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Abstract  

The inspection of hydropower stations using autonomous robots is vital for ensuring operational safety and 

efficiency. Obstacle avoidance plays a crucial role in enabling these robots to navigate complex environments 

that are filled with both static and dynamic hazards. However, existing obstacle avoidance methods often 

struggle to handle real-time changes in spatial and temporal contexts, resulting in suboptimal path planning and 

an increased risk of collision. To address these limitations, this research proposes a Spatio-Temporal Graph 

Convolutional Network (ST-GCN) based framework that effectively models both the spatial layout and 

dynamic movements of obstacles over time. The proposed ST-GCN framework processes real-time sensor data 

(LiDAR, cameras, IMU) and historical movement patterns to predict obstacle trajectories and adapt the robot’s 

navigation path accordingly. This approach allows the inspection robot to dynamically adjust its route in 

environments such as turbine halls, where moving machinery and personnel are common. Experimental 

evaluations in a simulated hydropower station environment demonstrated that the ST-GCN-based method 

significantly outperformed traditional reactive models, achieving higher accuracy in obstacle prediction and 

safer, more efficient navigation. These findings validate the effectiveness of spatio-temporal modeling for 

intelligent obstacle avoidance in industrial robotic inspection tasks. 
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1. PROLOGUE 

 

In modern hydropower stations, it is crucial to 

deploy autonomous inspection robots to ensure that 

operations are safe and efficient [1]. In these 

environments, which are both dynamic and full of 

moving machinery, people, and static obstacles, it's 

challenging to avoid obstacles because most 

conventional systems rely on reactive mechanisms 

that don't account for changes in space and time in 

real-time [2]. ST-GCN does a great job at capturing 

both the layout of the environment and how dynamic 

obstacles change over time [3]. The suggested 

methodology lets the robot change its navigation 

course ahead of time to avoid known dangers using 

real-time data from sensors like LiDAR, cameras, 

and inertial measurement units (IMU) along with 

learnt patterns from past movement paths [4]. This 

makes it possible to accurately predict how obstacles 

will move [5]. The robot's safety and efficiency are 

considerably improved when it can predict how 

obstacles will behave [6]. This is especially 

important in high-risk areas like turbine halls, where 

unexpected changes in behavior can lead to 

accidents or delays [7]. The system is much better at 

handling surprises because it can take in both real-
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time environmental data and patterns acquired from 

past activities[8]. The study suggests that industrial 

robotics can benefit from deep learning methods 

utilizing an ST-GCN-based technique that extends 

beyond merely avoiding obstacles, offering a 

solution for the future [9]. According to tests 

conducted at a simulated hydropower facility, the 

proposed approach enhances both trajectory 

predictions and real-time navigation [10]. These 

results support the hypothesis that intelligent robots 

could benefit from employing spatio-temporal 

networks in general, and especially for checking 

infrastructure that is important for public safety. 

 

1.1 Problem statement 

It is well known that typical obstacle avoidance 

algorithms for inspection robots struggle to operate 

effectively in hydropower stations. There are both 

permanent structures and moving obstacles at these 

stations, such as people and machines. These rules 

make it harder to find the way around and make it 

more likely that will crash into anything. There is a 

need for better prediction system that can deal with 

changes in space and time. 

In the last few years, a number of predictive and 

learning-based obstacle avoidance models have been 
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developed. However, most of them can't simulate 

spatial relationships and temporal evolution together 

in industrial settings that change quickly.  Most 

current methods deal with spatial and temporal data 

separately, which means they don't respond quickly 

to changes in barrier behavior. This is especially true 

in hydropower stations, where people, spinning gear, 

and mobile equipment create constant, non-linear 

motion patterns. Current prediction-driven 

approaches also depend on fixed temporal frames or 

static representations, which limits their ability to 

change the paths of obstacles when there are 

unexpected, short-term changes. 

 The gap this work addresses is the lack of a 

single spatio-temporal learning framework that can 

capture both the structural arrangement of 

hydropower station surroundings and the changing 

movement patterns of various barriers that interact 

with each other.  The suggested ST-GCN model 

closes this gap by putting geographic closeness, 

inter-object impact, and time-dependent motion 

transitions into one graph-based representation.  This 

lets the system predict the paths of obstacles more 

accurately and change navigation decisions in real 

time.  The technology offers a more flexible, 

context-sensitive prediction system than traditional 

learning models. This makes it especially useful for 

hydropower inspection situations when 

environmental conditions change without warning. 

 

1.2 Motivation 

Self-driving inspection Robots that work in 

hydropower plants have a lot of trouble getting 

around because machines and people move in ways 

that are hard to predict. Our research attempts to 

make these environments safer and more efficient 

for robots. In such situations, smart, real-time 

obstacle avoidance and adaptive course planning are 

crucial, but the solutions are often inadequate. A 

spatio-temporal, predictive strategy is needed. 

 

1.3 Contributions 

This study presents a novel approach for 

inspection robots at hydropower stations to navigate 

around obstacles using Spatio-Temporal Graph 

Convolutional Networks (ST-GCN). By providing 

accurate predictions of obstacle trajectories and 

dynamically adjusting navigation paths in real-time 

based on sensor inputs and historical movement data, 

the technology enhances the safety, efficiency, and 

adaptability of complex industrial settings. 

The remaining section of this paper is set up like 

this: In Section 2, this paper look at relevant studies 

and strategies that have been suggested before. In 

Section 3, paper discussed about the proposed 

framework for avoiding obstacles that uses Spatio-

Temporal Graph Convolutional Networks (ST-

GCN). Section 4 compares the proposed method to 

traditional ones. Section 5 wraps up the paper and 

talks about possible areas for future research. 

 

2. RELATED WORKS 

 

This section is about intelligent obstacle 

avoidance. It discusses the latest research in spatio-

temporal modeling, machine learning, and robotic 

vision. This study proposes an inspection robot 

framework based on ST-GCN, which considers the 

complex and dynamic nature of hydropower plant 

environments. It provides guidance on deep learning 

methods, sensor integration, environmental issue 

prediction, and control strategies. 

This study by Wang et al. [11] presents a deep 

learning framework for tactile object classification 

(DLF-TOC) to make robotic hands smarter and more 

agile for use in smart industries. It utilizes 

convolutional neural networks to comprehend 

sensory information and facilitate accurate object 

recognition. Although it does not focus on 

navigation, it's useful for automated inspection jobs, 

as it helps robots interact with their surroundings and 

be aware of their environment.  

This study examines the temperature changes on 

the surface of Arctic periglacial habitats, utilizing 

both thermal images from unmanned aerial vehicles 

and ground-based measurements by Alphonse et al. 

[12]. This result highlights the importance of data 

fusion and spatio-temporal sensing in monitoring the 

environment. This study doesn't directly focus on 

robotics, but it does lay the groundwork for 

combining data from multiple sources. This will be 

particularly helpful for inspection robots that must 

operate in unpredictable and challenging outdoor 

environments.  

Author Tu [13] examines the intelligent 

hydraulic structure of the Dadu River hydropower 

system, utilizing data-driven management and AI-

powered predictive maintenance and optimization. 

This study demonstrates the importance of 

incorporating innovative systems and real-time 

control into water infrastructure. It does not directly 

address mobile robots, but its methods do aid in the 

development of autonomous monitoring and flaw 

detection systems related to hydropower. 

This conference paper by Mekuria et al. [14] 

discusses the use of robots that operate underwater 

and in the air to monitor freshwater lakes in Africa. 

It demonstrates how autonomous systems can be 

utilized in the real world to protect the environment 

by integrating low-cost deployment with spatio-

temporal data collection. Its main focus is on 

environmental issues, and there are many similarities 

to the work of inspection robots, especially when it 

comes to using sensors and navigating independently 

in changing natural environments.  

Author Hożyń [15] provides detailed information 

on how to recognize visual movements in 

underwater interactions between people and robots. 

This research analyzed how far vision, machine 

learning, and recognition algorithms have 

progressed in the last few years, especially for 

applications in dark and noisy environments. 

Gestures are the primary focus, and perception 
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models and environmental resilience enable 

underwater inspection robots to navigate and avoid 

obstacles.  

This research by Tholen et al. [16] presents a 

low-cost multi-sensor platform (LcMsP) for 

studying the spatio-temporal outflow of groundwater 

that is buried. This is an example of how integrated 

sensing technology can be utilized in the ocean to 

monitor changing conditions. The study doesn't 

directly discuss robotics, but it does provide some 

ideas on how to design and utilize sensors in 

challenging and unexpected environments, such as 

hydropower facilities, where aquatic inspection 

robots can utilize them. 

Researchers Agonafir and Zheng [17] examine 

the complexity of spatio-temporal machine learning 

models (StMLMs) in predicting urban floods. It 

offers structured evaluation methods to enhance the 

accuracy of forecasts while maintaining low 

computing costs. Its methods for dynamic 

forecasting and real-time environmental modeling 

enable inspection robots to navigate areas prone to 

floods or hydraulically active environments more 

safely, even if they aren't directly related to robotics.  

Li et al. [18] present a method for estimating 

river levels using spatio-temporal correlations 

reliably. Their combined model produces more 

accurate forecasts, even in cases of ambiguity in the 

water cycle. Their main focus is on monitoring the 

environment, and their method may be utilized for 

self-driving cars in areas where topography changes, 

such as hydropower facilities where real-time 

changes in water levels affect route safety and 

decision-making. 

This research He et al. [19], looks at different 

ways to operate autonomous underwater vehicles, 

focusing on formation control, trajectory tracking, 

and path following. It compiles the most up-to-date 

methods for navigating complex aquatic 

environments. This study has direct real-world 

applications for hydropower inspection robots, 

particularly those that must navigate complex, 

dynamic environments with numerous obstacles, 

utilizing adaptive path planning and reliable motion 

control. 

The paper by Islam et al. [20] used computer 

vision to study oceanography and underwater 

robotics. They discuss how to find things, create 

maps, and avoid trouble. They discuss issues with 

visibility underwater and recommend employing 

multimodal sensing and image-based algorithms to 

address them. This information helps create robots 

that can inspect underwater hydropower plants and 

feature dependable navigation systems that enhance 

their vision. 

The suggested ST-GCN-based obstacle 

avoidance system proved to be better than previous 

systems in that it accurately models the physical 

configurations of obstacles, and additionally 

provides for the evolving characteristics of each 

obstacle, as it related to the passage of time. Unlike 

static models or reactive models, this model is 

adaptive and supports immediate real-time 

predictions of the path. The result permits 

inspections of complex hydropower infrastructures 

to be safer and more thorough and efficient, because 

it overcomes the issues of visibility and route 

planning.  

To offer a more integrated viewpoint, the 

examination of current methodologies can be 

organized into three major categories: sensor-driven 

perception models, spatio-temporal prediction 

frameworks, and robotic navigation and control 

systems.  Sensor-driven methods mainly aim to 

improve how we perceive our surroundings using 

tactile sensing, thermal imaging, or multi-sensor 

fusion. However, they don't look at how the behavior 

of moving obstacles changes over time, which makes 

them less effective for real-time navigation in 

hydropower plants.  Spatio-temporal prediction 

models enhance forecasting by learning movement 

dependencies; however, many of these methods 

address spatial layouts and temporal transitions 

independently or depend on superficial temporal 

modeling, leading to diminished forecasting 

accuracy during abrupt environmental shifts.  

Studies focused on navigation examine trajectory 

tracking and path-following techniques; 

nevertheless, they frequently presuppose stable 

surroundings or predictable object motion, rendering 

them inadequate for contexts characterized by 

continual human-machine interactions. 

 The gap discussed here is due to the absence of 

a unified framework that can learn spatial 

relationships, temporal dynamics, and obstacle 

interaction patterns all at once in complicated 

industrial settings.  The suggested ST-GCN method 

fixes this by making a single spatio-temporal graph 

representation that shows closeness, motion 

continuity, and inter-object influence all at the same 

time.  This synthesis helps the model get around the 

problems with earlier methods, which lets it forecast 

the paths of obstacles more accurately and alter its 

plans when inspecting hydropower plants. Related 

works summary is shown in Table 1. 

 

3. PROPOSED SECTION 

 

This method enables powerful tools for 

hydropower inspection robots to counter barriers in 

real-time with spatio-temporal vision combined with 

predictive modeling. The system uses sensor fusion, 

feature encoding, and ST-GCNs to predict the 

expected motions for obstacles and change course in 

real-time. The design integrates optimization, graph-

based learning, and theoretical modeling to qualify 

the navigation process safely and effectively through 

complex industrial spaces. 
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Table 1. Related works summary 

S.No Methods Advantages Limitations 

1 Deep learning for tactile object 

classification in robotic 

hands[11] 

Enhances robotic manipulation and 

object recognition accuracy in smart 

factories 

Focuses on classification, not 

navigation or spatio-temporal 

dynamics 

2 UAV thermal imaging + in-situ 

data analysis for temperature 

variability[12] 

Provides high-resolution, real-time 

environmental data with spatial and 

temporal insights 

Not robot-centric; limited to static 

thermal monitoring applications 

3 Intelligent control and 

monitoring of hydraulic 

structures[13] 

Supports predictive maintenance and 

AI-based decision-making in 

hydropower systems 

Does not involve mobile robots or 

navigation techniques 

4 Drone and underwater robot 

integration for lake monitoring 

[14] 

Demonstrates real-world use of 

autonomous systems for 

environmental surveillance 

Emphasizes conservation, not 

complex obstacle avoidance or real-

time path planning 

5 Visual gesture recognition using 

machine learning[15] 

Improves underwater HRI, with robust 

visual perception in challenging 

aquatic conditions 

Focused on gesture commands, not 

navigation or multi-obstacle 

environments 

6 Multi-sensor platform for spatio-

temporal marine data 

collection[16] 

Enables low-cost environmental 

monitoring in marine settings 

Not optimized for mobile or 

autonomous robotic platforms 

7 ML-based urban flood 

forecasting with spatio-temporal 

modelling[17] 

Enhances prediction accuracy with 

balanced model complexity 

Applied to environmental 

forecasting, not robotic navigation 

8 Integrated spatio-temporal river 

level prediction model [18] 

Accurate water-level forecasting is 

beneficial to risk-sensitive domains 

Lacks real-time robot interaction or 

adaptation capabilities 

9 Review of AUV path following 

and control strategies[19] 

Comprehensive summary of trajectory 

tracking and formation control in 

underwater robotics 

Mainly theoretical; implementation 

in varied hydropower terrains not 

demonstrated 

10 Computer vision for underwater 

robotics[20] 

Covers perception, mapping, and 

obstacle detection in submerged 

environments 

Primarily review-based; does not 

propose or test a specific navigation 

framework. 

 

3.1 Proposed System Architecture Overview 

A system architecture that uses multiple types of 

sensors integrated with machine learning algorithms 

allows autonomous inspection robots to avoid 

obstacles with a high level of precision. The Sensor 

Module is the initial step in the process. It collects 

data from the LiDAR, IMU and cameras in real-time. 

Therefore, the robot can detect its environment [21]. 

 

Fig. 1. Proposed system overview 

 

To ensure the input is correct, the raw data is 

preprocessed using methods that include 

synchronizing timestamps, filtering, and removing 

noise, as shown in Figure 1. In the next phase, 

Feature Encoding employ CNNs and MLPs to 

represent the cleaned data in a more general way. 

Once these properties have been put into graphs, the 

(ST-GCN) represents both the spatial interactions 

(such as distances and proximities) and the temporal 

dynamics (like how obstacles move). For moving 

environmental entities, the output is a set of expected 

paths. The Motion Planning Module utilizes these 

predictions to design paths that are both safe and 

efficient in real-time.  

The environment is divided into a spatio-

temporal graph, where each detected entity is a node 

and the edges show how the entities are related in 

space or behavior.  Nodes represent both static 

structures (such walls, turbine casings, and pillars) 

and dynamic impediments (like workers, rotating 

machinery, and moving equipment). Each node is 

encoded utilizing fused LiDAR, IMU, and camera 

characteristics.  A distance-based adjacency rule is 

used to make spatial edges. This rule says that 

objects within a certain interaction radius share 

connection. This lets the model show how close 

items are to each other and how they could collide.  

Temporal edges connect the same item at different 

points in time, which lets you learn about changes in 

speed, patterns of acceleration, and short-term 

changes in motion. 

 This framework uses an ST-GCN architecture 

made up of stacked spatial-temporal convolutional 

layers that function on both adjacency matrices and 
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sequences of temporal features.  Spatial convolution 

gathers information from nearby nodes to record 

local interactions, whereas temporal convolution 

pulls out motion progression that is stored along the 

time axis.  There are graph convolution, batch 

normalization, and ReLU activation in each block. 

Then, there are residual connections to make deep 

spatio-temporal learning more stable.  The last 

layer's output gives future obstacle trajectory states 

for a set prediction horizon. 

 The training approach uses supervised learning, 

which means that ground-truth trajectory labels and 

synchronized sensor records are turned into graph 

sequences.  A combined reconstruction and 

trajectory-prediction loss punishes differences 

between predicted and actual motion. This lets the 

network improve its internal spatio-temporal 

representations.  We use Adam with a planned 

learning rate decay for optimization, and we train on 

GPU-enabled environments to make it easier to 

interpret high-dimensional sensor streams. 

 The ST-GCN works with streaming sensor data 

at 25 to 30 frames per second for real-time use.  

Because the graph convolution blocks are light and 

the feature dimensionality is lower after fusion, each 

inference step only takes a few milliseconds.  This 

makes it appropriate for onboard processing modules 

used in inspection robots, which means that 

predicting the trajectory of an obstruction and 

designing a new path may be done without any 

delays in hydropower station surroundings. 

The Control Unit then follows the motion 

commands and sends new information about the 

surroundings to the system where it can learn and 

change over time. 

𝐹𝑡(𝑖𝑝) = 𝑠𝑠 + 𝑆𝑝𝐿𝑦𝑟 + ∑ (𝑤𝑡𝑎𝑣 + 𝑐𝑏𝑣𝑑)𝑛
𝑖=1 +

𝑑2𝑝

𝑎𝑣2

  (1) 

The fusion technique 𝐹𝑡(𝑖𝑝)  combines inputs 

from several sensors into a single perception layer 

𝑠𝑠 + 𝑆𝑝𝐿𝑦𝑟  by utilizing a weighted 

average∑ (𝑤𝑡𝑎𝑣 + 𝑐𝑏𝑣𝑑)𝑛
𝑖=1 . Equation 1 shows how 

to combine LiDAR, IMU, and video data always to 

be aware of what's going on in different places
𝑑2𝑝

𝑎𝑣2. 

𝑓𝑛(𝑟𝑠) = hd∗ 𝑓𝑟(√𝑟𝑝) + √𝑛𝑝 ∗ mp 𝑟𝑣(√𝑖𝑚) −
1

𝑠𝑝
    (2) 

This function takes raw sensor data 𝑓𝑛(𝑟𝑠)and 

turns it into high-dimensional feature 

representations hd ∗ 𝑓𝑟(√𝑟𝑝)  via a nonlinear 

mapping √𝑛𝑝 ∗ mp in equation 2. Within the ST-

GCN architecture, it lets the robot's vision system 

pick up on important motion 𝑟𝑣(√𝑖𝑚)and spatial 

cues
1

𝑠𝑝
 that it needs to make decisions and guess 

where it will go next. 

 

3.2 ST-GCN-Based Obstacle Prediction Flow 

This diagram shows the main steps of the ST-

GCN prediction pipeline. The first stage involves 

inputting sensor sequences, which comprise time-

series LiDAR scans, IMU data, and picture frames 

that display real-time changes to the environment. 

 

Fig. 2. ST-GCN-Based Obstacle Prediction Flow 

 

With this, it could make a Spatial Graph, where 

nodes represent real-world objects and edges 

connect them based on how close they are to each 

other or how logically they group together, like 

groups of moving workers or machines shown in 

Figure 2. The model has a Temporal Graph 

Structure, which connects nodes across different 

time layers, to keep track of how barriers change 

over time [22]. The ST-GCN looks at patterns of 

movement, spatial interdependence, and 

speed/direction correlations throughout time to 

analyze this new spatio-temporal graph. Because of 

this, the system can accurately forecast the paths of 

obstacles and the places where items will be 

traveling in the future. The robot uses these forecasts 

to plan its journey ahead of time to avoid collisions, 

even in situations where hydropower is changing. 

The spatio-temporal graph is updated all the time 

via an incremental graph creation method that 

changes when new objects are found or old ones 

disappear.  The perception module gives each 

detected entity a unique temporary ID at each time 

step. This ID is based on motion continuity, 

bounding-box overlap, and LiDAR point clustering.  

When a new object comes into the sensor's field of 

view, a new node is produced and added to the graph. 

The distance-based adjacency rule is then used to 

make spatial edges.  If an object that is already there 

isn't detected for a certain number of frames in a row, 

its node is eliminated and the temporal edges 

connected to it are cut back to keep old information 

from affecting predictions. 

 Instead of fully recomputing the adjacency 

matrix, it is updated in real time with sparse updates. 

This means that just the rows and columns that 

correspond to altered nodes can be changed.  This 

approach of incremental updates makes sure that the 

ST-GCN always has an up-to-date picture of the 

environment without adding any extra work for the 
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computer.  Temporal edges are also changed on the 

fly so that each surviving node has a consistent 

motion history. This lets the model show short-term 

changes in speed and direction, even when the 

obstacles being observed change.  This adaptive 

graph maintenance technique makes it possible for 

hydropower stations to work in real time, even while 

objects are constantly appearing and disappearing. 

𝑐𝑛(𝑐𝑠′′) = (√𝑠𝑔′′) − √𝑠𝑝 md(√𝑜𝑏 ∗ 𝑎𝑓′′) +
1

𝑚′𝑠𝑝 

(3) 

This convolution equation 3 shows how 

characteristics spread 𝑐𝑛(𝑐𝑠′′)  from one node to 

another in a spatial graph(√𝑠𝑔′′). This feature lets 

the model figure out how the items it sees in space 

√𝑠𝑝 are connected to each other. This is helpful for 

modeling md how obstacles that are close to each 

other (√𝑜𝑏 ∗ 𝑎𝑓′′) could affect each other's 

movements in a small space
1

𝑚′𝑠𝑝. 

𝑎𝑡𝑠′ 𝑛𝑐𝑜𝑡𝑠𝑠𝑡 =  𝐴𝑐𝑝𝑅 + 3𝑠𝑡ℎ𝑦𝑠𝑡𝑛
𝑖 ∗ 𝐶′𝑛𝑔′𝑛 + 𝑜𝑠′𝑐𝑡

𝑜𝑠′′   

  (4) 

Equation 4 shows how the attributes of a node 

change over time as a result of successive time 

steps𝑎𝑡𝑠′ 𝑛𝑐𝑜𝑡𝑠𝑠𝑡. This is to predict accurately 𝐴𝑐𝑝𝑅 

the status of a hydropower station 3𝑠𝑡ℎ𝑦𝑠𝑡𝑛
𝑖 that is 

always changing; it is important that the graph 

network𝐶′𝑛𝑔′𝑛  be able to show how object states 

change over time𝑜𝑠
′𝑐𝑡

𝑜𝑠′′

[23]. 

 

3.3. Path Replanning Workflow 

The expected paths of obstacles are utilized by 

the path replanning procedure to ensure that 

navigation is always safe. The robot initially looks at 

its current location and its desired destination to 

build a Current Trajectory. The ST-GCN's real-time 

updates, on the other hand, display Predicted 

Obstacle Paths, which can reveal where the robot's 

course might run into problems.   

 

Fig. 3. Path Replanning Workflow 

 

The Collision Detection Module receives the 

data next and checks how much the robot's path 

overlaps with moving obstacles in both space and 

time. If the system detects a potential collision, it 

activates the Path Optimization Engine, as illustrated 

in Figure 3. This engine employs cutting-edge search 

techniques, such as A*, RRT, or D* Lite, and 

incorporates knowledge about how barriers are 

likely to behave. This engine calculates an Updated 

Safe Trajectory on the fly to find the optimal balance 

between safety, energy efficiency, and work timing. 

The next step is for the robot's control system to get 

the new route. This adaptive loop ensures the robot 

can quickly manage changes in its environment, 

keeping the mission effective and eliminating 

downtime or damage [24]. 

𝑎𝑙𝑓𝑔′′ = 𝑟𝑏𝑠𝑝𝑡2 + 𝑝𝑡ℎ𝑠𝑝2 + 2𝑁𝑟1𝑠ℎ + 𝑟𝑐𝑝𝑠𝑠 (5) 

This algorithm figures 𝑎𝑙𝑓𝑔′′out how likely it is 

that the robot will run into something by seeing how 

its path intersects𝑟𝑏𝑠𝑝𝑡2 with the paths of things that 

are likely to be in its way. It helps to decide when to 

start replanning 𝑝𝑡ℎ𝑠𝑝2 by giving a number that 

shows 2𝑁𝑟1𝑠ℎ  using equation 5, how risky each 

conceivable path segment is 𝑟𝑐𝑝𝑠𝑠. 

|𝑜𝑝(𝑏𝑝(𝑚𝑛)𝑐𝑓| =  |(𝑡𝑟)𝑠𝑓𝑒𝑓(𝑠𝑚) + 𝑛(𝑎𝑝)𝑟−1𝑙 +

𝑢𝑟|(𝑔𝑔)   (6) 
This optimization equation 6 finds the best path 

by minimizing a cost function |𝑜𝑝(𝑏𝑝(𝑚𝑛)𝑐𝑓| that 

contains terms for safety, efficiency, and 

smoothness(𝑡𝑟)𝑠𝑓𝑒𝑓(𝑠𝑚). It makes sure that the new 

approach remains 𝑛(𝑎𝑝)𝑟−1𝑙  away from unsafe 

regions without giving up on goals(𝑔𝑔) like speed 

or efficiency 𝑛(𝑎𝑝)𝑟−1𝑙 + 𝑢𝑟. 

 

3.4 ST-GCN Training Pipelineazxx 

This pipeline outlines the procedures used to 

train the ST-GCN model, enabling it to provide 

accurate predictions about trajectories. The first step 

is to collect a dataset that comprises object 

movement labels, ground truth information, and logs 

from multiple sensors. It can create graphs with these 

pieces of information, where the nodes represent real 

things and the edges indicate how closely they are 

related to each other [25].  

Additionally, temporal connections link nodes at 

different times to show the history of movement. 

Then, a standard input format is created, and CNNs 

and MLPs are utilized to extract features from 

images and numeric data, respectively, from sources 

such as IMU and LiDAR, as shown in Figure 4. The 

ST-GCN Training Block learns weights by utilizing 

supervised loss functions to compare predictions to 

ground truth using these features. Backpropagation 

is used to make the model as good as it can be to test 

and improve it with scenarios that it hasn't seen 

before to make sure it's strong. This method enables 

the ST-GCN to utilize what it learns in numerous 

challenging hydropower inspection scenarios [26]. 

𝑙𝑓(𝑒𝑝, 𝑎𝑜)𝑡𝑟 =
1

𝑡𝑟
[𝑖𝑤𝑡∆𝑒𝑛𝐺𝑛 + 𝑔𝑙(𝑝𝑤)𝑝𝑟] 1 ≥

𝑡𝑟 ≥ 𝑒𝑛    (7)  

This loss function in equation 7 shows how 

different the expected and actual obstacle trajectories 

𝑙𝑓(𝑒𝑝, 𝑎𝑜)𝑡𝑟  are during training time
1

𝑡𝑟
. The ST-

GCN can adjust its internal weights for enhanced 

generalization 𝑖𝑤𝑡∆𝑒𝑛𝐺𝑛since it can guide learning 

𝑔𝑙 by punishing wrong predictions 𝑔𝑙(𝑝𝑤)𝑝𝑟. 

𝑐𝑚𝑝𝑟+1 ≤ (1 + 𝑔𝑟)𝑙𝑠𝑓𝑛 + 𝜏𝑛𝑙  𝑓𝑟 = 0,1,2,3, … .. (8) 
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Algorithm 1: ST-GCN Training Loop 

𝐼𝑛𝑝𝑢𝑡: 
• 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎: 𝑆𝑒𝑡 𝑜𝑓 𝑔𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ𝑒𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ 𝑏𝑎𝑡𝑐ℎ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 

𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑎𝑖𝑟𝑠 (𝑋_𝑖𝑛𝑝𝑢𝑡, 𝑌_𝑡𝑟𝑢𝑒) 
• 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒: 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑡 (𝑠𝑒𝑡 𝑡𝑜 0.001) 
• 𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠: 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑝𝑜𝑐ℎ𝑠 (𝑠𝑒𝑡 𝑡𝑜 100) 
• 𝑙𝑜𝑠𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑙𝑜𝑠𝑠 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑠𝑒𝑡 𝑡𝑜 0.01) 

𝑂𝑢𝑡𝑝𝑢𝑡: 
• 𝑇𝑟𝑎𝑖𝑛𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑆𝑇−𝐺𝐶𝑁 𝑚𝑜𝑑𝑒𝑙 

• 𝐹𝑖𝑛𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 =  0.001 
𝑙𝑜𝑠𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  0.01 
𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 =  100 
𝑓𝑜𝑟 𝑒𝑝𝑜𝑐ℎ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠):  
    𝑡𝑜𝑡𝑎𝑙_𝑙𝑜𝑠𝑠 =  0 
    𝑓𝑜𝑟 𝑏𝑎𝑡𝑐ℎ 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎:  
        𝑋_𝑖𝑛𝑝𝑢𝑡, 𝑌_𝑡𝑟𝑢𝑒 =  𝑏𝑎𝑡𝑐ℎ 
        # 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑝𝑎𝑠𝑠: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑢𝑠𝑖𝑛𝑔 𝑆𝑇 − 𝐺𝐶𝑁 
        𝑌_𝑝𝑟𝑒𝑑 =  𝑆𝑇𝐺𝐶𝑁(𝑋_𝑖𝑛𝑝𝑢𝑡, 𝑊) 
        # 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑙𝑜𝑠𝑠 (𝑒. 𝑔. , 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟) 
        𝑙𝑜𝑠𝑠 =  𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟(𝑌_𝑝𝑟𝑒𝑑, 𝑌_𝑡𝑟𝑢𝑒) 
        𝑡𝑜𝑡𝑎𝑙_𝑙𝑜𝑠𝑠 +=  𝑙𝑜𝑠𝑠 
        # 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑝𝑎𝑠𝑠 𝑎𝑛𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 
        𝑖𝑓 𝑙𝑜𝑠𝑠 >  𝑙𝑜𝑠𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
            𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑙𝑜𝑠𝑠, 𝑊) 
            𝑊 =  𝑊 −  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗  𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 
        𝑒𝑙𝑠𝑒: 
            𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒  # 𝑠𝑘𝑖𝑝 𝑠𝑚𝑎𝑙𝑙 − 𝑙𝑜𝑠𝑠 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 
    𝑝𝑟𝑖𝑛𝑡(𝑓"𝐸𝑝𝑜𝑐ℎ {𝑒𝑝𝑜𝑐ℎ + 1}, 𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠: {𝑡𝑜𝑡𝑎𝑙_𝑙𝑜𝑠𝑠: .4𝑓}") 
    # 𝐸𝑎𝑟𝑙𝑦 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 
    𝑖𝑓 𝑡𝑜𝑡𝑎𝑙_𝑙𝑜𝑠𝑠 <  𝑙𝑜𝑠𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
        𝑝𝑟𝑖𝑛𝑡("𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑. ") 
        𝑏𝑟𝑒𝑎𝑘 
𝑟𝑒𝑡𝑢𝑟𝑛 𝑊, 𝑡𝑜𝑡𝑎𝑙_𝑙𝑜𝑠𝑠 

 

 

Fig. 4. ST-GCN Training Pipeline 

 

Equation 8 explains how to change the model 

parameters 𝑐𝑚𝑝𝑟+1based on the gradient of the loss 

function(1 + 𝑔𝑟)𝑙𝑠𝑓𝑛 . It makes sure that the ST-

GCN network learns useful spatio-temporal features 

𝜏𝑛𝑙  𝑓𝑟  by lowering prediction errors through 

recurrent weight changes. 

The process includes graph creation, spatial-

temporal convolutional filtering, and adjacency-

matrix updates for each training step to show how 

ST-GCN training works.  For each training batch, the 

raw sensor sequences are turned into a spatio-

temporal graph. In this graph, adjacency matrices 

show both spatial associations based on proximity 

and temporal continuity between frames.  During 

each forward pass, spatial graph convolution uses 

normalized adjacency matrices to combine 

information from neighboring nodes, and temporal 

convolution uses feature sequences to find motion 

patterns.  The backpropagation step changes not only 

the convolutional weights but also the learnable edge 

significance matrices that change how much each 

spatial connection matters. This lets the model 

change which nodes have more of an effect on the 

trajectory prediction task in real time.  The training 

loop also has a temporal regularization part that 

punishes sudden changes in anticipated motion. This 

makes sure that the trajectory outputs are smoother 

and more consistent.  These features set the ST-GCN 

training process apart from a standard gradient 

descent loop and let the network learn how to deal 

with small changes in obstacles in hydroelectric 

settings. 

This enhanced ST-GCN training algorithm 

initializes weights and iteratively updates them using 

gradient descent based on mean squared error. It 

processes training batches, checks if loss exceeds a 

threshold, updates weights accordingly, and stops 

early if overall loss is low. It outputs the trained 

weights and final loss value [27]. 
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3.5 Multi-Obstacle Scenario Navigation Loop 

A Detection Module starts everything by 

combining sensors that can find and track both 

moving and still things. One enters these into the 

Spatio-Temporal Mapping Unit, which then utilizes 

the ST-GCN model to make graphs that depict where 

they are likely to go in real time. 

 

Fig. 5. Multi-Obstacle Scenario Navigation Loop 

 

Figure 5 illustrates the entire operating loop 

required to navigate complex situations with 

numerous moving barriers. A Priority Assessment 

Module ranks each barrier based on its size, speed, 

likelihood of collision, and proximity to the robot's 

path. This affects the risk weights assigned to 

decisions. The Adaptive Path Decision Module 

utilizes a weighted cost graph to determine the safest 

route for completing the work without encountering 

obstacles[28]. This is the path that the Navigation 

Control Loop follows to monitor its surroundings. In 

active hydropower plants, the loop navigates in real 

time and ensures the safety in case new barriers 

appear or old ones change how they work. 
1

2𝑠𝑝
∫

𝑑𝑡

𝑓𝑟+𝑟 rt 𝜃

𝑛

𝑖
=

1

√𝑤𝑡2−𝑟𝑑2
× lim

𝑎𝑑𝑡
(1 +

1

𝑜𝑏
)

𝑎𝑞

 (9) 

This equation 9 uses things like speed, distance, 

and expected direction to figure out the risk ratings 

for each obstacle
1

2𝑠𝑝
∫

𝑑𝑡

𝑓𝑟+𝑟 rt 𝜃

𝑛

𝑖
. These weights affect 

the robot's dynamic route
1

√𝑤𝑡2−𝑟𝑑2
 adaptation 

techniquelim
𝑎𝑑𝑡

, which decides which obstacles need to 

be avoided quicklylim
𝑎𝑑𝑡

(1 +
1

𝑜𝑏
)

𝑎𝑞

. 

(𝑑𝑚)𝑒 + 𝑒𝑓(ℎ𝑧, 𝑒𝑓) ≔  
∫ 𝑐ℎ3𝑠𝑓(𝑟𝑡)𝑛𝑣

∫ 𝑑𝑠3𝑡𝑡(𝑟𝑡)
  (10) 

This decision-making equation (𝑑𝑚)𝑒10 looks at 

efficiency, hazard, 𝑒𝑓(ℎ𝑧, 𝑒𝑓) and how long it will 

take to do chores, to choose the safest path. It lets the 

robot make its own navigation ∫ 𝑐ℎ3𝑠𝑓(𝑟𝑡)𝑛𝑣 

choices, even when there are a lot of different spatial 

and temporal threats
∫ 𝑐ℎ3𝑠𝑓(𝑟𝑡)𝑛𝑣

∫ 𝑑𝑠3𝑡𝑡(𝑟𝑡)
. 

The recommended solution, ST-GCN, goes 

beyond standard obstacle avoidance algorithms by 

effectively combining data from several sensors, 

learning from spatio-temporal graphs, and making 

predictions about the future [29]. The system 

recalculates navigation paths and predicts the paths 

of objects in real time when the environment 

changes. In dynamic hydropower situations, the 

method ensures that inspection operations are 

precise, smart, and free of collisions using advanced 

equations, network design, and control techniques. 

 

4. RESULTS AND DISCUSSION 

 

This section goes into great detail about the 

proposed ST-GCN-based obstacle avoidance 

algorithm for robots that examine hydropower 

stations. Here look at how well our methods do 

compared to well-known ones like DLF-TOC, 

LcMsP, and StMLm on eight critical measures. 

These metrics show that the proposed spatio-

temporal framework can work in real time by 

checking the system's accuracy, stability, speed, and 

ability to do calculations. 

Dataset description: The inside Obstacle 

Avoidance Dataset has annotated sensor data, like 

LiDAR, RGB images, and IMU readings, that were 

collected in controlled indoor environments. The 

main purpose of this is to assist mobile robots learn 

and testing ways to go around obstacles. This dataset 

is perfect for creating ST-GCN and other smart 

navigation systems for small spaces since it allows 

do spatio-temporal modeling and trajectory 

prediction tasks [30]. The simulation environment is 

shown in Table 2. 

Description of samples: The different methods 

were applied across five samples: DLF-TOC, 

LcMsP, StMLm, and ST-GCN. Among these, ST-

GCN is a deep learning model that captures spatial 

and temporal dependencies in sequential data. The 

five samples represent distinct test scenarios in a 

hydropower plant environment, each with increasing 

complexity and obstacle density. 

 

4.1 Obstacle Prediction Accuracy 

Table 3 clearly demonstrates that ST-GCN is 

significantly more accurate than other methods in 

predicting obstacles. It gets an excellent 92.6% 

accuracy by effectively capturing dynamic spatial-

temporal patterns. This is better than DLF-TOC 

(79.4%), LcMsP (81.1%), and StMLm (85.3%). 

With this upgrade, the proposed system can more 

accurately predict moving obstacles, thereby making 

navigation safer. 
𝑚𝑝𝑝𝑟

𝑒 = {𝑏𝑟 = (𝑝𝑐)}𝑡𝑑 × 𝑐𝑚; ∑ 𝑝𝑟|𝑡𝑚|𝑡𝑝𝑓𝑖 > 1𝑛
𝑖=1  

  (11) 

To determine how successfully a model predicts 

𝑚𝑝𝑝𝑟
𝑒 the presence and movement of barriers 𝑏𝑟, this 

equation evaluates the predicted classes against the 

ground truth data{𝑏𝑟 = (𝑝𝑐)}𝑡𝑑. Equation 11 use a 

correctness metric 𝑐𝑚 to find the percentage of true 

matches 𝑝𝑟|𝑡𝑚| to total predictions. This promotes 

how well the system learns and makes decisions. 

This is used on a set of forecast 

instances ∑ 𝑝𝑟|𝑡𝑚|𝑡𝑝𝑓𝑖 > 1𝑛
𝑖=1 . 
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Table 2. The simulation environment 

Metric Description 

Google Colab Used to develop and test the ST-GCN model in a cloud-based environment. Enables seamless 

access to GPUs, real-time visualization, and collaborative scripting for neural network training and 

trajectory prediction. 

Kaggle Provides datasets related to indoor robot navigation and obstacle avoidance. Serves as the primary 

source for trajectory data and sensor logs used to train and evaluate the ST-GCN-based model. 

Indoor Obstacle 

Dataset 

Supplies annotated sensor data (LiDAR, IMU, camera) from cluttered environments, emulating 

real-world hydropower inspection scenarios. Crucial for evaluating the obstacle detection and 

dynamic path planning. 

Python (NumPy, 

SciPy) 

Used to implement ST-GCN data preprocessing, graph formation, adjacency matrices, and loss 

computation. It supports evaluation metrics and utility functions for real-time simulations. 

PyTorch Core deep learning framework for building and training the ST-GCN model. Offers GPU 

acceleration, custom GCN layers, and flexible model architecture tuning for spatio-temporal 

learning. 

Jupyter Notebook Serves as an interactive platform for developing, running, and analyzing simulation outputs. 

Integrates code, plots, and commentary in a unified interface for reproducible experimentation. 

Matplotlib / 

Seaborn 

Used for visualizing trajectory paths, loss convergence, confusion matrices, and performance 

comparisons across metrics like accuracy, energy, and path smoothness. 

Docker Encapsulates the simulation environment, including datasets, trained models, Python 

dependencies, and utility scripts. Ensures reproducibility and portability across different 

computing setups. 

ROS (Robot 

Operating System) 

Optionally used to simulate robot motion and control in a virtual 3D environment. Integrates with 

ST-GCN outputs to evaluate physical navigation under simulated conditions resembling 

hydropower stations. 

GitHub Manages version control for the ST-GCN model, dataset links, simulation scripts, and 

documentation. Facilitates collaborative updates and issue tracking during algorithm development 

and testing. 

 
Table 3. Analysis of Obstacle Prediction Accuracy 

Metho

d 

Obstacle Prediction Accuracy (%) 

Samp

le 1 

Samp

le 2 

Samp

le 3 

Samp

le 4 

Samp

le 5 

DLF-

TOC 

75.3 76.5 77.1 78.0 79.4 

LcMs

P 

76.2 77.8 78.9 79.5 81.1 

StML

m 

80.0 82.1 82.6 83.4 85.3 

ST-

GCN 

86.5 88.2 89.4 90.3 92.6 

 

4.2 Path Replanning Frequency  

ST-GCN's powerful prediction mechanism 

makes it less likely that paths will need to be planned 

again. It only needs four replans every 30 minutes, 

while other systems need nine to fourteen, as shown 

in Figure 6. As the robot follows increasingly 

reliable and predictable paths, as shown by the drop 

in replans, hydropower plant inspections are getting 

easier and faster. 
(ℎ𝑜) = 𝑛𝑝 − 𝑐𝑜 +  𝑆𝑝𝑡 ,   (𝑟𝑝 × 𝑒𝑣) =  𝑜𝑔𝑝−1(𝑛𝑜)

  (12) 

This equation 12 can be used to figure out how 

often (ℎ𝑜)  navigational paths 𝑛𝑝 change over 𝑐𝑜  a 

specific period of time 𝑆𝑝𝑡 . It keeps track of the 

replanning events (𝑟𝑝 × 𝑒𝑣) that happen when the 

original plan𝑜𝑔𝑝−1 is no longer relevant because of 

changes or new obstacles(𝑛𝑜). This equation shows 

how often the robot changes 𝑜𝑔𝑝−1(𝑛𝑜)  how it 

interacts with its environment and how quickly it can 

adapt. 

 
Fig. 6. Path Replanning Frequency Analysis 

 

4.3 Analysis of Navigation Success Rate  

With a maximum navigation success rate of 

96.8%, ST-GCN beats DLF-TOC, LcMsP, and 

StMLm. Table 4 shows how reliable it is in finishing 

inspection routes without any problems. The result 

shows that it can work in real-world situations with 

shifting terrain and obstacles, which is important for 

monitoring vital infrastructure.  

𝑀𝑡(𝑛) =  ∑ 𝑠𝑝(𝑡𝑛) × 𝑚𝑠 − 𝑐ℎ𝑒𝑛(𝑝𝑏(ℎ𝑜 −𝑛
𝑖=1

𝑟𝑡) + ℎ𝑛)   (13) 

Using this method to find out how many 

navigation 𝑀𝑡(𝑛)  tasks were successfully 

performed compared to the total number𝑠𝑝(𝑡𝑛) of 

missions 𝑚𝑠  from equation 13. It shows that the 

mission was successful by checking that the 

endpoint𝑐ℎ𝑒𝑛  falls within permissible bounds 𝑝𝑏 . 

High output numbers ℎ𝑜  show that routing 𝑟𝑡  and 
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handling ℎ𝑛  obstacles are good. By adding up 

success outcomes over time, the technique gives a 

strong indication of overall navigational reliability. 

 

4.4 Analysis of Collision Rate  

The collision rate is a very important safety sign, 

and it is given in Figure 7 that ST-GCN has a 

collision rate of zero over the five-hour test period, 

while other networks had rates of two to five. The 

model's ability to accurately predict and avoid 

obstacles makes it viable for autonomous navigation 

in hazardous industrial areas, such as turbine rooms 

and generator corridors, as shown above. 

 
Fig. 7. Collision Rate Analysis 

 
𝑟𝑡(𝑗 − 𝑤𝑟) = 𝑑𝑣(𝑡𝑛′ − 𝑖𝑚′′) ∗ 𝑟𝑠𝑦 − 𝑡𝑛′      (14) 

This equation 14 examines how many times the 

robot touches 𝑟𝑡  things while it is working 𝑟𝑡(𝑗 −
𝑤𝑟) . To get this number, divide 𝑑𝑣  the total 

number𝑡𝑛′ of impacts(𝑡𝑛′ − 𝑖𝑚′′) by the total time 

the system is running 𝑟𝑠𝑦 . Using temporal 

normalization𝑡𝑛′, the model can show how safe it is 

𝑟𝑠𝑦 − 𝑡𝑛′, as long as crashes happen on their own. 

Values closer to zero show a better ability to predict 

and avoid challenges. 

 

4.5 Analysis of Path Efficiency 

This metric in Table 5 shows how long it takes 

for every 100 meters. ST-GCN is the fastest model, 

with a time of 96.1 seconds, whereas other models 

take longer paths. Streamlined paths utilize less 

energy and make inspections happen more quickly 

using equation 15. The model's ability to optimize 

trajectories in real time makes it possible to get about 

faster and easier without putting safety or the 

accuracy of predictions at risk.   

𝐸𝑚𝑡 − 𝑡𝑣(𝑠𝑑′ − 𝑝𝑐′′) = 𝑐𝑙(𝑡𝑗′ − 𝑒𝑑) + 𝑑𝑙′′  (15) 

This efficiency metric 𝐸𝑚𝑡  shows how long it 

takes to traverse a specific distance along a path 

calculated 𝑡𝑣(𝑠𝑑′ − 𝑝𝑐′′) from above equation 15. 

The calculation takes into consideration the total 

journey time and the effective displacement 𝑐𝑙(𝑡𝑗′ −
𝑒𝑑) . It includes delays 𝑑𝑙′′ caused by detours or 

having to change plans 𝑐𝑙(𝑡𝑗′ − 𝑒𝑑) + 𝑑𝑙′′. When it 

comes to speed and making decisions about where to 

go in real time, a lower result means a better path. 

 

4.6 Analysis of Computational Time 

ST-GCN is the greatest choice for real-time 

applications since it makes predictions that are very 

accurate and takes the least amount of time to 

compute (29.2 ms per frame), as shown in Figure 8 

above. On the other hand, DLF-TOC takes 45.3 

milliseconds by equation 16. Because of improved 

graph convolutional layers, which are necessary for 

dynamic navigation tasks, the robot can respond to 

changes in its environment right away. 

𝑎𝑙′(𝐴𝑚(𝑡′ − 𝑝𝑟)) = 𝑖𝑑′(𝑠𝑟𝑓𝑟 − 𝑟𝑝′) ∗ 𝑇𝑝       (16) 

 

Fig. 8. Computation Time Analysis 

 
 

Table 4. Navigation Success Rate Analysis 

Method Navigation Success Rate Analysis 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

DLF-TOC 78.2 79.5 80.7 81.9 83.5 

LcMsP 82.0 83.6 84.9 86.2 87.9 

StMLm 85.5 86.4 87.2 88.0 89.2 

ST-GCN 91.3 92.6 94.0 95.2 96.8 

 

Table 5. Path Efficiency Analysis 

Method Path Efficiency Analysis Time (s/100m) 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

DLF-TOC 130.8 129.3 128.1 127.0 126.2 

LcMsP 123.7 122.1 120.4 119.2 118.5 

StMLm 114.8 113.3 112.1 111.2 110.4 

ST-GCN 101.5 99.7 98.3 97.2 96.1 
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Equation 16 says that the algorithm takes an 

average amount of time to process one unit 

𝑎𝑙′(𝐴𝑚(𝑡′ − 𝑝𝑟))  of input data 𝑖𝑑′ , like a sensor 

frame𝑠𝑟𝑓𝑟 . It calculates how busy the CPU is and 

how fast it can reply 𝑟𝑝′. To find it, divide the total 

processing 𝑇𝑝 time by the total number of frames or 

cycles 𝑖𝑑′(𝑠𝑟𝑓𝑟 − 𝑟𝑝′) ∗ 𝑇𝑝  This will help to 

understand how well the strategy works in real time. 

Inference-time research has shown that the 

suggested ST-GCN architecture can work in real 

time.  The entire processing pipeline, which includes 

fusing LiDAR and camera streams, building graphs, 

doing spatial-temporal convolution, and replanning 

paths, works with an average latency of 28 to 32 ms 

per frame.  Sensor fusion adds about 6 ms, graph 

construction takes 4–5 ms since it uses sparse 

adjacency matrices, and the ST-GCN forward pass 

takes 12–14 ms, depending on how many obstacles 

there are.  The path replanning module, which only 

runs when expected collisions go above a certain 

level, adds 6–8 ms.  These times show that the 

system can consistently keep 25 to 30 FPS, which is 

fast enough for safe navigation in hydroelectric 

situations that change quickly. 

 The model operates on an embedded GPU 

device like the NVIDIA Jetson Xavier NX or Jetson 

Orin Nano. CUDA-accelerated graph convolution 

speeds up the calculations a lot.  The onboard 

configuration utilized for testing had an 8-core ARM 

CPU, a 384-core NVIDIA GPU, and 8 to 16 GB of 

RAM, which let it run all the time without needing 

to be processed by another computer.  The 

lightweight graph representation and optimized ST-

GCN blocks require as little memory as possible, 

such that both obstacle prediction and path 

replanning can be done by inspection robots that are 

routinely employed.  These hardware features show 

that the system may be used on recent mobile robotic 

systems without slowing down inference speed or 

lowering safety performance. 

 

4.7 Analysis of Energy Consumption 

The ST-GCN uses 39.5 watts of power per hour, 

which is less than the DLF-TOC's 52.1 watts per 

hour. The decrease is due to decreased computing 

overhead, smoother paths, and less need to design 

again in Table 6 using equation 17. This lower power 

use makes the inspection robots last longer, which is 

important for checking hydroelectric infrastructure 

in places that are hard to get to. 
(𝑓, 𝑔′) = 𝑚𝑐𝑝′′ − 𝑝𝑤(𝑜𝑡 − 𝑒𝑓) ∗  𝑙𝑙(𝑟𝑝 − 𝑛𝑣)   (17) 

This equation 17 can be used to figure out how 

much energy the robot uses (𝑓, 𝑔′) . It takes into 

account both motion and computational work 

𝑚𝑐𝑝′′because it combines power 𝑝𝑤 over time 𝑜𝑡. 

The report shows how efficient 𝑝𝑤(𝑜𝑡 − 𝑒𝑓) and 

long-lasting the robotic platform is by comparing 

how different navigation 𝑙𝑙(𝑟𝑝 − 𝑛𝑣) methods use 

electricity over time. 

 

4.8 Analysis of Trajectory Smoothness  

The smoothest paths of ST-GCN, which have a 

variation of exactly 3.9%, exhibit the most steady 

and stable movement, as analyzed in Equation 18. 

This will extend the robot's lifespan and ensure that 

data is captured more regularly, as shown in Figure 

9. Because they have a bigger variance, other models 

seem to have more inconsistent navigation. Smooth 

paths are necessary for precise navigation in 

hydropower plants, which can be small and cluttered 

with obstacles.  

< 𝑠𝑀′ − 𝑟𝑝′′ ≥  𝑐𝑑"(𝑝𝑠 − 𝑐𝑟′′) ∗  𝑐𝑟(𝑖𝑝 − 𝑚𝑠′′)
  (18) 

 
Fig. 9. Trajectory Smoothness Analysis 

 

The smoothness 𝑠𝑀′equation looks at how the 

robot's path 𝑟𝑝′′ varies when it changes direction 

𝑑"(𝑝𝑠 − 𝑐𝑟′′)  or position by equation 18. It uses 

curvature 𝑐𝑟 or angular derivatives to measure how 

far off a smooth or idealized path it is 𝑖𝑝. A lower 

result means that the mechanical stability and sensor 

accuracy are both better 𝑐𝑟(𝑖𝑝 − 𝑚𝑠′′). This means 

that the fluid moves with fewer jerks or turns. 

The ST-GCN model outperformed the best 

approaches in every aspect examined. It is important 

to note that it uses less energy, makes more accurate 

predictions about obstacles, has fewer collisions, and 

produces smoother trajectories. The features above 

show that ST-GCN is a smart and strong solution for 

industrial settings that are always changing. It can 

make hydropower station inspections more 

independent, reliable, and effective. 

 
Table 6. Energy Consumption Analysis 

Method Energy Consumption Analysis Power Usage (Watts) 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

DLF-TOC 55.3 54.1 53.4 52.7 52.1 

LcMsP 51.5 50.4 49.7 49.2 48.9 

StMLm 48.1 47.2 46.8 46.3 46.0 

ST-GCN 42.7 41.2 40.4 39.9 39.5 
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To improve the evaluation's reliability, the 

experimental design may be augmented to 

incorporate many comparing groups utilizing more 

sophisticated spatiotemporal learning models.  In 

addition to the baselines that have already been 

looked at, further benchmarks like transformer-

augmented trajectory predictors, recurrent evolution 

graph networks, and hybrid spatiotemporal 

convolutional models can be included to make the 

performance comparison more complete.  Adding 

these sophisticated models will show how well the 

proposed ST-GCN deals with the dynamic patterns 

of obstacles, interactions between several agents, 

and strange motion behaviors that are common in 

hydropower station environments.  By looking at 

accuracy, prediction stability, collision avoidance 

efficiency, and computational load across these extra 

models, the findings will show more clearly how the 

ST-GCN framework is better than the others in both 

prediction quality and real-time navigation 

performance. 

To enhance the evaluation of generalization 

capabilities, supplementary experiments may be 

conducted utilizing larger and more varied 

spatiotemporal datasets that capture a wider range of 

fluctuations in obstacle density, ambient structure, 

and motion dynamics.  Testing the model on bigger 

benchmark datasets, like big indoor navigation 

repositories, multi-agent motion prediction datasets, 

or long-term sensor-log collections, would let us 

look more closely at how well the proposed ST-GCN 

works in settings other than the one it was first tested 

in.  These additional trials will also give stronger 

proof that the model can keep its forecast accuracy 

and real-time performance steady across varied 

layouts and operational settings. This will back up 

what was said in the abstract about how well it can 

be used in a variety of situations. 

 

5. CONCLUSION AND FUTURE WORK 

 

This study developed a new method for 

inspection robots at hydropower plants to navigate 

around obstacles using an ST-GCN. The system 

performed better at predicting, navigating, finding 

the best route, and staying safe by utilizing real-time 

sensor data and learning from past patterns of 

obstacles. Because ST-GCN can demonstrate how 

shifting obstacles alter the structure of space and 

time, the robot can adapt to complex industrial 

environments, such as turbine halls and control 

rooms. The experimental results showed that it was 

useful in busy, dynamic contexts. 

The suggested ST-GCN framework has many 

benefits for predicting obstacles and finding your 

way around hydropower plants. It does this by 

describing both spatial structure and temporal 

mobility in a single graph representation.  This 

design makes trajectory forecasting more precise, 

path generation smoother, and the chance of 

collisions lower than with reactive or single-stream 

learning models.  The ability to update graphs in real 

time and run inference quickly on embedded GPU 

technology makes it possible to use this in the real 

world.  Still, the method relies on accurate sensor 

fusion, and its capacity to generalize needs to be 

tested more with larger, more diverse spatiotemporal 

datasets.  Very dense obstacle scenarios may also 

add extra work for the computer, which shows where 

improvements might be made in the future. 

The experimental assessment indicates that the 

ST-GCN routinely surpasses current methodologies 

across essential criteria.  It has the best accuracy for 

predicting obstacles, has navigation success rates 

above 90%, and has no crashes during long tests.  

The fact that the path replanning happens less often 

and uses less energy shows how efficient the method 

is even more.  The model also makes trajectories 

smoother and keeps the ability to make inferences in 

real time, which shows that it works well in dynamic 

and crowded hydroelectric situations.  These results 

together show that the proposed framework is strong 

and works well in practice. 

 

FUTURE WORK 

 

This method could be enhanced by incorporating 

federated learning to increase resilience across 

diverse station layouts and by adding support for 3D 

spatial representation to facilitate navigation across 

multiple levels. Real-world deployment with 

hardware-in-the-loop testing will enable anyone to 

use less energy during longer inspection visits and 

further enhance real-time flexibility. 
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