 

It is assumed that in a tunnel construction project, the 

milling machine operates 8 hours per day and 20 days 

per month. Without predictive intervention, the 

cutterhead experiences mild to moderate skew wear 

faults on average once every two weeks, with each 

shutdown for maintenance taking approximately 6 

hours. The direct economic loss caused by a single 

shutdown (including labor, equipment idleness, and 

construction delay costs) is about 20,000 yuan. 

After applying the Inception-BiGRU intelligent 

diagnosis method for real-time monitoring and 

prediction, it is assumed that 80% of potential faults 

can be identified in advance. This enables planned 

maintenance and reduces the unplanned downtime per 

fault from 6 hours to 4 hours. According to simulation 

calculations, the comparison of monthly downtime 

and economic losses is detailed in Table 3. 

The simulation case shows that through early 

diagnosis and planned maintenance, the monthly 

economic loss can be reduced from 160,000 yuan to 

approximately 106,400 yuan; it saves 53,600 yuan 

(about 33.5% of the total loss without the method). 

This analysis indicates that the Inception-BiGRU 

intelligent diagnosis method has economic benefits 

in practical engineering. It reduces unplanned 

downtime while improving the equipment 

utilization rate and construction efficiency of 

milling machines. Meanwhile, this simulation result 

provides a quantitative reference for the promotion 

and application of the method in intelligent 

operation and maintenance systems. This further 

highlights its engineering value and practical 

application potential. 

 

5. CONCLUSION 

This study focuses on the common fault of skew 

wear in disc cutters in milling machines, which has 

significant engineering implications for tunnel and 

underground construction projects. It proposes an 

Inception-BiGRU-based intelligent diagnosis and 

prediction model. It systematically explores the 

application potential of multi-scale time-frequency 

features of vibration signals in identifying complex 

wear states. Affected by complex loads, rock mass 

inhomogeneity, and dynamic impact conditions, the 
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fault characteristics of disc cutter skew wear are 

characterized by strong concealment, complex 

evolution patterns, and significant signal non-

stationarity. This study proposes encoding vibration 

signals into 2D time-frequency graphs via CWT to 

present the dynamic evolution process of skew 

wear. It aims to address the problem that traditional 

methods struggle to capture their time-frequency 

variation laws. By combining the multi-scale 

convolution structure of Inception with the temporal 

dependency modeling capability of Bi-GRU, more 

effective characterization of different wear degrees 

is achieved. Multi-working condition tests reveal 

that the model exhibits strong robustness to different 

disc cutter speeds and penetration depths, with 

diagnostic accuracy stably maintaining above 98%, 

illustrating excellent adaptability. In the fault multi-

classification experiment, the model accurately 

identifies normal and severe deflection wear states. 

Concurrently, minor confusion exists between mild 

and moderate deflection wear states, reflecting the 

continuity and complexity of fault states in actual 

working conditions. Comparisons with multiple 

encoding methods suggest that wavelet time-

frequency graphs can more effectively capture the 

time-frequency features of vibration signals, 

markedly improving the model's diagnostic 

performance. Multi-model comparisons validate the 

advantages of Inception-BiGRU in terms of 

accuracy and stability, demonstrating its strong 

potential for application in disc cutter fault 

diagnosis. 

The Inception-BiGRU model, constructed based 

on vibration signals in this study, exhibits high 

accuracy and robustness in diagnosing and predicting 

disc cutter skew wear. However, relying on a single 

vibration data source still has certain limitations. 

Vibration characteristics affect the wear and fault 

development of disc cutters. They are also closely 

related to multiple factors, including cutting force, 

cutterhead temperature, equipment load, rock mass 

hardness, and construction conditions. A single 

vibration signal may fail to reflect the interaction 

among these complex factors. Especially in the early 

stages of minor or sudden faults, diagnostic features 

may not be significant enough, thus affecting the 

model's sensitivity and prediction accuracy. 

Consequently, future work can consider multi-modal 

fusion of vibration signals with data from other 

sensors (such as force sensors and temperature 

sensors) and equipment operating parameters. 

Through collaborative modeling of multi-source 

information, the model's ability to identify minor or 

complex faults and its robustness can be further 

improved. This extension helps comprehensively 

characterize the dynamic evolution process of disc 

cutter wear. Meanwhile, it provides a development 

direction for constructing a more accurate and 

intelligent fault diagnosis and prediction system for 

milling machines. 
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