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Abstract

The inspection of hydropower stations using autonomous robots is vital for ensuring operational safety and
efficiency. Obstacle avoidance plays a crucial role in enabling these robots to navigate complex environments
that are filled with both static and dynamic hazards. However, existing obstacle avoidance methods often
struggle to handle real-time changes in spatial and temporal contexts, resulting in suboptimal path planning and
an increased risk of collision. To address these limitations, this research proposes a Spatio-Temporal Graph
Convolutional Network (ST-GCN) based framework that effectively models both the spatial layout and
dynamic movements of obstacles over time. The proposed ST-GCN framework processes real-time sensor data
(LiDAR, cameras, IMU) and historical movement patterns to predict obstacle trajectories and adapt the robot’s
navigation path accordingly. This approach allows the inspection robot to dynamically adjust its route in
environments such as turbine halls, where moving machinery and personnel are common. Experimental
evaluations in a simulated hydropower station environment demonstrated that the ST-GCN-based method
significantly outperformed traditional reactive models, achieving higher accuracy in obstacle prediction and
safer, more efficient navigation. These findings validate the effectiveness of spatio-temporal modeling for
intelligent obstacle avoidance in industrial robotic inspection tasks.
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1. PROLOGUE

In modern hydropower stations, it is crucial to
deploy autonomous inspection robots to ensure that
operations are safe and efficient [1]. In these
environments, which are both dynamic and full of
moving machinery, people, and static obstacles, it's
challenging to avoid obstacles because most
conventional systems rely on reactive mechanisms
that don't account for changes in space and time in
real-time [2]. ST-GCN does a great job at capturing
both the layout of the environment and how dynamic
obstacles change over time [3]. The suggested
methodology lets the robot change its navigation
course ahead of time to avoid known dangers using
real-time data from sensors like LiDAR, cameras,
and inertial measurement units (IMU) along with
learnt patterns from past movement paths [4]. This
makes it possible to accurately predict how obstacles
will move [5]. The robot's safety and efficiency are
considerably improved when it can predict how
obstacles will behave [6]. This is especially
important in high-risk areas like turbine halls, where
unexpected changes in behavior can lead to
accidents or delays [7]. The system is much better at
handling surprises because it can take in both real-
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time environmental data and patterns acquired from
past activities[8]. The study suggests that industrial
robotics can benefit from deep learning methods
utilizing an ST-GCN-based technique that extends
beyond merely avoiding obstacles, offering a
solution for the future [9]. According to tests
conducted at a simulated hydropower facility, the
proposed approach enhances both trajectory
predictions and real-time navigation [10]. These
results support the hypothesis that intelligent robots
could benefit from employing spatio-temporal
networks in general, and especially for checking
infrastructure that is important for public safety.

1.1 Problem statement

It is well known that typical obstacle avoidance
algorithms for inspection robots struggle to operate
effectively in hydropower stations. There are both
permanent structures and moving obstacles at these
stations, such as people and machines. These rules
make it harder to find the way around and make it
more likely that will crash into anything. There is a
need for better prediction system that can deal with
changes in space and time.

In the last few years, a number of predictive and
learning-based obstacle avoidance models have been
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developed. However, most of them can't simulate
spatial relationships and temporal evolution together
in industrial settings that change quickly. Most
current methods deal with spatial and temporal data
separately, which means they don't respond quickly
to changes in barrier behavior. This is especially true
in hydropower stations, where people, spinning gear,
and mobile equipment create constant, non-linear
motion  patterns.  Current  prediction-driven
approaches also depend on fixed temporal frames or
static representations, which limits their ability to
change the paths of obstacles when there are
unexpected, short-term changes.

The gap this work addresses is the lack of a
single spatio-temporal learning framework that can
capture both the structural arrangement of
hydropower station surroundings and the changing
movement patterns of various barriers that interact
with each other. The suggested ST-GCN model
closes this gap by putting geographic closeness,
inter-object impact, and time-dependent motion
transitions into one graph-based representation. This
lets the system predict the paths of obstacles more
accurately and change navigation decisions in real
time. The technology offers a more flexible,
context-sensitive prediction system than traditional
learning models. This makes it especially useful for
hydropower inspection situations when
environmental conditions change without warning.

1.2 Motivation

Self-driving inspection Robots that work in
hydropower plants have a lot of trouble getting
around because machines and people move in ways
that are hard to predict. Our research attempts to
make these environments safer and more efficient
for robots. In such situations, smart, real-time
obstacle avoidance and adaptive course planning are
crucial, but the solutions are often inadequate. A
spatio-temporal, predictive strategy is needed.

1.3 Contributions

This study presents a novel approach for
inspection robots at hydropower stations to navigate
around obstacles using Spatio-Temporal Graph
Convolutional Networks (ST-GCN). By providing
accurate predictions of obstacle trajectories and
dynamically adjusting navigation paths in real-time
based on sensor inputs and historical movement data,
the technology enhances the safety, efficiency, and
adaptability of complex industrial settings.

The remaining section of this paper is set up like
this: In Section 2, this paper look at relevant studies
and strategies that have been suggested before. In
Section 3, paper discussed about the proposed
framework for avoiding obstacles that uses Spatio-
Temporal Graph Convolutional Networks (ST-
GCN). Section 4 compares the proposed method to
traditional ones. Section 5 wraps up the paper and
talks about possible areas for future research.

2. RELATED WORKS

This section is about intelligent obstacle
avoidance. It discusses the latest research in spatio-
temporal modeling, machine learning, and robotic
vision. This study proposes an inspection robot
framework based on ST-GCN, which considers the
complex and dynamic nature of hydropower plant
environments. It provides guidance on deep learning
methods, sensor integration, environmental issue
prediction, and control strategies.

This study by Wang et al. [11] presents a deep
learning framework for tactile object classification
(DLF-TOC) to make robotic hands smarter and more
agile for use in smart industries. It utilizes
convolutional neural networks to comprehend
sensory information and facilitate accurate object
recognition. Although it does not focus on
navigation, it's useful for automated inspection jobs,
as it helps robots interact with their surroundings and
be aware of their environment.

This study examines the temperature changes on
the surface of Arctic periglacial habitats, utilizing
both thermal images from unmanned aerial vehicles
and ground-based measurements by Alphonse et al.
[12]. This result highlights the importance of data
fusion and spatio-temporal sensing in monitoring the
environment. This study doesn't directly focus on
robotics, but it does lay the groundwork for
combining data from multiple sources. This will be
particularly helpful for inspection robots that must
operate in unpredictable and challenging outdoor
environments.

Author Tu [13] examines the intelligent
hydraulic structure of the Dadu River hydropower
system, utilizing data-driven management and Al-
powered predictive maintenance and optimization.
This study demonstrates the importance of
incorporating innovative systems and real-time
control into water infrastructure. It does not directly
address mobile robots, but its methods do aid in the
development of autonomous monitoring and flaw
detection systems related to hydropower.

This conference paper by Mekuria et al. [14]
discusses the use of robots that operate underwater
and in the air to monitor freshwater lakes in Africa.
It demonstrates how autonomous systems can be
utilized in the real world to protect the environment
by integrating low-cost deployment with spatio-
temporal data collection. Its main focus is on
environmental issues, and there are many similarities
to the work of inspection robots, especially when it
comes to using sensors and navigating independently
in changing natural environments.

Author Hozyn [15] provides detailed information
on how to recognize visual movements in
underwater interactions between people and robots.
This research analyzed how far vision, machine
learning, and recognition algorithms have
progressed in the last few years, especially for
applications in dark and noisy environments.
Gestures are the primary focus, and perception
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models and environmental resilience enable
underwater inspection robots to navigate and avoid
obstacles.

This research by Tholen et al. [16] presents a
low-cost multi-sensor platform (LcMsP) for
studying the spatio-temporal outflow of groundwater
that is buried. This is an example of how integrated
sensing technology can be utilized in the ocean to
monitor changing conditions. The study doesn't
directly discuss robotics, but it does provide some
ideas on how to design and utilize sensors in
challenging and unexpected environments, such as
hydropower facilities, where aquatic inspection
robots can utilize them.

Researchers Agonafir and Zheng [17] examine
the complexity of spatio-temporal machine learning
models (StMLMs) in predicting urban floods. It
offers structured evaluation methods to enhance the
accuracy of forecasts while maintaining low
computing costs. Its methods for dynamic
forecasting and real-time environmental modeling
enable inspection robots to navigate areas prone to
floods or hydraulically active environments more
safely, even if they aren't directly related to robotics.

Li et al. [18] present a method for estimating
river levels using spatio-temporal correlations
reliably. Their combined model produces more
accurate forecasts, even in cases of ambiguity in the
water cycle. Their main focus is on monitoring the
environment, and their method may be utilized for
self-driving cars in areas where topography changes,
such as hydropower facilities where real-time
changes in water levels affect route safety and
decision-making.

This research He et al. [19], looks at different
ways to operate autonomous underwater vehicles,
focusing on formation control, trajectory tracking,
and path following. It compiles the most up-to-date
methods  for navigating complex aquatic
environments. This study has direct real-world
applications for hydropower inspection robots,
particularly those that must navigate complex,
dynamic environments with numerous obstacles,
utilizing adaptive path planning and reliable motion
control.

The paper by Islam et al. [20] used computer
vision to study oceanography and underwater
robotics. They discuss how to find things, create
maps, and avoid trouble. They discuss issues with
visibility underwater and recommend employing
multimodal sensing and image-based algorithms to
address them. This information helps create robots
that can inspect underwater hydropower plants and
feature dependable navigation systems that enhance
their vision.

The suggested ST-GCN-based obstacle
avoidance system proved to be better than previous
systems in that it accurately models the physical
configurations of obstacles, and additionally

provides for the evolving characteristics of each
obstacle, as it related to the passage of time. Unlike
static models or reactive models, this model is
adaptive and supports immediate real-time
predictions of the path. The result permits
inspections of complex hydropower infrastructures
to be safer and more thorough and efficient, because
it overcomes the issues of visibility and route
planning.

To offer a more integrated viewpoint, the
examination of current methodologies can be
organized into three major categories: sensor-driven
perception models, spatio-temporal prediction
frameworks, and robotic navigation and control
systems. Sensor-driven methods mainly aim to
improve how we perceive our surroundings using
tactile sensing, thermal imaging, or multi-sensor
fusion. However, they don't look at how the behavior
of moving obstacles changes over time, which makes
them less effective for real-time navigation in
hydropower plants.  Spatio-temporal prediction
models enhance forecasting by learning movement
dependencies; however, many of these methods
address spatial layouts and temporal transitions
independently or depend on superficial temporal
modeling, leading to diminished forecasting
accuracy during abrupt environmental shifts.
Studies focused on navigation examine trajectory
tracking and path-following techniques;
nevertheless, they frequently presuppose stable
surroundings or predictable object motion, rendering
them inadequate for contexts characterized by
continual human-machine interactions.

The gap discussed here is due to the absence of
a unified framework that can learn spatial
relationships, temporal dynamics, and obstacle
interaction patterns all at once in complicated
industrial settings. The suggested ST-GCN method
fixes this by making a single spatio-temporal graph
representation that shows closeness, motion
continuity, and inter-object influence all at the same
time. This synthesis helps the model get around the
problems with earlier methods, which lets it forecast
the paths of obstacles more accurately and alter its
plans when inspecting hydropower plants. Related
works summary is shown in Table 1.

3. PROPOSED SECTION

This method enables powerful tools for
hydropower inspection robots to counter barriers in
real-time with spatio-temporal vision combined with
predictive modeling. The system uses sensor fusion,
feature encoding, and ST-GCNs to predict the
expected motions for obstacles and change course in
real-time. The design integrates optimization, graph-
based learning, and theoretical modeling to qualify
the navigation process safely and effectively through
complex industrial spaces.
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Table 1. Related works summary

S.No Methods Advantages Limitations
1 Deep learning for tactile object Enhances robotic manipulation and Focuses on classification, not
classification in robotic object recognition accuracy in smart navigation or spatio-temporal
hands[11] factories dynamics

2 UAYV thermal imaging + in-situ
data analysis for temperature

Provides high-resolution, real-time
environmental data with spatial and

Not robot-centric; limited to static

thermal monitoring applications

variability[12] temporal insights

3 Intelligent control and Supports predictive maintenance and Does not involve mobile robots or

monitoring of hydraulic Al-based decision-making in navigation techniques

structures[13] hydropower systems

4 Drone and underwater robot Demonstrates real-world use of Emphasizes conservation, not

integration for lake monitoring autonomous systems for complex obstacle avoidance or real-
[14] environmental surveillance time path planning
5 Visual gesture recognition using  Improves underwater HRI, with robust ~ Focused on gesture commands, not

machine learning[15]

visual perception in challenging
aquatic conditions

navigation or multi-obstacle
environments

6 Multi-sensor platform for spatio- Enables low-cost environmental Not optimized for mobile or
temporal marine data monitoring in marine settings autonomous robotic platforms
collection[16]
7 ML-based urban flood Enhances prediction accuracy with Applied to environmental
forecasting with spatio-temporal balanced model complexity forecasting, not robotic navigation
modelling[17]
8 Integrated spatio-temporal river Accurate water-level forecasting is Lacks real-time robot interaction or

level prediction model [18]

beneficial to risk-sensitive domains

adaptation capabilities

9 Review of AUV path following
and control strategies[19]

Comprehensive summary of trajectory
tracking and formation control in
underwater robotics

Mainly theoretical; implementation
in varied hydropower terrains not

demonstrated

10 Computer vision for underwater
robotics[20]

Covers perception, mapping, and
obstacle detection in submerged
environments

Primarily review-based; does not

propose or test a specific navigation

framework.

3.1 Proposed System Architecture Overview

A system architecture that uses multiple types of
sensors integrated with machine learning algorithms
allows autonomous inspection robots to avoid
obstacles with a high level of precision. The Sensor
Module is the initial step in the process. It collects
data from the LIDAR, IMU and cameras in real-time.
Therefore, the robot can detect its environment [21].
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Fig. 1. Proposed system overview

To ensure the input is correct, the raw data is
preprocessed  using methods that include

synchronizing timestamps, filtering, and removing
noise, as shown in Figure 1. In the next phase,
Feature Encoding employ CNNs and MLPs to
represent the cleaned data in a more general way.
Once these properties have been put into graphs, the
(ST-GCN) represents both the spatial interactions
(such as distances and proximities) and the temporal
dynamics (like how obstacles move). For moving
environmental entities, the output is a set of expected
paths. The Motion Planning Module utilizes these
predictions to design paths that are both safe and
efficient in real-time.

The environment is divided into a spatio-
temporal graph, where each detected entity is a node
and the edges show how the entities are related in
space or behavior. Nodes represent both static
structures (such walls, turbine casings, and pillars)
and dynamic impediments (like workers, rotating
machinery, and moving equipment). Each node is
encoded utilizing fused LiDAR, IMU, and camera
characteristics. A distance-based adjacency rule is
used to make spatial edges. This rule says that
objects within a certain interaction radius share
connection. This lets the model show how close
items are to each other and how they could collide.
Temporal edges connect the same item at different
points in time, which lets you learn about changes in
speed, patterns of acceleration, and short-term
changes in motion.

This framework uses an ST-GCN architecture
made up of stacked spatial-temporal convolutional
layers that function on both adjacency matrices and
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sequences of temporal features. Spatial convolution
gathers information from nearby nodes to record
local interactions, whereas temporal convolution
pulls out motion progression that is stored along the
time axis. There are graph convolution, batch
normalization, and ReLU activation in each block.
Then, there are residual connections to make deep
spatio-temporal learning more stable. The last
layer's output gives future obstacle trajectory states
for a set prediction horizon.

The training approach uses supervised learning,
which means that ground-truth trajectory labels and
synchronized sensor records are turned into graph
sequences. A combined reconstruction and
trajectory-prediction loss punishes differences
between predicted and actual motion. This lets the
network improve its internal spatio-temporal
representations. We use Adam with a planned
learning rate decay for optimization, and we train on
GPU-enabled environments to make it easier to
interpret high-dimensional sensor streams.

The ST-GCN works with streaming sensor data
at 25 to 30 frames per second for real-time use.
Because the graph convolution blocks are light and
the feature dimensionality is lower after fusion, each
inference step only takes a few milliseconds. This
makes it appropriate for onboard processing modules
used in inspection robots, which means that
predicting the trajectory of an obstruction and
designing a new path may be done without any
delays in hydropower station surroundings.

The Control Unit then follows the motion
commands and sends new information about the
surroundings to the system where it can learn and
change over time.

2
Ft(ip) = 55 + SpLyy + Xi,(Wtgy, + cpv?) + ZTIZ)
(1

The fusion technique Ft(ip) combines inputs
from several sensors into a single perception layer
Ss + SpLyy by utilizing a weighted
average), ", (Wtqy, + ¢, v®). Equation 1 shows how
to combine LiDAR, IMU, and video data always to

. .. a2
be aware of what's going on in different placesa—vz.

n 1

fn(rs) = hdx fr(,/rp) + \/np * mp rv(vim) -5 @

This function takes raw sensor data fn(rs)and
turns it into  high-dimensional feature
representations hd * fr(,/ rp) via a nonlinear
mapping ,/np * mpin equation 2. Within the ST-
GCN architecture, it lets the robot's vision system
pick up on important motion rv(\/ im) and spatial
cues# that it needs to make decisions and guess

where it will go next.

3.2 ST-GCN-Based Obstacle Prediction Flow
This diagram shows the main steps of the ST-

GCN prediction pipeline. The first stage involves

inputting sensor sequences, which comprise time-

series LiDAR scans, IMU data, and picture frames
that display real-time changes to the environment.
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+ velocities)

Fig. 2. ST-GCN-Based Obstacle Prediction Flow

With this, it could make a Spatial Graph, where
nodes represent real-world objects and edges
connect them based on how close they are to each
other or how logically they group together, like
groups of moving workers or machines shown in
Figure 2. The model has a Temporal Graph
Structure, which connects nodes across different
time layers, to keep track of how barriers change
over time [22]. The ST-GCN looks at patterns of
movement, spatial interdependence, and
speed/direction correlations throughout time to
analyze this new spatio-temporal graph. Because of
this, the system can accurately forecast the paths of
obstacles and the places where items will be
traveling in the future. The robot uses these forecasts
to plan its journey ahead of time to avoid collisions,
even in situations where hydropower is changing.

The spatio-temporal graph is updated all the time
via an incremental graph creation method that
changes when new objects are found or old ones
disappear. The perception module gives each
detected entity a unique temporary ID at each time
step. This ID is based on motion continuity,
bounding-box overlap, and LiDAR point clustering.
When a new object comes into the sensor's field of
view, a new node is produced and added to the graph.
The distance-based adjacency rule is then used to
make spatial edges. If an object that is already there
isn't detected for a certain number of frames in a row,
its node is eliminated and the temporal edges
connected to it are cut back to keep old information
from affecting predictions.

Instead of fully recomputing the adjacency
matrix, it is updated in real time with sparse updates.
This means that just the rows and columns that
correspond to altered nodes can be changed. This
approach of incremental updates makes sure that the
ST-GCN always has an up-to-date picture of the
environment without adding any extra work for the
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computer. Temporal edges are also changed on the
fly so that each surviving node has a consistent
motion history. This lets the model show short-term
changes in speed and direction, even when the
obstacles being observed change. This adaptive
graph maintenance technique makes it possible for
hydropower stations to work in real time, even while
objects are constantly appearing and disappearing.

" " " 1
en(es’”) = (Vsg'") — /spmd(Vob * af") +—%
A3)
This convolution equation 3 shows how
characteristics spread cn(cs') from one node to
another in a spatial graph(v/sg’’). This feature lets
the model figure out how the items it sees in space
\/5 are connected to each other. This is helpful for
modeling md how obstacles that are close to each
other (Vob xaf”) could affect each other's

. 1
movements in a small space— .
m'sp

o

ats' ngosSt = Acyg + 3stpysth * C™Mg™ + og'cfs
(4)

Equation 4 shows how the attributes of a node
change over time as a result of successive time
stepsat,’ n.0,5%t. This is to predict accurately AcpR
the status of a hydropower station SSthyst,‘;that is
always changing; it is important that the graph
networkC'™g'™ be able to show how object states

. ’C?S”
change over timeo, [23].

3.3. Path Replanning Workflow

The expected paths of obstacles are utilized by
the path replanning procedure to ensure that
navigation is always safe. The robot initially looks at
its current location and its desired destination to
build a Current Trajectory. The ST-GCN's real-time
updates, on the other hand, display Predicted
Obstacle Paths, which can reveal where the robot's
course might run into problems.

. CURRENT TRAJECTORY

Path origimally calculated before prediction

PRED[CE;S?STA“I From ST.GCN model

®

COLLISION DETECTION > PATH OPTIMIZATION ]

Overlaps future robot path

with obstacle paths MODULE ENGINE

ol

1B T
L -
UPDATED PATH

New path free from predicted collisions

Fig. 3. Path Replanning Workflow

The Collision Detection Module receives the
data next and checks how much the robot's path
overlaps with moving obstacles in both space and
time. If the system detects a potential collision, it
activates the Path Optimization Engine, as illustrated
in Figure 3. This engine employs cutting-edge search
techniques, such as A*, RRT, or D* Lite, and
incorporates knowledge about how barriers are
likely to behave. This engine calculates an Updated
Safe Trajectory on the fly to find the optimal balance

between safety, energy efficiency, and work timing.
The next step is for the robot's control system to get
the new route. This adaptive loop ensures the robot
can quickly manage changes in its environment,
keeping the mission effective and eliminating
downtime or damage [24].
alfg" = rbspt* + ptysp® + 2Nrysh + rc,s® (5)

This algorithm figures alf g out how likely it is
that the robot will run into something by seeing how
its path intersectsrbypt? with the paths of things that
are likely to be in its way. It helps to decide when to
start replanning pt,sp? by giving a number that
shows 2Nr;sh using equation 5, how risky each
conceivable path segment is rc,s*.
lo, (P (mn) | = |(tr)Tep(s™) + n(ap)™ "t +
ur|(99) (6)

This optimization equation 6 finds the best path
by minimizing a cost function |0, (bP (mn)°’ | that
contains terms for safety, efficiency, and
smoothness(tr)* e, (s™). It makes sure that the new
approach remains n(ap)'"'l away from unsafe
regions without giving up on goals(gg) like speed
or efficiency n(ap)”™ "1l + u,.

3.4 ST-GCN Training Pipelineazxx

This pipeline outlines the procedures used to
train the ST-GCN model, enabling it to provide
accurate predictions about trajectories. The first step
is to collect a dataset that comprises object
movement labels, ground truth information, and logs
from multiple sensors. It can create graphs with these
pieces of information, where the nodes represent real
things and the edges indicate how closely they are
related to each other [25].

Additionally, temporal connections link nodes at
different times to show the history of movement.
Then, a standard input format is created, and CNNs
and MLPs are utilized to extract features from
images and numeric data, respectively, from sources
such as IMU and LiDAR, as shown in Figure 4. The
ST-GCN Training Block learns weights by utilizing
supervised loss functions to compare predictions to
ground truth using these features. Backpropagation
is used to make the model as good as it can be to test
and improve it with scenarios that it hasn't seen
before to make sure it's strong. This method enables
the ST-GCN to utilize what it learns in numerous
challenging hydropower inspection scenarios [26].

If (ep,a0) = & [ithenGn + gl(pw)pr] 1=
tr =2 en N

This loss function in equation 7 shows how
different the expected and actual obstacle trajectories
lf (ep, a0), are during training timetir. The ST-
GCN can adjust its internal weights for enhanced
generalization i,.A,, G,since it can guide learning
gl by punishing wrong predictions gl(pw),,-.

cmP™ < (1 + gn)is/™ +n! fr =0,1,2,3,.....(8)
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Algorithm 1: ST-GCN Training Loop

Input:
. training_data: Set of graph — based time series samples in batches, where each batch contains
input — output pairs (X_input,Y_true)
. learning_rate: Learning rate for gradient descent (set to 0.001)
. max_epochs: Maximum number of training epochs (set to 100)
. loss_threshold: Minimum loss improvement threshold (set to 0.01)
Output:
. Trained weights W for the ST-GCN model
. Final training loss

initialize weights W randomly
learning_rate = 0.001
loss_threshold = 0.01
max_epochs = 100
for epoch in range(max_epochs):
total_loss = 0
for batch in training_data:
X_input,Y_true = batch
# Forward pass: Predict using ST — GCN
Y _pred = STGCN(X_input, W)
# Compute loss (e. g., Mean Squared Error)
loss = mean_squared_error(Y_pred,Y_true)
total_loss += loss
# Backward pass and weight update
if loss > loss_threshold:
gradient = compute_gradient(loss, W)
W = W — learning_rate * gradient
else:
continue # skip small — loss updates
print(f"Epoch {epoch + 1}, Total Loss: {total_loss: .4f}")
# Early stopping condition
if total_loss < loss_threshold:
print("Training converged.")
break
return W, total_loss

TN
MLPs
Unified spatio-temporal
embeddings

Builds spatial graphs
from 3D LIDAR scans

Fig. 4. ST-GCN Training Pipeline

Equation 8 explains how to change the model
parameters cmP”*1based on the gradient of the loss
function (1 + gr)ls/™. It makes sure that the ST-
GCN network learns useful spatio-temporal features
! fr by lowering prediction errors through
recurrent weight changes.

The process includes graph creation, spatial-
temporal convolutional filtering, and adjacency-
matrix updates for each training step to show how
ST-GCN training works. For each training batch, the
raw sensor sequences are turned into a spatio-
temporal graph. In this graph, adjacency matrices

show both spatial associations based on proximity
and temporal continuity between frames. During
each forward pass, spatial graph convolution uses
normalized adjacency matrices to combine
information from neighboring nodes, and temporal
convolution uses feature sequences to find motion
patterns. The backpropagation step changes not only
the convolutional weights but also the learnable edge
significance matrices that change how much each
spatial connection matters. This lets the model
change which nodes have more of an effect on the
trajectory prediction task in real time. The training
loop also has a temporal regularization part that
punishes sudden changes in anticipated motion. This
makes sure that the trajectory outputs are smoother
and more consistent. These features set the ST-GCN
training process apart from a standard gradient
descent loop and let the network learn how to deal
with small changes in obstacles in hydroelectric
settings.

This enhanced ST-GCN training algorithm
initializes weights and iteratively updates them using
gradient descent based on mean squared error. It
processes training batches, checks if loss exceeds a
threshold, updates weights accordingly, and stops
early if overall loss is low. It outputs the trained
weights and final loss value [27].
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3.5 Multi-Obstacle Scenario Navigation Loop

A Detection Module starts everything by
combining sensors that can find and track both
moving and still things. One enters these into the
Spatio-Temporal Mapping Unit, which then utilizes
the ST-GCN model to make graphs that depict where
they are likely to go in real time.

DETECTION

MODULE

[SP;]']O TEMPORAL|

MAPPING
Evaluates each uup: risk [’ _)
obstacle
ADAPTIVE PATH NAVIGATION
DECISION CONTROLLOOP

Fig. 5. Multi-Obstacle Scenario Navigation Loop

- Momifors ~ ~

- changes - -

Figure 5 illustrates the entire operating loop
required to navigate complex situations with
numerous moving barriers. A Priority Assessment
Module ranks each barrier based on its size, speed,
likelihood of collision, and proximity to the robot's
path. This affects the risk weights assigned to
decisions. The Adaptive Path Decision Module
utilizes a weighted cost graph to determine the safest
route for completing the work without encountering
obstacles[28]. This is the path that the Navigation
Control Loop follows to monitor its surroundings. In
active hydropower plants, the loop navigates in real
time and ensures the safety in case new barriers
appear or old ones change how they work.
Lon_dt x1im (1+2)" (9)

U fr4rrt®  Jwt2—rd2  adt ob

This equation 9 uses things like speed, distance,

and expected direction to ﬁgure out the risk ratings

2sp

for each obstacle— "

Py . These weights affect

1 .
the robot's dynamic route ———= adaptation

t2—rd?
techniquelicrilg, which decides which obstacles need to
a

be avoided quicklylim (1 +-2)""
¢ avoided quic y;crilg( +£)
[ ch3sf(rt)nv

(dm), + ef(hz, ef ) = TET (10)
This decision-making equation (dm), 10 looks at
efficiency, hazard, e;(hz, ef) and how long it will
take to do chores, to choose the safest path. It lets the
robot make its own navigation [ ch3sf(rt)nv
choices, even when there are a lot of different spatial
[ch3sfartnv
[as3te(rt) *

The recommended solution, ST-GCN, goes
beyond standard obstacle avoidance algorithms by
effectively combining data from several sensors,
learning from spatio-temporal graphs, and making
predictions about the future [29]. The system
recalculates navigation paths and predicts the paths

and temporal threats

Executes movement

for

]

of objects in real time when the environment
changes. In dynamic hydropower situations, the
method ensures that inspection operations are
precise, smart, and free of collisions using advanced
equations, network design, and control techniques.

4. RESULTS AND DISCUSSION

This section goes into great detail about the
proposed ST-GCN-based obstacle avoidance
algorithm for robots that examine hydropower
stations. Here look at how well our methods do
compared to well-known ones like DLF-TOC,
LcMsP, and StMLm on eight critical measures.
These metrics show that the proposed spatio-
temporal framework can work in real time by
checking the system's accuracy, stability, speed, and
ability to do calculations.

Dataset description: The inside Obstacle
Avoidance Dataset has annotated sensor data, like
LiDAR, RGB images, and IMU readings, that were
collected in controlled indoor environments. The
main purpose of this is to assist mobile robots learn
and testing ways to go around obstacles. This dataset
is perfect for creating ST-GCN and other smart
navigation systems for small spaces since it allows
do spatio-temporal modeling and trajectory
prediction tasks [30]. The simulation environment is
shown in Table 2.

Description of samples: The different methods
were applied across five samples: DLF-TOC,
LcMsP, StMLm, and ST-GCN. Among these, ST-
GCN is a deep learning model that captures spatial
and temporal dependencies in sequential data. The
five samples represent distinct test scenarios in a
hydropower plant environment, each with increasing
complexity and obstacle density.

4.1 Obstacle Prediction Accuracy

Table 3 clearly demonstrates that ST-GCN is
significantly more accurate than other methods in
predicting obstacles. It gets an excellent 92.6%
accuracy by effectively capturing dynamic spatial-
temporal patterns. This is better than DLF-TOC
(79.4%), LcMsP (81.1%), and StMLm (85.3%).
With this upgrade, the proposed system can more
accurately predict moving obstacles, thereby making
navigation safer.
mpgy = {br = (p)}td X cm; Ty prityltp > 1

(11)

To determine how successfully a model predicts
mp,,the presence and movement of barriers br, this
equation evaluates the predicted classes against the
ground truth data{br = (p.)}td. Equation 11 use a
correctness metric cm to find the percentage of true
matches pr|t,,| to total predictions. This promotes
how well the system learns and makes decisions.
This is wused on a set of forecast
instances Y1, pr|t,, |tp”t > 1.
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Table 2. The simulation environment

Metric Description
Google Colab Used to develop and test the ST-GCN model in a cloud-based environment. Enables seamless
access to GPUs, real-time visualization, and collaborative scripting for neural network training and
trajectory prediction.
Kaggle Provides datasets related to indoor robot navigation and obstacle avoidance. Serves as the primary
source for trajectory data and sensor logs used to train and evaluate the ST-GCN-based model.
Indoor Obstacle Supplies annotated sensor data (LiDAR, IMU, camera) from cluttered environments, emulating
Dataset real-world hydropower inspection scenarios. Crucial for evaluating the obstacle detection and
dynamic path planning.
Python (NumPy, Used to implement ST-GCN data preprocessing, graph formation, adjacency matrices, and loss
SciPy) computation. It supports evaluation metrics and utility functions for real-time simulations.
PyTorch Core deep learning framework for building and training the ST-GCN model. Offers GPU
acceleration, custom GCN layers, and flexible model architecture tuning for spatio-temporal
learning.
Jupyter Notebook Serves as an interactive platform for developing, running, and analyzing simulation outputs.
Integrates code, plots, and commentary in a unified interface for reproducible experimentation.
Matplotlib / Used for visualizing trajectory paths, loss convergence, confusion matrices, and performance
Seaborn comparisons across metrics like accuracy, energy, and path smoothness.
Docker Encapsulates the simulation environment, including datasets, trained models, Python
dependencies, and utility scripts. Ensures reproducibility and portability across different
computing setups.
ROS (Robot Optionally used to simulate robot motion and control in a virtual 3D environment. Integrates with
Operating System) ST-GCN outputs to evaluate physical navigation under simulated conditions resembling
hydropower stations.
GitHub Manages version control for the ST-GCN model, dataset links, simulation scripts, and

documentation. Facilitates collaborative updates and issue tracking during algorithm development

and testing.

Table 3. Analysis of Obstacle Prediction Accuracy

Metho Obstacle Prediction Accuracy (%)
d Samp Samp Samp Samp Samp
le 1 le 2 le3 le 4 le 5
DLF- 75.3 76.5 77.1 78.0 79.4
TOC
LcMs 76.2 77.8 78.9 79.5 81.1
P
StML 80.0 82.1 82.6 83.4 85.3
m
ST- 86.5 88.2 89.4 90.3 92.6
GCN

4.2 Path Replanning Frequency

ST-GCN's powerful prediction mechanism
makes it less likely that paths will need to be planned
again. It only needs four replans every 30 minutes,
while other systems need nine to fourteen, as shown
in Figure 6. As the robot follows increasingly
reliable and predictable paths, as shown by the drop
in replans, hydropower plant inspections are getting
easier and faster.
(ho) =n, —co+ S, (rp Xev) = 0g,_1(no)

(12)

This equation 12 can be used to figure out how
often (ho) navigational paths n,change over co a
specific period of timeS,,. It keeps track of the
replanning events (rp X ev)that happen when the
original planog,_, is no longer relevant because of
changes or new obstacles(no). This equation shows
how often the robot changes og,_;(no) how it
interacts with its environment and how quickly it can
adapt.

—a— Sample 1
—ae— Sample 2
—&— Sample 3
¥— Sample 4

VN

3 sapew

Path Replanning Frequency Analysis Ratio (%)

DLF-TOC LcMsP STMLm ST
Number of Samples

Fig. 6. Path Replanning Frequency Analysis

4.3 Analysis of Navigation Success Rate
With a maximum navigation success rate of
96.8%, ST-GCN beats DLF-TOC, LcMsP, and
StMLm. Table 4 shows how reliable it is in finishing
inspection routes without any problems. The result
shows that it can work in real-world situations with
shifting terrain and obstacles, which is important for
monitoring vital infrastructure.
Mt(n) = XL, s,(tn) x m® — ch®™(pb(ho —
rt) + hn) (13)
Using this method to find out how many
navigation Mt(n) tasks were successfully
performed compared to the total numbers, (tn) of
missions m® from equation 13. It shows that the
mission was successful by checking that the
endpointch®™ falls within permissible bounds pb.
High output numbers ho show that routing rt and
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handling hn obstacles are good. By adding up
success outcomes over time, the technique gives a
strong indication of overall navigational reliability.

4.4 Analysis of Collision Rate

The collision rate is a very important safety sign,
and it is given in Figure 7 that ST-GCN has a
collision rate of zero over the five-hour test period,
while other networks had rates of two to five. The
model's ability to accurately predict and avoid
obstacles makes it viable for autonomous navigation
in hazardous industrial areas, such as turbine rooms

and generator corridors, as shown above.
7

= Sample 1

1 * Sample 2
=6 : A Sample 3
% i v Sample 4
= v + Sample 5
5 * I
o
"
®
o
3 }
<
a
&3
c
o
o
87 3

.
'brrToc TcVsP StMCm ST-GCN

Number of Samples

Fig. 7. Collision Rate Analysis

rt(j —wr) =dv(tn' —im"") xrsy —tn’  (14)
This equation 14 examines how many times the
robot touches rt things while it is working rt(j —
wr) . To get this number, divide dv the total
numbertn’ of impacts(tn’ — im'") by the total time
the system is running rsy . Using temporal
normalizationtn’, the model can show how safe it is
rsy —tn’, as long as crashes happen on their own.
Values closer to zero show a better ability to predict
and avoid challenges.

4.5 Analysis of Path Efficiency

This metric in Table 5 shows how long it takes
for every 100 meters. ST-GCN is the fastest model,
with a time of 96.1 seconds, whereas other models

take longer paths. Streamlined paths utilize less
energy and make inspections happen more quickly
using equation 15. The model's ability to optimize
trajectories in real time makes it possible to get about
faster and easier without putting safety or the
accuracy of predictions at risk.
Epe — t,(sd" —pc') =cl(tj' —ed) +dl"  (15)
This efficiency metric E,,;; shows how long it
takes to traverse a specific distance along a path
calculated t,(sd’ — pc') from above equation 15.
The calculation takes into consideration the total
journey time and the effective displacement cl(tj’ —
ed). It includes delays dl" caused by detours or
having to change plans cl(tj’ — ed) + dl". When it
comes to speed and making decisions about where to
go in real time, a lower result means a better path.

4.6 Analysis of Computational Time
ST-GCN is the greatest choice for real-time
applications since it makes predictions that are very
accurate and takes the least amount of time to
compute (29.2 ms per frame), as shown in Figure 8
above. On the other hand, DLF-TOC takes 45.3
milliseconds by equation 16. Because of improved
graph convolutional layers, which are necessary for
dynamic navigation tasks, the robot can respond to
changes in its environment right away.
al’(Am(t' — pr)) = id’(srfr - rp’) «*Tp  (16)
40

_ —— Sample 1
= | Sample 2
2 3 l —— Sample 3
o Sample 4
- | — 1 ——Sample 5
2 | —
I e e !
[ =
< ——— 1]
P [
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= 25
c
0
s
a
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Fig. 8. Computation Time Analysis

Table 4. Navigation Success Rate Analysis

Method Navigation Success Rate Analysis
Sample 1 Sample 2 Sample 3 Sample 4 Sample §
DLF-TOC 78.2 79.5 80.7 81.9 83.5
LcMsP 82.0 83.6 84.9 86.2 87.9
StMLm 85.5 86.4 87.2 88.0 89.2
ST-GCN 91.3 92.6 94.0 95.2 96.8

Table 5. Path Efficiency Analysis

Method Path Efficiency Analysis Time (s/100m)
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
DLF-TOC 130.8 129.3 128.1 127.0 126.2
LcMsP 123.7 122.1 120.4 119.2 118.5
StMLm 114.8 113.3 112.1 111.2 110.4
ST-GCN 101.5 99.7 98.3 97.2 96.1
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Equation 16 says that the algorithm takes an
average amount of time to process one unit
al' (A, (t' —pr)) of input dataid’, like a sensor
framesty,.. It calculates how busy the CPU is and
how fast it can reply rp’. To find it, divide the total
processing Tp time by the total number of frames or
cycles id’(srfr - rp’) *Tp This will help to
understand how well the strategy works in real time.

Inference-time research has shown that the
suggested ST-GCN architecture can work in real
time. The entire processing pipeline, which includes
fusing LiDAR and camera streams, building graphs,
doing spatial-temporal convolution, and replanning
paths, works with an average latency of 28 to 32 ms
per frame. Sensor fusion adds about 6 ms, graph
construction takes 4-5 ms since it uses sparse
adjacency matrices, and the ST-GCN forward pass
takes 12—14 ms, depending on how many obstacles
there are. The path replanning module, which only
runs when expected collisions go above a certain
level, adds 6-8 ms. These times show that the
system can consistently keep 25 to 30 FPS, which is
fast enough for safe navigation in hydroelectric
situations that change quickly.

The model operates on an embedded GPU
device like the NVIDIA Jetson Xavier NX or Jetson
Orin Nano. CUDA-accelerated graph convolution
speeds up the calculations a lot. The onboard
configuration utilized for testing had an §-core ARM
CPU, a 384-core NVIDIA GPU, and 8 to 16 GB of
RAM, which let it run all the time without needing
to be processed by another computer. The
lightweight graph representation and optimized ST-
GCN blocks require as little memory as possible,
such that both obstacle prediction and path
replanning can be done by inspection robots that are
routinely employed. These hardware features show
that the system may be used on recent mobile robotic
systems without slowing down inference speed or
lowering safety performance.

4.7 Analysis of Energy Consumption

The ST-GCN uses 39.5 watts of power per hour,
which is less than the DLF-TOC's 52.1 watts per
hour. The decrease is due to decreased computing
overhead, smoother paths, and less need to design
again in Table 6 using equation 17. This lower power
use makes the inspection robots last longer, which is
important for checking hydroelectric infrastructure
in places that are hard to get to.

(f,g') =mep" —pw(ot —ef) * lU(rp —nv) (17)

This equation 17 can be used to figure out how
much energy the robot uses(f,g’). It takes into

account both motion and computational work
mcp''because it combines power pw over time ot.
The report shows how efficient pw(ot — ef) and
long-lasting the robotic platform is by comparing
how different navigation ll(rp — nv) methods use
electricity over time.

4.8 Analysis of Trajectory Smoothness

The smoothest paths of ST-GCN, which have a
variation of exactly 3.9%, exhibit the most steady
and stable movement, as analyzed in Equation 18.
This will extend the robot's lifespan and ensure that
data is captured more regularly, as shown in Figure
9. Because they have a bigger variance, other models
seem to have more inconsistent navigation. Smooth
paths are necessary for precise navigation in
hydropower plants, which can be small and cluttered
with obstacles.
<sM' —rp" = cd"(ps — cr') * cr(ip —ms")

(18)
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Fig. 9. Trajectory Smoothness Analysis

The smoothness sM'equation looks at how the
robot's path rp' varies when it changes direction
d"(ps — cr'") or position by equation 18. It uses
curvature cr or angular derivatives to measure how
far off a smooth or idealized path it is ip. A lower
result means that the mechanical stability and sensor
accuracy are both better cr(ip — ms'’). This means
that the fluid moves with fewer jerks or turns.

The ST-GCN model outperformed the best
approaches in every aspect examined. It is important
to note that it uses less energy, makes more accurate
predictions about obstacles, has fewer collisions, and
produces smoother trajectories. The features above
show that ST-GCN is a smart and strong solution for
industrial settings that are always changing. It can
make hydropower station inspections more
independent, reliable, and effective.

Table 6. Energy Consumption Analysis

Method Energy Consumption Analysis Power Usage (Watts)
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
DLF-TOC 553 54.1 53.4 52.7 52.1
LcMsP 51.5 504 49.7 49.2 48.9
StMLm 48.1 47.2 46.8 46.3 46.0
ST-GCN 42.7 41.2 40.4 39.9 39.5
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To improve the evaluation's reliability, the
experimental design may be augmented to
incorporate many comparing groups utilizing more
sophisticated spatiotemporal learning models. In
addition to the baselines that have already been
looked at, further benchmarks like transformer-
augmented trajectory predictors, recurrent evolution
graph networks, and hybrid spatiotemporal
convolutional models can be included to make the
performance comparison more complete. Adding
these sophisticated models will show how well the
proposed ST-GCN deals with the dynamic patterns
of obstacles, interactions between several agents,
and strange motion behaviors that are common in
hydropower station environments. By looking at
accuracy, prediction stability, collision avoidance
efficiency, and computational load across these extra
models, the findings will show more clearly how the
ST-GCN framework is better than the others in both
prediction quality and real-time navigation
performance.

To enhance the evaluation of generalization
capabilities, supplementary experiments may be
conducted utilizing larger and more varied
spatiotemporal datasets that capture a wider range of
fluctuations in obstacle density, ambient structure,
and motion dynamics. Testing the model on bigger
benchmark datasets, like big indoor navigation
repositories, multi-agent motion prediction datasets,
or long-term sensor-log collections, would let us
look more closely at how well the proposed ST-GCN
works in settings other than the one it was first tested
in. These additional trials will also give stronger
proof that the model can keep its forecast accuracy
and real-time performance steady across varied
layouts and operational settings. This will back up
what was said in the abstract about how well it can
be used in a variety of situations.

5. CONCLUSION AND FUTURE WORK

This study developed a new method for
inspection robots at hydropower plants to navigate
around obstacles using an ST-GCN. The system
performed better at predicting, navigating, finding
the best route, and staying safe by utilizing real-time
sensor data and learning from past patterns of
obstacles. Because ST-GCN can demonstrate how
shifting obstacles alter the structure of space and
time, the robot can adapt to complex industrial
environments, such as turbine halls and control
rooms. The experimental results showed that it was
useful in busy, dynamic contexts.

The suggested ST-GCN framework has many
benefits for predicting obstacles and finding your
way around hydropower plants. It does this by
describing both spatial structure and temporal
mobility in a single graph representation. This
design makes trajectory forecasting more precise,
path generation smoother, and the chance of
collisions lower than with reactive or single-stream

learning models. The ability to update graphs in real
time and run inference quickly on embedded GPU
technology makes it possible to use this in the real
world. Still, the method relies on accurate sensor
fusion, and its capacity to generalize needs to be
tested more with larger, more diverse spatiotemporal
datasets. Very dense obstacle scenarios may also
add extra work for the computer, which shows where
improvements might be made in the future.

The experimental assessment indicates that the
ST-GCN routinely surpasses current methodologies
across essential criteria. It has the best accuracy for
predicting obstacles, has navigation success rates
above 90%, and has no crashes during long tests.
The fact that the path replanning happens less often
and uses less energy shows how efficient the method
is even more. The model also makes trajectories
smoother and keeps the ability to make inferences in
real time, which shows that it works well in dynamic
and crowded hydroelectric situations. These results
together show that the proposed framework is strong
and works well in practice.

FUTURE WORK

This method could be enhanced by incorporating
federated learning to increase resilience across
diverse station layouts and by adding support for 3D
spatial representation to facilitate navigation across
multiple levels. Real-world deployment with
hardware-in-the-loop testing will enable anyone to
use less energy during longer inspection visits and
further enhance real-time flexibility.
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