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Abstract 

Rolling element bearings are critical components in rotating machinery. Their failure can lead to catastrophic 

consequences. Therefore, effective condition monitoring is very necessary to avoid the occurrence of such 

unexpected breakdowns and ensure safety. This review focuses on the recent advances in vibration-based feature 

extraction techniques for bearing fault diagnosis. More than 70 peer-reviewed journal articles published since 2019 

are analysed. The analysis covers feature extraction techniques in the temporal domain, spectral domain, and joint 

temporal–spectral domain. Then, the reviewed features are critically assessed in terms of their diagnostic sensitivity, 

robustness to noise, and applicability under different operating conditions. The review aims to adopt a feature-

centric and decision-oriented perspective and provides guidance for selecting suitable health indicators. It can serve 

as a useful reference for researchers and practitioners working in rolling element bearing fault diagnosis. 
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1. INTRODUCTION  

 

The beating heart of any factory or manufacturing 

unit is the rotary machines [1]. Rolling element 

bearings (REBs) serve as crucial components for 

precise rotating equipment, allowing components to be 

relative one to another, and transmit load more easily 

[2]. In these components, failure can occur and 

develop over time for multiple reasons, such as design 

errors, usage circumstances, severe environments, 

lifespan constraints, and assembly concerns. Serious 

outcomes might result from such failure, including 

mechanical damage and production halts [3,4]. The 

failure in rolling element bearings is responsible for 

almost 30% of mechanical defects in various industrial 

sectors [5]. High load and running speed are common 

operation conditions in bearings. Furthermore, 

bearings are subject to defects due to contact of metal 

to metal. A survey in Europe demonstrated that 34% 

of bearings were able to maintain their life, and 66% 

have been changed prematurely due to various causes. 

These causes are as follows: 16% of bearing 

replacements were due to improper installation or 

dismounting, 14% were due to contamination or 

unfavorable operation conditions, and 34% were due 
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to improper lubrication [6]. Consequently, bearing 

fault diagnosis was much required [7]. 

The research on condition monitoring focuses on 

numerous industrial components with rotary parts, 

such as rolling [8] and journal bearings [9], wind 

turbines [10], gearboxes [11], pumps [12], and 

induction motors [13]. The abnormality diagnosis 

approaches in a rotary system utilizing the data 

acquired via vibration [14], electric current [15], 

acoustic emissions [16], and temperature following up 

[17] have been extensively studied in the last few 

decades. Among them, vibration signal is the most 

suitable and prevalent condition utilized in the industry 

for rotating machines. Malla et al. [18] reported that 

monitoring vibration-based conditions enables the 

detection of 90% of failures or problems in machinery. 

This is because each machine component carries a 

specific dynamic signature that can be represented by 

vibration signal associated with the operating 

parameters of the machinery. A vibration-based 

condition monitoring approach in rotating machinery 

is utilized to detect various faults, including unbalance, 

eccentricity, looseness, misalignment, blade defects, 

defective bearings, cracked or bent shafts, and 

damaged gears.  
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Utilizing information from data sources and several 

sensors has been proven beneficial in fault diagnosis to 

increase the degree of accuracy [19]. The processing 

of several source data according to their specific data 

types [20] was utilized to obtain usable features via 

transformation steps to improve the outcomes of fault 

diagnosis [21]. Features in machine learning represent 

independent data points from which the algorithms 

drive insights. These features were utilized with 

machine learning algorithms to perform predictions or 

tasks. Data preprocessing involves transforming the 

collected data into representation so the machine 

learning model can utilize it to learn. So, the features 

are the attributes that create the modified 

representation and contain valuable information 

derived from the data [22] 

Vibration analysis techniques can be categories to 

three types: temporal, spectral, and joint temporal-

spectral Domains [23], [24], [25]. Figure 1 illustrates 

some of the signal analysis and feature formation 

methods utilized in different domains. Numerous 

research have used various feature extraction methods 

to classify bearing abnormalities. 

 

Fig 1. Signal analysis and Feature extraction techniques 

 

Although enormous number of survey articles have 

been published on rolling element bearing fault 

diagnosis such as [3], [4], [18], [19], [22], [26], [27], 

[28], [29], [30], many of them focus primarily on the 

methods related to a specific signal domain or focus on 

the diagnostic algorithms. Contrarily, the current study 

introduces a feature-centric study that examines the 

feature extraction from the temporal, spectral, and joint 

temporal-spectral domains. Rather than listing 

surveyed methods, this study examines them to 

synthesise evidence to draw feature categories, their 

limitations and strengths under various challenging 

operating environments.  The main goal is to provide a 

guideline, especially for early- stage researchers and 

practitioners to select the suitable features and 

adopting them as machine health indicators.  

In this study, 104 peer-reviewed articles were 

surveyed to form the scope and context of the present 

work. More than 70 of them, which were published 

since 2019 and based on vibration signal analysis, were 

examined in depth in the temporal, spectral, and 

temporal-spectral domain features sections. They were 

analysed to form the basis of feature selection 

guidance per domain under various scenarios of 

diagnosis.  

The main contributions of this study can be 

summarized as follows: 

• It analyzes the feature extraction techniques in 

the temporal, spectral, and temporal–spectral 

domains and discussing their diagnostic 

importance, and limitations. 

• A number of comparative tables is prepared to 

guide the early- researchers in choosing suitable 

features for fault diagnosis in REBs. 

• More than 70 peer-reviewed articles published 

since 2019 are analysed in depth and categorised 

according to the signal domain. Popular features 

were compared under various diagnostic 

scenarios. 

In addition to the summary and comparative 

analysis for features across different domain, the 

current study highlights the challenges scenarios in 

research such as the investigation of fault diagnosis 

under the presence of noise and variability of operating 

environment.  

Notably, a quantitative overview of the reviewed 

prior work is presented in Section 2 to emphasize the 

publication trends and domain-wise research emphasis 

The remaining outline of the present manuscript is 

organised as follows: Section 2 of this review presents 

a quantitative overview for the literature surveyed and 

focuses on existing approaches for extraction compact 

information (i.e. features) in the three common 

domains and evaluates different types of features 

applied for bearing fault diagnosis. Discussion in 

section 3 illustrates the advantages, limitation, and 

challenges of the current approaches in signal analysis 

and feature extraction. Finally, section 4 summarizes 

the review's main contribution and provides the 

conclusion.     

 

2. SIGNAL ANALYSIS AND FEATURE 

EXTRACTION  

 

The researchers follow a series of steps in bearing 

fault diagnosis utilizing vibration signals. The first step 

is the data acquisition from bearings during operation. 

Then, this data is well-processed which is followed by 

extraction of features and selecting the optimum set of 

them. Finally, the classification step is conducted by 

utilizing machine learning algorithms [1]. Data and 

signal processing techniques such as filtering, outlier 

removal, and data cleaning assist in processing the 

collected data by converting it into a comprehensible 

and coherent format while eliminating irregularities 

that might adversely impact a model's efficacy. The 
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data processing stages involved in feature extraction 

approaches improve the visualization and analysis of 

the data.  

The temporal domain analysis serves as a 

fundamental aspect of bearing fault detection. In this 

field, the signal resulting from vibrations or acoustic 

emission from damaged bearings is studied directly in 

its time form without complex transformations. The 

potential strength of temporal domain analysis excels 

in its simplicity and ability to provide a primary look 

into the behavior of the system, but it can be less 

accurate when dealing with complex or non-stationary 

signals. Many statistical features, such as  Root mean 

square, Kurtosis, max, min, mean, can be extracted in 

the temporal domain and help in identifying bearing 

failures. The temporal domain provides a quick and 

simple analysis of the signal, and it can help in early 

detection of minor faults before they become more 

complicated [26].  

The fault signal collected from the rotating 

machines is presented in the temporal domain and 

comprises intricate information from various system 

components. To overcome this, the signal amplitude 

was analyzed in the spectral domain and forming the 

signal spectrum. The predominant method to execute 

this transformation is to utilize the Fast Fourier 

Transformation (FFT) and envelope analysis[24] 

These approaches were utilized to convert the signal of 

the temporal domain, with a lot of information, to the 

succession of spectral domain signals, emphasizing 

frequency value and amplitude [24]. Traditional 

vibration analysis methods are primarily based on the 

characteristics in both domains cannot be 

simultaneously identified. Consequently, these 

approaches are unsatisfactory for examining the non-

stationary signals. Such inadequacies necessitate the 

utilisation of more advanced methods such as Hilbert 

Huang transform (HHT) [31], short-time Fourier 

transforms (STFT) [32], Continuous Wavelet 

Transform (CWT) [33], Winger- Ville distribution 

(WVD) [34] that can handle with non-stationary signal 

and commonly utilized to demonstrate the fault 

location. Based on signal processing approaches, 

bearing fault detection research will be split into four 

categories for organised analysis. Studies on each topic 

will be evaluated and discussed to emphasize their 

significant contributions, methodologies, and 

conclusions. The categories are arranged as follows:  

    

2.1. Scope of the Reviewed Literature 

This review focuses on peer-reviewed journal 

articles published since 2019 that address rolling 

element bearing fault diagnosis using vibration-based 

signal analysis. More than 70 articles were analysed 

and clustered according to the domain where features 

were extracted. A quantitative overview showed that 

joint temporal–spectral approaches were the most 

dominant in the recent literature. In addition, the 

combining of multi domain features has recently 

received increasing interest.  

 

2.2. Temporal Domain 

This approach examines the vibration signal's form 

in relation to time. Metrics such as mean, maximum, 

and minimum value were employed to analyze the 

vibration signal. Table 1 illustrates popular temporal 

domain features and their mathematical equations. 

Kumbhar et al. [35] obtained a number of statistical 

features from temporal domain including crest factor, 

standard deviation, kurtosis, maximum, minimum, and 

root mean square. They uses these features in 

combination with the dimensional analysis (DA) 

technique and artificial neural network (ANN) to 

detect the bearing fault size. The findings showed a 

high prediction accuracy with very low rate error. The 

challenges include the loss of linearity with developing 

failure size, the effect of noise, and the necessity for 

adjustment of the simulation parameters. A key 

improvement of their model involves the use of RLS 

and LMS to suppress the noise and employing Kurtosis 

as a dominant diagnostic indicator. Shen et al. [36] 

employed the temporal domain to derive 

characteristics from vibration signals. The collected 

features contained four-dimensional features (peak 

value, effective value-RMS, standard deviation, and 

average value) and four dimensionless features (pulse 

factor, margin coefficient, kurtosis coefficient, and 

peak factor). The study showed that the parameters of 

dimensional features have significant sensitivity and 

low stability, while the parameters of dimensionless 

features have high stability and low sensitivity [37,38].  

Ma et al. [39] utilized thirteen statistical features such 

as Kurtosis, average value, crest factor and use them as 

input of the back propagation artificial neural network 

for classification defects in bearings. The proposed 

method enhanced the signals by reducing the noise and 

achieving high classification accuracy.  

Meltem et al. [23] extracted fifteen features in the 

temporal domain from the CWRU bearing's dataset 

including Skewness, Min, Var. To select the optimal 

features, the authors utilized five different feature 

selection algorithms such as Mutual Information (MI) 

and Random Forest Importance (FRI). The final stage 

was the classification utilizing using two kinds of 

machine learning classifiers. The RFI method was the 

most efficient in identifying the features most 

influencing the classification. AbsMax, P2P, and 

Complexity were the most selected features across 

different strategies, demonstrating their importance in 

bearing fault diagnosis.  

Kaya et al. [40] presented a statistical approach 

utilizing a one-dimensional local binary pattern (1D-

LBP) and one-dimensional grey level co-occurrence 
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Table 1. Popular temporal domain features. 

Temporal domain features Mathematical expression 

Root Mean Square 𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 

Kurtosis 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑁

∑ (𝑥𝑖 −  µ)2𝑁

𝑖=1

(
1
𝑁

∑ (𝑥𝑖 − 𝜇)2𝑁
𝑖=1 )2

 

Skewness 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1
𝑁

∑ (𝑥𝑖 −  µ)3𝑁

𝑖=1

(
1
𝑁

∑ (𝑥𝑖 − 𝜇)2𝑁
𝑖=1 )3/2

 

Standard deviation 𝑆𝑡𝑑 = √
1

𝑁
∑(𝑥𝑖 −  µ)2

𝑁

𝑖=1

 

Peak to peak 𝑃𝑒𝑎𝑘 𝑡𝑜 𝑃𝑒𝑎𝑘 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛  

Crest factor 𝐶𝐹 =
𝑚𝑎𝑥 |𝑥|

𝑅𝑀𝑆
 

Mean absolute value 𝑀𝐴𝑉 =
1

𝑁
∑ ∣ 𝑥𝑖 ∣

𝑁

𝑖=1

 

Impulse factor 𝐼𝑀 =
𝑚𝑎𝑥 |𝑥|

𝑀𝐴𝑉
 

Form factor 𝐹𝑜𝑟𝑚 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑅𝑀𝑆

𝑀𝐴𝑉
 

Entropy 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 . 𝑙𝑜𝑔(𝑝𝑖)

𝑁

𝑖=1

 

Mean 𝑀𝑒𝑎𝑛 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

Variance 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁
∑(𝑥𝑖 −  µ)2

𝑁

𝑖=1

 

Min Min = min (𝑥𝑖) 
Max Max = max (𝑥𝑖) 

Energy 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑥𝑖
2

𝑁

𝑖=1

 

Impact factor 𝐼𝑚𝑝𝑎𝑐𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑃𝑒𝑎𝑘 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

𝐸𝑛𝑒𝑟𝑔𝑦 
 

*Where N denotes the dimensionality of the vector x, µ is the athematic mean value, and xi corresponds to the ith component. 

matrix (1D-GLCM) techniques, where the original 

vibration signals were re-scaled between 0 to 255, 

followed by the extraction of statistical features such 

as energy, correlation, contrast, and homogeneity. The 

model showed low computational cost and high 

diagnosis accuracy with the aim of effectively 
characterizing the vibration signals. However, the 

model experienced challenges such as sensitivity to 

settings, where increasing parameters such as P 

(neighbor value) increases the size of co-occurrence 

matrices and is time-consuming. Some of the extracted 

features, such as energy, showed less efficiency than 

the others. The outcomes demonstrated that correlation 

and homogeneity were the best characteristics.  

Kuncan et al. [6] transformed the raw vibration 

signal into the 1D-LBP. After that, the effective 

features are extracted from the new signal. Twelve 

statistical features, Mean, Standard deviation, energy, 

etc., were utilized to detect the bearing fault. The 

sensitivity to slight variations in signal and calculation 

simplicity are the most significant benefits of 1D-LBP, 

which improved the accuracy of time signal analysis. 

The study showed that skewness was the best features 

for speed-variation datasets while entropy was the best 

for fault size discrimination. In addition, kurtosis was 

the most suitable for fault type classification. 

However, mean value was consistently the worst 

feature across all datasets. 
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Stepanic et al. [41] performed temporal domain 

digital processing to extract features from every 

recorded vibration signal. The developed ML-based 

algorithms utilized the nine retrieved characteristics 

including arithmetic mean, RMS, Modified square 

mean, Skewness index, Kurtosis index, and Shape 

factor as inputs and produce the categorization of 

bearings as either healthy or defective. 

The latest progress in deep learning, especially 

convolutional neural networks (CNNs), have 

revolutionized the methodologies of fault diagnosis in 

REBs. These deep learning networks showed 

significant performance in automating the feature 

selection  and powerful image processing [42],[43]. 

Some studies have represented the raw vibration 

signals into image formats suitable to with CNN to 

avoid traditional feature extraction problems such as 

the need for prior knowledge, experience, and the 

effect of human parameters [44].  

Pinedo et al. [14] analysed the use of temporal 

domain statistical features for bearing wear 

assessment. It was found that RMS and kurtosis are 

identified as the most informative features as they 

behave in a monotonic trend with the degradation 

level. However, crest, impulse, and margin factors are 

neglected because of their poor sensitivity. 

In their review, Jian et al. [27] found that Kurtosis 

performs better than crest factor as a fault indicator. 

Kurtosis grows with defect size at first but eventually 

decreases. RMS increased when defect size, load, and 

speed increased. Subsequently, when the speed was 

increased, the performance of fault diagnosis of RMS 

was increased. Compared to RMS and Kurtosis, 

Skewness was the poorest indicator. They also found 

that load and speed have no effect on Kurtosis and 

Skewness. These two parameters diagnose a tiny pit 

when driving at low speed. 

Although the conventional temporal-domain 

analysis depend on manually extracted statistical 

features, recent studies have focused on investigation 

the use of deep learning models to automatically obtain 

diagnostic features from temporal-domain signals. 
Zhang et al. [45] presented an efficient data 

preprocessing technique that transforms raw temporal 

domain signals into images without employing 

intricate processing techniques such as frequency 

transformation. The time signals were segmented into 

overlapping samples. Subsequently, these samples 

were mapped to grey image format scaled between 0 

and 255 to correspond with pixel intensity. This 

approach intended to represent time signals as images 

to enhance the process of learning the representative 

features by the Convolutional neural network (CNN). 

After that, the raw signal was converted to small 

images, each data point represented one pixel in the 

tiny square image to utilize the powerful classification 

techniques offered by CNN for processing the images. 

Han et al. [46] transformed the vibration signature into 

temporal domain images and fed them to the CNN. The 

proposed model combined CNN to obtain fault 

features from temporal domain signals and SVM for 

classification. Three cut-off conditions were applied to 

identify the appropriate time to stop training CNN and 

send the features to SVM. The improvements of the 

presented model were obtaining high classification 

accuracy, reducing time consumption to one-third of 

CNN, and high generalization ability. Gong et al. [47] 

combined SVM and a CNN. The raw signals were 

transformed into 2D representation through the data 

reconstruction approach [48] for analysis and feature 

extraction utilizing CNN, with the result classified by 

SVM to enhance the diagnosis accuracy. The 

performance was improved, and overfitting was 

mitigated by utilizing techniques such as global 

average pooling (GAP) and dropout. The model 

showed enhanced accuracy compared to traditional 

methods, but it depended upon the data quality and was 

computationally intensive. Kolar et al. [49] utilized the 

raw signals extracted from a three-axis accelerometer. 

These signals were directly fed into a multi-channel 

deep convolutional neural network (MC-DCNN) to 

analyze and classify faults without pre-processing 

requirements. The research showed that selecting 

optimal parameters like the number of kernels in the 

layers of the neural network was a significant 

challenge to enhance the performance. The 

recommendations included expanding the tests and 

utilizing additional data encompassing diverse fault 

types and operation conditions, emphasizing the 

necessity of integrating additional data such as electric 

current or acoustic signals to enhance the accuracy of 

diagnosis. The research indicated obstacles such as 

needing a long time for model training and utilizing a 

robust Graphic Processing Unit (GPU) to facilitate 

intensive computations. Kolar et al. [50] fed the 

triaxial raw vibration signals as high-resolution data 

into the CNN for fault diagnosis of rotary machinery. 

They optimized the hyperparameters utilizing the 

Bayesian technique. The proposed model obtained a 

high classification accuracy for two evaluation tests, 

eliminating the necessity of signal preprocessing. 

Nevertheless,  training and evaluation data were 

acquired in laboratory conditions, which required 

further testing in real industrial environments and 

under simulated noisy conditions. Jin et al. [51] 

designed a model utilizing the raw signals without 

bypassing the necessity of manual feature selection or 

traditional noise removal techniques.  The adaptive 

anti-noise neural network (AAnNet) model was based 

on CNN for feature extraction and the gated recurrent 

unit (GRU) for analyzing time dependencies with an 

attention mechanism to enhance feature classification 

accuracy generated by the CNN component. The 

challenges of high noise and various loads were 
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overcome by utilizing random sampling to simulate the 

noise during the training. The outcomes showed the 

model achieved high classification performance under 

fluctuating operation conditions and noise.  

When fast outcomes are needed, the temporal domain 

approach is preferred. In this approach, it is possible to 

extract features from the same domain as data 

collection, and complex signal-processing techniques 

are rendered unnecessary. Therefore, the temporal 

domain analysis achieved a precise result with a wide 

range of intelligent algorithm techniques. In this 

domain, it is allowable to put some assumptions about 

the sorts of REB defects in the form of the vibration 

signal. However, the analysis approaches in the 

temporal domain lack accuracy and sensitivity 

compared to other approaches [26].  

 

2.2.1 Comparative Analysis and Guidance for 

Temporal-Domain Features Selection 

Features extracted from temporal-domain remain 

popular and be widely used for bearing fault diagnosis. 

This can be attributed to their simplicity and physical 

interpretability. Despite this, a comparative analysis of 

recent studies showed that their diagnostic importance 

is considerably dependent on noise severity, operating 

conditions, and fault severity. Statistical features like 

kurtosis, crest factor, and impulse factor showed great 

sensitivity to impulsive fault signatures. For this 

reason, they were considered effective for early fault 

detection, in particular at constant speed and noise 

level is low.  In spite of that, several studies indicate 

that these indicators loss their effectiveness under the 

increase of background noise or fault size.  

On the contrary, RMS and peak-to-peak values 

showed a more reliable correlation with damage 

progress that makes them useful for monitoring 

degradation trends. However, their sensitivity to the 

variation of bearing rotational speed and load, limits 

their robustness under variable operating environment. 

The analysis of the literature also showed that there 

is no single feature in temporal- domain can perform 

accurate diagnosis over different operating scenarios. 

As a result, the combination of features and using 

features selection techniques will be suitable to 

increase the diagnosis reliability.  

Temporal-domain features are suitable for real time 

applications; however, they lose this advantage when 

the machine works under noisy and none-stationary 

environment.  A guidance for temporal features 

selection is summarised as in Table 2.   

 

2.3. Spectral Domain 

This approach involves converting the signal into 

discrete frequency parts, facilitating the analysis of the 

distinctive frequency components related to the failure.  
 

 

Table 2. A guidance for temporal-domain features selection 

Diagnostic 

objective 

Recommended 

temporal 

features 
Key limitation 

Early fault 

detection 

Kurtosis, crest 

factor, impulse 

factor 
Noise sensitivity 

Fault severity 

tracking 
RMS, peak-to-

peak 
Speed/load 

dependence 
Real-time 

monitoring 
RMS, mean, 

variance 
Limited fault 

localization 
Noisy 

environments 
Selected features 

+ FS 
Reduced 

impulsiveness 

Variable 

speed/load 

Temporal 

features not 

recommended 

alone 

Poor invariance 

The modified signal is referred to as the signal 

spectrum. Table 3 provides a list of some of the 

popular spectral domain features. Alonso et al. [24] 

utilized the FFT and envelope analysis to analyze the 

vibration signals and detect failures in bearings. 

Furthermore, a kurtogram was employed to obtain the 

optimal bandwidth. The drawbacks of the proposed 

approach were difficulty in identifying ball fault by 

utilizing envelope analysis and computational cost of 

kurtogram. Combining the results from the envelope 

analysis with machine learning algorithms such as 

KNN and the Decision Tree achieved a high accuracy 

rate.Suhail et al. [52] build a model for automatically 

features formation utilizing the envelope analysis from 

the vibration signal in the spectral domain. Firstly, the 

Auto-Regressive (AR) approach was employed to 

filter the original signal, improve the residual signal for 

more analysis, and eliminate deterministic 

components. Secondly, the relevant frequency band 

was identified by Spectral Kurtosis (SK) analysis, 

which contains the characteristic frequencies of the 

bearings. Finally, the envelope analysis was utilized to 

isolate the signals, which interfaced with different 

forms of noise, and examine the frequency spectrum 

via Hilbert transform. FFT was utilized on the 

envelope signal to obtain the fault features. The 

developed method showed significant improvement in 

detection performance and its effectiveness in 

obtaining the features at resonance frequencies, and 

the features were independent of the fluctuation of 

speed. Khalil et al. [53] applied the spectral domain for 

vibration signals analysis and feature extraction via 

FFT, where the time signals were transformed into a 

frequency spectrum. This spectrum was divided into 

suitable bands called bins.  

Then the cumulative energy of each bins was 

calculated to generate attributes representing the 

equipment's operational status. The attributes were 

employed to train the machine learning model, such as 

SVM and Ensemble Algorithms to precisely classify 

the  bearing  faults.  The   finding   showed   diagnosis
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Table 3. List of spectral domain features [28]. 

Spectral domain features Mathematical Equation 

Frequency center 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑒𝑛𝑡𝑒𝑟 =  
∑ (𝑥𝑖

′)2𝑁

𝑖=2

4𝜋2 ∑ 𝑥𝑖
2𝑁

𝑖=1

 

Discrete Fourier Transform 𝑥(𝜔)  =  ∫ 𝑥(𝑡)𝑒−𝑗𝑤𝑡𝑑𝑡

∞

−∞

 

Root Variance frequency 𝑅𝑉𝐹 = √
∑ (𝑥𝑖

′)2𝑁

𝑖=2

4𝜋2 ∑ 𝑥𝑖
2𝑁

𝑖=1

− (
∑ (𝑥𝑖

′)2𝑁

𝑖=2

4𝜋2 ∑ 𝑥𝑖
2𝑁

𝑖=1

)2 

RMS frequency 𝑅𝑀𝑆𝐹 = √
∑ (𝑥𝑖

′)2𝑁

𝑖=2

4𝜋2 ∑ 𝑥𝑖
2𝑁

𝑖=1

 

*Where N represents the total number of elements in vector x, j denotes the imaginary unit, w signifies the angular frequency, and 

xi signifies the ith element. 

 
accuracy of over 90%, in addition to decreasing 

dependence on human interaction and simplifying 

application to analogous systems.   
Envelope spectrum analysis was utilized in [54] to 

analyze vibration signals and detect the bearing 

defects. The signals were enhanced via a band pass 

filter, and the Hilbert function was applied to obtain 

the envelope spectrum and determine the fundamental 

frequencies related to the faults. The stochastic 

gradient descent with momentum (SGDM) algorithm 

was utilized to accelerate the process of learning, and 

techniques such as dropout and batch normalization 

were utilized to enhance the performance. The 

presented method reduced the interference and 

enhanced the signals, precisely determining the fault 

frequencies, achieved a significant diagnostic accuracy 

with 207,493 parameters by utilizing CNNs, and the 

average response time was 0.03 s. The characteristics 

of the motor states are frequently limited and singular 

due to limitations introduced by real-world operation 

conditions. To deal with these problems, Xu et al. [55] 

employed FFT to analyze vibration signals and extract 

impacted information related to bearing faults. For the 

purpose of reducing data dimensionality and securing 

data noise elimination, they utilized the singular value 

decomposition (SVD) technique. The extracted 

features were combined with the CNN and long short-

term memory algorithm (LSTM)  for further analysis 

and to improve diagnostic accuracy. Validation of the 

proposed model utilizing CWRU data showed a high 

accuracy. Walther et al. [56] proposed two approaches, 

hybrid and conventional, to classify bearing failure. 

The conventional approach employed the LSTM 

method to analyze raw data, obtaining excellent 

diagnostic accuracy utilizing all sensors. However, it 

exhibited inadequate accuracy with individual data or 

complicated microphone signals. The hybrid approach 

utilizing FFT to extract characteristic frequencies 

related to fault  and LSTM as a classifier produced very 

high diagnostic accuracy with better result stability 

despite little data availability. The hybrid approach 

improved the performance by adding physical 

knowledge while reducing the need for large number 

of datasets. However, it requires prior knowledge of 

the system and provides complexity to the design by 

adding processing steps to transform data utilizing FFT 

and combining physical knowledge with the LSTM 

model.  

The FFT demonstrates certain limits in 

performance, particularly with the hiding of unique 

frequencies by the source frequency and its inaccurate 

depiction of transitory events [29]. In addition to 

Fourier analysis,  

Multiple techniques were employed to derive 

spectral spectrum characteristics from original 

vibration data. Shannon entropy [57], spectral 

Skewness, envelope spectrum analysis, and spectral 

Entropy were further strategies for feature extraction 

in the spectral domain [30]. Kannan et al. [58] 

automated the appropriate selection of bandpass filter 

settings for envelope analysis utilizing a real-coded 

genetic algorithm with a unique fitness function and 

cross-over choosing mechanism; this enabled 

differentiation for fault-related frequencies for rolling 

element bearings.  

Under various bearing fault conditions, Chen et al. 

[59] employed the envelope spectrum characteristics 

peak intensity and frequency fluctuations as fault 



DIAGNOSTYKA, Vol. 27, No. 1 (2026) 

Thajeel M. M, Al-Bugharbee H. Bearing condition monitoring: a review of feature extraction in temporal … 

8 

indicators. These attributes with a simple Naïve Bayes 

classifier simplify the algorithms utilized to obtain the 

features and diagnose the faults. Their suggested 

method also speeds up the time for diagnosing 

industrial bearing faults and minimizes the hardware 

setup and operation costs. Their classification method 

may fail on complex datasets with variable speed 

situations. In order to demodulate the signal, Chen et 

al. [60] utilized the simplified Box-Cox transform to 

build generalized envelopes (GEs) from the analytical 

signal. Then, they developed a family of spectra called 

generalized envelope spectra (GESs) to demonstrate 

cyclostationarity. A connection between logarithmic 

and exponentiation operations is established via the 

Box-Cox transformation. The findings from 

simulations reveal that GESs with varied values for 

transformation parameter (p) behave differently when 

subjected to varying levels of interference. To improve 

the cyclostationarity detection capabilities of 

individual GES, a new improved demodulation 

spectrum known as product envelope spectrum (PES) 

was created. This spectrum combines the performance 

benefits of many GESs.  

 

2.3.1. Comparative Analysis and Guidance for 

Spectral-Domain Features Selection 

Spectral-domain features are broadly utilised in 

bearing fault diagnosis because of their significant 

interpretability and straight correlation with the 

bearing fault characteristic frequencies. The 

examination of recent studies showed that these 

features are efficient for fault diagnosis particularly in 

the inner-, outer race, rolling elements and cage.   

The conventional spectral spectrum – based 

features can be reliable for fault localisation when the 

operating conditions are steady; however, they lose 

their reliability under the non-stationarity of load and 

speed.  

The comparative analysis also indicates that 

envelope spectrum-based features significantly 

improves the bearing fault characteristic frequencies 

through the demodulation of resonance frequency 

band. However, the selection of improper frequency 

band may lead to the deterioration of fault detection 

due to the induction of noise that my buried the fault 

signature. To cover this limitation, automatic 

resonance band-selection methods, such as spectral 

kurtosis, can be adopted. The use of these techniques 

enhance the isolation of high impulsiveness spectral 

bands and then subject them for further analysis.  

In general, the diagnostic activeness of spectral-

domain features relies on frequency band selection. A 

selection guidance for spectral domain features is 

summarized in Table 4. 

 

 

 

Table 4. Selection guidelines for frequency-domain features 

Diagnostic 

objective 

Recommended 

frequency-

domain features 

Main limitation 

Fault 

localization 

FFT peaks at 

BPFO, BPFI, 

BSF, FTF 

Speed 

dependence 

Early fault 

detection 

Envelope 

spectrum 

features 

Sensitive to 

band selection 

Noisy 

environments 

SK-guided / 

optimized 

envelope 

features 

Computational 

cost 

Low SNR 

conditions 

Log-envelope / 

product-

envelope spectra 

Parameter 

tuning 

Real-time 

monitoring 

FFT band-

energy features 

Limited 

incipient 

sensitivity 

Variable 

speed/load 

Frequency 

features not 

recommended 

alone 

Frequency 

smearing 

 
2.4. Temporal-spectral domain 

The representation of vibration signals in temporal-

spectral domain provides an effective scan for the non-

stationary and transient components of the signal, 

which are commonly observed in rolling element 

bearings. The temporal-spectral feature extraction 

methods are useful in characterisation of the overtime 

evolving defect impulses or those buried in 

background noise. 

Wavelet-based techniques, namely continuous 

wavelet transform (CWT), discrete wavelet transform 

(DWT), and wavelet packet decomposition (WPD), 

are among the most popular utilized temporal–spectral 

methods for bearing fault diagnosis. These techniques 

assist, by providing multi-resolution analysis, the 

accurate identification of transient components of a 

signal over different spectral bands.   

Many studies indicate that wavelet-based features, 

such as entropy, wavelet energy, and statistical 

moments, perform accurate diagnosis when used with 

machine learning classification models. However, the 

surveyed literature report that their effectiveness is 

considerably reliable on comparative evidence 

indicates that their performance is largely influenced 

by a number of parameters such wavelet type and 

decomposition level. In addition, the computational 

burdens highly rises for high-resolution 

representations, in particular in real-time applications 

[61], [62], [63], [64], [65], [66], [67], [68]. 

Many signal decomposition techniques, such as 

variation mode decomposition (VMD), empirical 

mode decomposition (EMD), ensemble EMD have 

been  widely  also  employed  broadly  for  generating 
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Table 5. List of the temporal-spectral domain features [28]. 

Features Mathematical Equation 

STFT 𝑆𝑇𝐹𝑇𝑥(𝑡) (𝑡, 𝜔)  =  ∫ 𝑥(𝑡)

∞

−∞

𝜔(𝑡 − 𝜏) 𝑒(−𝑗𝜔𝑡)𝑑𝑡 

Wavelet Packet Transform  𝑑𝑗+1,2𝑛 = ∑ ℎ(𝑚 − 2𝑘)𝑑𝑗,𝑛
𝑚

 

Continuous Wavelet Transform 𝑊𝑥(𝑡)(𝑠, 𝜏) =
1

√2
∫ 𝑥(𝑡)𝜑∗(

𝑡 − 𝜏

𝑠
)𝑑𝑡 

Discrete Wavelet Transform 𝑊𝑥(𝑡)(𝑠, 𝜏) =
1

√2𝑗
∫ 𝑥(𝑡)𝜑∗(

𝑡 − 𝑘2𝑗

2𝑗
)𝑑𝑡 

Empirical Mode Decomposition 𝑥(𝑡) = ∑ 𝑐𝑗

𝑛

𝑗=1
+ 𝑟𝑛 

*Where τ is the time variable, ω (τ) is the window function, φ∗ is the complex conjugate of φ (t), m is the number of coefficients, j 

and k are integers, dj,n, dj+1,2n and dj+1,2n+1 correspond to wavelet coefficients at sub-band n, 2n, 2n+1. Additionally, cj refers to the 

jth intrinsic mode function, rn is the residual of the data x(t) following the extraction of n intrinsic mode function.  

 

temporal-spectral domain features. The main idea of 

these techniques includes decomposing of a vibration 

signal into a number of in intrinsic mode functions 

(IMFs). Then various features, including kurtosis, crest 

factor, and entropy, can be extracted from all or some 

of these components (i.e. IMFs). These features were 

reported as strong sensitivity indicators for fault 

severity. Nevertheless, the analyzed studies in this 

review indicate that signal decomposition-based 

techniques can usually lead to the generation of noise-

dominated components. In addition, these techniques 

effectiveness is influenced by the suitable mode 

selection. Missing appropriate selection of useful 

mode, these methods might undergo from instability 

under varying operating conditions [69], [70], [71], 

[72], [73], [8], [74], [75], [76]. 

Recently, studies have increasingly investigated 

the use of temporal–spectral representations as 2D 

input for deep learning models. The 2D temporal-

spectral representations can be obtained using wavelet 

scalograms, Hilbert-Huang spectrum and others. The 

subjection of these representation to deep learning 

model, such as convolutional neural network, enable 

them to automatically extract diagnostic defect 

features from complicated vibration signatures. 

Although these techniques indicate considerably 

accurate classification, the studies reports that 

occasionally such superior performance is attributed to 

the quality of the temporal–spectral representation. 

Furthermore, there are several obstacles, including the 

high computational burdens and sensitivity to noise, 

limit the use of temporal-spectral features in real time 

applications [77], [78], [79], [31], [80], [81], [82], [83], 

[84], [85], [86].  

  

2.4.1 Comparative Analysis and guidance for 

Temporal - spectral Features Selection 

A comparative examination of recent studies 

showed that when defect impulses evolve over time or 

buried in background noise, the employment of the 

temporal-spectral features performed better than using 

temporal- or spectral-domain features alone.  

Although short-time Fourier transform (STFT) 

provides features with straightforward interpretation, 

these features have limited capability for identification 

of short –time impulses. This is attributed to the fixed 

resolution of temporal-spectral spectrum. 

In wavelet-based techniques, the limitation of fixed 

resolution is covered as these techniques offer the 

multi-resolution representation. Consequently, they 

enhance the identification of transient and nonstation 

defect signatures.  

The comparative analysis of recent studies also 

indicates that despite the effectiveness of 

decomposition techniques such as EMD and EEMD 

for generating features, they usually produce 

redundant components. Additionally, their 

performance highly rely on the selection of useful 

modes. Selection of inappropriate modes can degrade 

the diagnosis accuracy. 

In summary, temporal-spectral features are 

considered high health diagnostic indicators under the 

presence of non-stationary and complex operating 

conditions. However, they required high 

computational burdens. Table 6 offers a selection 

guidance for temporal-spectral features for different 

operating scenarios.  

 

 



DIAGNOSTYKA, Vol. 27, No. 1 (2026) 

Thajeel M. M, Al-Bugharbee H. Bearing condition monitoring: a review of feature extraction in temporal … 

10 

Table 6. Selection guidelines for temporal-spectral 

features 

Diagnostic 

objective 

Recommended 

temporal-spectral 

features 

Main limitation 

Non-stationary 

faults 

CWT / WPD-

based features 

High 

computation 

Transient fault 

detection 

DWT / wavelet 

energy & entropy 

Parameter 

sensitivity 

Noisy 

environments 

Optimized 

EEMD / VMD 

features 

Mode selection 

required 

Low SNR 

conditions 

Median / 

entropy-based TF 

features 

Requires 

optimization 

Unknown fault 

frequencies 

Decomposition-

based TF features 

Redundant 

modes 

Deep learning 

input 

TF images 

(STFT, CWT, 

WPD) 

Memory & 

training cost 

Real-time 

monitoring 

Not 

recommended 

alone 

Latency 

 

2.5. Multi-domain analysis 

Multi-domain integration approaches can be 

classified into three levels, namely, data-level 

integration, feature-level integration, and decision-

level integration. The first category refers to the 

combination of data that obtained from multiple 

sources, such as vibration and acoustic emission [87], 

[88]. Raw signal concatenation is an example for the 

representative techniques in this category. Although 

data-level techniques preserve maximum information 

about the system condition, they may suffer from 

increased data dimensionality, incompatibility of 

sampling rate ,noise amplification and the sensitivity 

to domain shift under which signals were acquired 

[87], [88]. 

The second category, i.e. feature-level integration, 

includes approaches, such as deep fusion networks, 

that combine features from different domains, 

including temporal, spectral and temporal-spectral 

domains [21], [87], [89]. They typically require 

dimensionality-mitigation techniques; nevertheless, 

they improve diagnostic effectiveness. Additionally, 

these techniques can be  configured to learn the 

variations of signals under domain shifts that 

consequently reduce  the influence of operation non-

stationarity [88], [89]. 

The third category contains the techniques, such as 

Bayesian inference, that aggregate the multiple 

classifiers outputs. The advantages of these techniques 

include the flexibility of training individual classifiers 

independently and the ability to make decisions even 

if one signal source fails. However, the techniques 

performance is limited by the availability of sufficient 

training labels and the risk of having similar failure 

mode across classifiers [12], [18].    

In the current section, multi-domain techniques are 

analysed mainly from the perspective of feature-level 

integration. 

Sharma et al. [90] utilized the temporal domain and 

spectral domain for signal analysis and feature 

extraction for fault diagnosis of electric motors. 

Features were extracted from the temporal domain (11 

features), such as standard deviation, as well as from 

the spectral domain (2 features), including mean 

frequency and median frequency. The temporal 

domain analysis suffered from a variety of noise in the 

vibration signals, which made it difficult to accurately 

identify engine faults. While frequency analysis can be 

effective in identifying faults from vibration signals, 

manual methods such as visual inspection of frequency 

characteristics were often inadequate, requiring 

reliable and rapid automated systems to improve 

diagnosis. Overcoming these challenges required 

advanced feature selection and analysis methods such 

as principal component analysis (PCA) [91] and 

sequential floating forward selection (SFFS) [92] to 

reduce dimensionality and enhance performance. Saha 

et al. [93] analyzed the raw vibration signals obtained 

from bearings utilizing the FFT approach to transform 

time data into frequency spectrum. Statistical features 

such as RMS and standard deviation were extracted 

from the temporal domain. The SVM algorithm was 

employed as the primary approach to classify the 

bearing faults, and its performance was improved by 

utilizing the PSO algorithm to obtain the optimum 

value of the required the parameters. The proposed 

model showed high classification accuracy compared 

with conventional algorithms. The improvements 

engaged employing improved PSO to obtain optimal 

parameters and the introduction of various temporal 

features to improve model performance. Altaf et al. 

[94] extracted statistical features such as Kurtosis, 

RMS, Average, Skewness, and second derivative from 

the vibration signatures in the temporal domain, 

spectral domain, and power spectral domain to 

diagnose bearing fault. The features were obtained 

from the original signal and its second derivative.      

The authors integrated these features to create a 

comprehensive feature vector that improved the 

accuracy. The findings demonstrated that the presented 

approach obtained high accuracy of diagnosis up to 

99.13% utilizing kernel linear discriminant analysis 

(KLDA) and 96.64% utilizing K-nearest neighbor 

(KNN), with high performance in decreasing the data 

size by 95%, which diminished the computational 

burden and time. In addition, the researchers present 

sufficient analysis of the obtained statistical features, 

and emphasise their physical relevance, and 

discriminative ability. For instance, features extracted 
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from the second derivative and the PSD domain were 

shown to improve the fault. 

Sahraoui et al. [95] analyzed the bearing vibration 

waveforms and the stator current to inspect the 

presence of bearing defects utilizing Adaptive time-

varying morphological filtering (ATVMF) to obtain 

features in the temporal and spectral domain. Twenty 

statistical features from the temporal and spectral 

domain were extracted. They employed the ant colony 

optimization (ACO) algorithm to obtain the most 

significant features. The obtained features were 

classified utilizing the Random Forest (RF) algorithm. 

The outcomes showed high accuracy of up to 98.5% 

with strong stability for the two types of data. Song et 

al. [96] extracted 15 features in the temporal and 

spectral domains from vibration signals utilizing the 

Discrete Fourier Transform (DFT) technique, which 

addressed the problems of nonlinearity and non-

stationarity of the signals. The obtained features 

included a unified representation of the temporal and 

frequency information. The proposed model fed the 

extracted features into a hybrid kernel SVM model 

optimized by the Bayesian Optimization (BO) 

algorithm. The outcomes demonstrated a high 

diagnostic accuracy in verification and experimental 

procedures. Xue et al. [97] utilized the first 256 data of 

the envelope spectrum, collected by the Hilbert 

transform (HT) as input to (DCNN) model that 

identifies the characteristics features of the signals in 

the temporal and spectral domains. The collected 

features were merged with two features extracted from 

the temporal domain (peak to peak and kurtosis index) 

to create a hybrid features set that was utilized to train 

the support vector machine (SVM). The findings 

revealed that the presented methods, which merged 

deep learning with the human experience, increased 

the diagnostic accuracy to 98.71% compared to 

90.29% utilizing DCNN alone. Said et al. [98] utilized 

the time, frequency, and temporal-spectral domains for 

signal processing and feature extraction. The time 

signals were analyzed to extract features like RMS, 

peak, Kurtosis, etc., which represent the characteristics 

of the signal in time. Spectral descriptors such as 

characteristic frequencies of defects (outer race 

frequency, ball frequency, and inner race frequency) 

were utilized. Wavelet packet transformation (WPT) 

was utilized to segment the signal into several 

frequency bands, providing multi-resolution analysis 

that can identify small defects and more accurately 

represent the non-stationary signal. This approach 

combined temporal, spectral, and temporal-spectral 

analysis utilizing WPT and neural networks, which has 

significantly improved the accuracy of diagnosis and 

classification of bearing defects. Features analysis was 

performed to examine their sensitivity for fault 

presence across frequency sub-bands and then 

discarded those features whose sensitivity are low. 

Metwally et al. [99] initiated the analysis utilizing the 

temporal domain to analyze the raw signal and 

statistical features such as RMS, peak, and energy 

were extracted. After that, they convert the signal to 

the spectral domain with FFT. Finally, the researchers 

utilized an auto-regressive model to extract hidden 

features and reduce the noise. This process enhanced 

the classification accuracy. The results illustrate that 

the autoregressive model reported excellent 

classification accurace, which makes it the best choice 

in complicated faults and contaminated data. Sawaqed 

et al. [87] utilized multi domain to analyze the signals 

and identify the failure of the bearings in rotary 

machines. Eleven characteristics, such as variance, 

Skewness, and Kurtosis, were extracted in the 

temporal domain. In the spectral domain, two features 

were identified utilizing FFT. Wavelet Packet 

Decomposition was also utilized to decompose the 

signals into numerous levels and analyze energy across 

various time and spectral domains. The research 

showed that the temporal domain was effective for 

pulse signals, but the accuracy was low when the 

severity of the fault increased or when the bearings 

were overloaded. In such cases, it is appropriate to 

utilize the spectral domain to detect the faults. The 

spectral domain exhibits difficulties in identifying 

low-energy fault signals because of noise. Therefore, 

when the characteristics of the fault signal are non-

stationary, the wavelet transformation is the best 

solution [100]. Cui et al. [101] obtained various 

statistical features from the temporal domain, spectral 

domain, and temporal-spectral domain to detect the 

bearing fault in wind turbines utilizing machine 

learning algorithms such as SVM, ANN, KNN, and 

Naive Bayes. The Neighborhood Components 

Analysis (NCA) technique was employed to obtain the 

optimal parameters and reduce dimensionality. The 

significance of numerous features could vary under 

various operation situations. The proposed model 

achieved the best classification accuracy of 89% with 

KNN and effectively obtained features from non-

stationary vibration signals. 

Abburi et al. [102] utilized the temporal domain, 

spectral domain, and temporal-spectral domain to 

analyze the vibration signal for the classification of 

bearing faults. Statistical features such as mean, crest 

factor, RMS, and Kurtosis were obtained. The authors 

also utilized advanced techniques such as the Real Fast 

Fourier Transform (RFFT) and STFT. Their method 

improved the accuracy and dealt with non-stationary 

signals with machine learning algorithms such as SVM 

and random Forest (RF). However, in their approach 

there is a chance for data leakage due to partitions and 

less performance due to imbalanced data. Chen et al. 

[103] introduced an MCNN-LSTM model that 

combined a multi-scale convolutional neural network 

and long short-term memory with direct feature 
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extraction from the raw data without preprocessing for 

bearing fault diagnosis, which improved efficiency and 

conserved time. Ten comparative trials were 

conducted utilizing two groups of features, the first 

group extracted from the temporal domain and spectral 

domain, the other from the temporal domain and 

(EMD) and (HT). The proposed model obtained a 

classification accuracy of 98.46% with robust 

performance in high-noise situations and minimized 

computational complexity by decreasing the input 

data. Nevertheless, it faced challenges in significant 

noise environments and similar signals. The findings 

demonstrated that the model considerably improved 

the efficiency of bearing fault diagnosis compared to 

conventional approaches. Su et al. [104] presented 

knowledge-based features to detect rolling bearing 

defects. They proposed a deep convolutional neural 

network (CNN) technique called knowledge-informed 

deep network (KIDN) to extract and integrate features 

driven by knowledge and data. The features that are 

based on knowledge include temporal domain 

statistics associated to a fault, such as (RMS, kurtosis, 

Skewness, etc.) and spectral domain features, 

including the energy of the fault spectrum as calculated 

by the Hilbert transform and FFT. In order to classify 

faults, a feature fusion layer is created to combine 

knowledge-based features with data-driven features 

acquired from the CNN network's dense layer.           

The created feature vector is then utilized as a fused 

feature map. Theoretically, combining the two kinds of 

characteristics should increase accuracy and 

robustness by yielding more detailed information for 

system failure identification. In practical applications, 

multi-domain data representation captures more fault 

features under varied operation situations, improving 

model flexibility and resilience. Therefore, Sui et al. 

[88] presented a multi-domain strategy to identify 

bearing faults utilizing the envelope spectral transform 

for spectral domain converting and the Bessel 

transform for temporal-spectral domain converting. 

Their method provided a new path for fault 

identification, with ramifications for practice and 

theory. As demonstrated in many circumstances, 

features from multiple domains were more effective in 

extracting useful information than features from a 

single domain [89]. 

A comparative summary of multi-domain feature 

extraction and a guidance of selection is presented in 

Tables 7 and 8. 
 

3. DISCUSSION  

 

This section discusses, based on the comparative 

analysis in section 2, the advantages, limitations, and 

challenge of the surveyed feature extraction 

techniques. 

Table 7. Comparison of Feature Extraction Domains for 

Bearing Fault Diagnosis 

Domain 
Typical 
Features 

Main 
Advantages 

Key 

Limitation

s 

Recomme

nded 
Applicatio

ns 

Tempor

al 

RMS, 

Kurtosi, 

Skewnes
s, Peak-

to-Peak 

Simple 

implementa
tion, low 

computatio

n cost, 
effective 

for early 

fault 
detection 

Sensitive 
to noise, 

limited 

capability 
for non-

stationary 

signals 

Fast 
monitorin

g, low-

cost 
systems, 

early fault 

screening 

Spectra

l 

Spectral 

energy, 
center 

frequenc

y, 
envelope 

spectru

m peaks 

Accurate 
identificati

on of fault 

characterist
ic 

frequencies 

Loss of 

temporal 
informatio

n, noise 

sensitivity 

Steady-

state 

operation, 
frequency-

specific 

fault 
diagnosis 

Tempor

al–

Spectra
l 

Wavelet 
coefficie

nts, IMF 
energy, 

entropy 

measure
s 

Effective 
for non-

stationary 
signals, 

rich fault 

representati
on 

High 

computati
onal cost, 

parameter 

sensitivity 

Variable 
speed/load

, complex 

industrial 
environme

nts 

 

Table 8. Guidance for Selecting Suitable Health 

Indicators 
Operating 

Condition 

Recommended 

Domain 

Preferred 

Health 

Indicators 

Rationale 

Low noise, 

constant 
speed 

Temporal 
RMS, 

Kurtosis 

Simple 

indicators 

sufficient to 
capture defect 

growth 

High noise 

environment 

Temporal–

Spectral 

Wavelet 
entropy, 

IMF 

energy 

Enhanced 

noise 
robustness 

Early fault 

detection 
Temporal 

Kurtosis, 
Impulse 

factor 

Sensitive to 
impulsive 

behavior 

Variable 

speed/load 

Temporal–

Spectral 

CWT 
energy 

maps, 

EEMD-
based 

features 

Captures time-
varying 

behavior 

Real-time 

constraint 

Temporal / 

Spectral 

RMS, 

spectral 
energy 

Low 

computational 
burden 

 

The review highlights that feature extraction 

remain highly necessary step in the fault diagnosis of 

rolling element bearings process.  Temporal-domain 

features provides low computational cost and 

interpretable health metrics. However, they suffer 

from poor robustness under noisy and non-stationary 

operating environment.  Spectral features are helpful 

in localization of bearing defect characteristic 

frequencies, but their performance deteriorates with 
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the presence of transient signal interference. 

Temporal–spectral approaches mostly overcome the 

limitations in temporal and spectral features, but they 

generate obstacles related to costly computation 

requirements and the need for parameters 

optimization.  
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4. CONCLUSIONS  

 

Although this study does not propose a new 

taxonomy, it aims to provide a structured review of 

feature extraction and selection. 

 In this study, recent studies on bearing fault 

diagnosis techniques have been examined and more 

emphasis has been given to the advancements in 

feature extraction method in different signal domains.  

It is reported that temporal features enable low 

computational cost and interpretation while spectral 

features offer accurate frequency-based classification. 

Additionally, temporal–spectral features show 

significant diagnostic performance for non-stationary 

signals. 

In comparison to existing surveys, this study 

highlights feature-domain extraction and selection 

guidance under various operating challenges including 

noise robustness, non-stationary conditions and online 

application.   

Despite the considerable progress, it is observed 

the increasing dependency on laboratory datasets 

obtained with unchanged speed and load conditions. 

This highlights the challenges of generalization to real 

world applications where noise and non-stationary 

operational conditions are common. 

In addition, in spite of the automation of features 

learning by deep learning techniques, the 

explainability of obtained features remains in need for 

more research.  

 

REFERENCES 
 

1. Lee CY, Le TA, Lin YT. A feature selection approach 

hybrid grey wolf and heap-based optimizer applied in 

bearing fault diagnosis. IEEE Access. 2022;10: 56691–

705. https://doi.org/10.1109/ACCESS.2022.3177735. 

2. Patil AA, Desai SS, Patil LN, Patil SA. Adopting 

artificial neural network for wear investigation of ball 

bearing materials under pure sliding condition. Appl 

Eng Lett. 2022;7:81–8. 

https://doi.org/10.18485/aeletters.2022.7.2.5. 

3. Neupane D, Seok J. Bearing fault detection and 

diagnosis using case western reserve university dataset 

with deep learning approaches: A review. IEEE Access. 

2020;8:93155–78. 

https://doi.org/10.1109/ACCESS.2020.2990528. 

4. Liang H, Cao J, Zhao X. Average descent rate singular 

value decomposition and two-dimensional residual 

neural network for fault diagnosis of rotating 

machinery. IEEE Trans Instrum Meas. 2022;71:1–16. 

https://doi.org/10.1109/TIM.2022.3170973. 

5. Zhu Z, Lei Y, Qi G, Chai Y, Mazur N, An Y, et al. A 

review of the application of deep learning in intelligent 

fault diagnosis of rotating machinery. Measurement. 

2023;206:112346. 

https://doi.org/10.1016/j.measurement.2022.112346. 

6. Kuncan M. An intelligent approach for bearing fault 

diagnosis: Combination of 1D-LBP and GRA. IEEE 

Access. 2020;8:137517–29.  

https://doi.org/10.1109/ACCESS.2020.3011980. 

7. Nayana BR, Geethanjali P. Improved identification of 

various conditions of induction motor bearing faults. 

IEEE Trans Instrum Meas. 2019;69:1908–19. 

https://doi.org/10.1109/TIM.2019.2917981. 

8. Zhou J, Xiao M, Niu Y, Ji G. Rolling bearing fault 

diagnosis based on WGWOA-VMD-SVM. Sensors. 

2022;22. https://doi.org/10.3390/s22166281. 

9. Narendiranath Babu T, Manvel Raj T, Lakshmanan T. 

A review on application of dynamic parameters of 

journal bearing for vibration and condition monitoring. 

Journal of Mechanics. 2015;31:391–416.  

https://doi.org/10.1017/jmech.2015.6. 

10. Hameed Z, Hong YS, Cho YM, Ahn SH, Song CK. 

Condition monitoring and fault detection of wind 

turbines and related algorithms: A review. Renewable 

and Sustainable Energy Reviews. 2009;13:1–39. 

https://doi.org/10.1016/j.rser.2007.05.008. 

11. Praveenkumar T, Sabhrish B, Saimurugan M, 

Ramachandran KI. Pattern recognition based on-line 

vibration monitoring system for fault diagnosis of 

automobile gearbox. Measurement. 2018;114:233–42.  

https://doi.org/10.1016/j.measurement.2017.09.041. 

12. Siano D, Panza MA. Diagnostic method by using 

vibration analysis for pump fault detection. Energy 

Procedia. 2018;148:10–17. 

https://doi.org/10.1016/j.egypro.2018.08.013. 

13. Araújo VG de, Bissiriou AOS, Villanueva JMM, 

Villarreal ERL, Salazar AO, Teixeira R de A, et al. 

Monitoring and diagnosing faults in induction motors’ 

three-phase systems using NARX neural network. 

Energies. 2024;17. 

https://doi.org/10.3390/en17184609. 

14. Pinedo-Sánchez LA, Mercado-Ravell DA, Carballo-

Monsivais CA. Vibration analysis in bearings for failure 

prevention using CNN. Journal of the Brazilian Society 

of Mechanical Sciences and Engineering. 2020;42.  

https://doi.org/10.1007/s40430-020-02711-w. 

https://doi.org/10.1109/ACCESS.2022.3177735
https://doi.org/10.18485/aeletters.2022.7.2.5
https://doi.org/10.1109/ACCESS.2020.2990528
https://doi.org/10.1109/TIM.2022.3170973
https://doi.org/10.1016/j.measurement.2022.112346
https://doi.org/10.1109/ACCESS.2020.3011980
https://doi.org/10.1109/TIM.2019.2917981
https://doi.org/10.3390/s22166281
https://doi.org/10.1017/jmech.2015.6
https://doi.org/10.1016/j.rser.2007.05.008
https://doi.org/10.1016/j.measurement.2017.09.041
https://doi.org/10.1016/j.egypro.2018.08.013
https://doi.org/10.3390/en17184609
https://doi.org/10.1007/s40430-020-02711-w


DIAGNOSTYKA, Vol. 27, No. 1 (2026) 

Thajeel M. M, Al-Bugharbee H. Bearing condition monitoring: a review of feature extraction in temporal … 

14 

15. Lessmeier C, Kimotho JK, Zimmer D, Sextro W. 

Condition monitoring of bearing damage in 

electromechanical drive systems by using motor current 

signals of electric motors: A benchmark data set for 

data-driven classification. PHM society European 

conference. 2016;3. 

https://doi.org/10.36001/phme.2016.v3i1.1577. 

16. Glowacz A. Recognition of Acoustic Signals of Loaded 

Synchronous Motor Using FFT, MSAF-5 and LSVM. 

Archives of Acoustics 2015;40:197–203.  

https://doi.org/10.1515/aoa-2015-0022.. 

17. Jia Z, Liu Z, Vong CM, Pecht M. A rotating machinery 

fault diagnosis method based on feature learning of 

thermal images. IEEE Access. 2019;7:12348–59. 

https://doi.org/10.1109/ACCESS.2019.2893331. 

18. Malla C, Panigrahi I. Review of condition monitoring 

of rolling element bearing using vibration analysis and 

other techniques. Journal of Vibration Engineering & 

Technologies. 2019;7:407–14.  

https://doi.org/10.1007/s42417-019-00119-y. 

19. Duan Z, Wu T, Guo S, Shao T, Malekian R, Li Z. 

Development and trend of condition monitoring and 

fault diagnosis of multi-sensors information fusion for 

rolling bearings: a review. International Journal of 

Advanced Manufacturing Technology. 2018;96:803–

19. https://doi.org/10.1007/s00170-017-1474-8. 

20. Jardine AKS, Lin D, Banjevic D. A review on 

machinery diagnostics and prognostics implementing 

condition-based maintenance. Mech. Syst. Signal 

Process. 2006;20:1483–510. 

https://doi.org/10.1016/j.ymssp.2005.09.012. 

21. Lei Y, Yang B, Jiang X, Jia F, Li N, Nandi AK. 

Applications of machine learning to machine fault 

diagnosis: A review and roadmap. Mech Syst Signal 

Process. 2020;138.  

https://doi.org/10.1016/j.ymssp.2019.106587. 

22. Leukel J, González J, Riekert M. Adoption of machine 

learning technology for failure prediction in industrial 

maintenance: A systematic review. J Manuf Syst 

2021;61:87–96. 

https://doi.org/10.1016/j.jmsy.2021.08.012. 

23. Süpürtülü M, Hatipoğlu A, Yılmaz E. An analytical 

benchmark of feature selection techniques for industrial 

fault classification leveraging time-domain features. 

Applied Sciences.2025;15.  

https://doi.org/10.3390/app15031457. 

24. Alonso-Gonzalez M, Diaz VG, Lopez Perez B, Cristina 

Pelayo G-Bustelo B, Anzola JP. Bearing fault diagnosis 

with envelope analysis and machine learning 

approaches using CWRU dataset. IEEE Access. 

2023;11:57796–805. 

https://doi.org/10.1109/ACCESS.2023.3283466. 

25. Verstraete D, Ferrada A, Droguett EL, Meruane V, 

Modarres M. Deep learning enabled fault diagnosis 

using time-frequency image analysis of rolling element 

bearings. Shock and Vibration. 2017;2017. 

https://doi.org/10.1155/2017/5067651. 

26. Kannan V, Zhang T, Li H. A review of the intelligent 

condition monitoring of rolling element bearings. 

Machines 2024;12.  

https://doi.org/10.3390/machines12070484. 

27. H. Jain P, P. Bhosle S. A review on vibration signal 

analysis techniques used for detection of rolling 

element bearing defects. International Journal of 

Mechanical Engineering. 2021;8:14–29. 

https://doi.org/10.14445/23488360/ijme-v8i1p103. 

28. Kumar S, Raj KK, Cirrincione M, Cirrincione G, 

Franzitta V, Kumar RR. A comprehensive review of 

remaining useful life estimation approaches for rotating 

machinery. Energies. 2024;17.  

https://doi.org/10.3390/en17225538. 

29. Kumar RR, Andriollo M, Cirrincione G, Cirrincione M, 

Tortella A. A comprehensive review of conventional 

and intelligence-based approaches for the fault 

diagnosis and condition monitoring of induction 

motors. Energies. 2022;15.  

https://doi.org/10.3390/en15238938. 

30. Gawde S, Patil S, Kumar S, Kamat P, Kotecha K, 

Abraham A. Multi-fault diagnosis of industrial rotating 

machines using data-driven approach: A review of two 

decades of research. Eng Appl Artif Intell. 

2023;123:106139.  

https://doi.org/10.1016/j.engappai.2023.106139. 

31. Lee CY, Le TA. An enhanced binary particle swarm 

optimization for optimal feature selection in bearing 

fault diagnosis of electrical machines. IEEE Access. 

2021;9:102671–86. 

https://doi.org/10.1109/ACCESS.2021.3098024. 

32. Tayyab SM, Chatterton S, Pennacchi P. Intelligent 

defect diagnosis of rolling element bearings under 

variable operating conditions using convolutional 

neural network and order maps. Sensors 2022;22.  

https://doi.org/10.3390/s22052026. 

33. Hlawatsch F, Boudreaux-Bartels GF. Linear and 

quadratic time-frequency signal representations. IEEE 

Signal Process Mag. 1992;9:21–67. 

https://doi.org/10.1109/79.127284. 

34. Climente-Alarcon V, Antonino-Daviu JA, Riera-Guasp 

M, Puche-Panadero R, Escobar L. Application of the 

Wigner-Ville distribution for the detection of rotor 

asymmetries and eccentricity through high-order 

harmonics. Electric Power Systems Research. 2012; 

91:28–36. https://doi.org/10.1016/j.epsr.2012.05.001. 

35. Kumbhar SG, Desavale RG, Dharwadkar N V. Fault 

size diagnosis of rolling element bearing using artificial 

neural network and dimension theory. Neural Comput 

Appl. 2021;33:16079–93. 

https://doi.org/10.1007/s00521-021-06228-8. 

36. Shen W, Xiao M, Wang Z, Song X. Rolling bearing 

fault diagnosis based on support vector machine 

optimized by improved grey wolf algorithm. Sensors. 

2023;23. https://doi.org/10.3390/s23146645. 

37. Wu S, Zhou J, Liu T. Compound fault feature extraction 

of rolling bearing acoustic signals based on AVMD-

https://doi.org/10.36001/phme.2016.v3i1.1577
https://doi.org/10.1515/aoa-2015-0022
https://doi.org/10.1109/ACCESS.2019.2893331
https://doi.org/10.1007/s42417-019-00119-y
https://doi.org/10.1007/s00170-017-1474-8
https://doi.org/10.1016/j.ymssp.2005.09.012
https://doi.org/10.1016/j.ymssp.2019.106587
https://doi.org/10.1016/j.jmsy.2021.08.012
https://doi.org/10.3390/app15031457
https://doi.org/10.1109/ACCESS.2023.3283466
https://doi.org/10.1155/2017/5067651
https://doi.org/10.3390/machines12070484
https://doi.org/10.14445/23488360/ijme-v8i1p103
https://doi.org/10.3390/en17225538
https://doi.org/10.3390/en15238938
https://doi.org/10.1016/j.engappai.2023.106139
https://doi.org/10.1109/ACCESS.2021.3098024
https://doi.org/10.3390/s22052026
https://doi.org/10.1109/79.127284
https://doi.org/10.1016/j.epsr.2012.05.001
https://doi.org/10.1007/s00521-021-06228-8
https://doi.org/10.3390/s23146645


DIAGNOSTYKA, Vol. 27, No. 1 (2026) 

Thajeel M. M, Al-Bugharbee H. Bearing condition monitoring: a review of feature extraction in temporal … 

15 

IMVO-MCKD. Sensors 2022;22. 

https://doi.org/10.3390/s22186769. 

38. Espinoza-Sepulveda NF, Sinha JK. Theoretical 

validation of earlier developed experimental rotor faults 

diagnosis model. International Journal of 

Hydromechatronics. 2021;4:295–308.  

https://doi.org/10.1504/IJHM.2021.118009. 

39. Ma R, Li B. Fault diagnosis of motor bearing equipment 

based on vibration signals, SPIE-Intl Soc Optical Eng. 

2024:65. https://doi.org/10.1117/12.3026463. 

40. Kaya Y, Kuncan M, Kaplan K, Minaz MR, Ertunç HM. 

A new feature extraction approach based on one 

dimensional gray level co-occurrence matrices for 

bearing fault classification. Journal of Experimental and 

Theoretical Artificial Intelligence. 2021;33:161–78.  

https://doi.org/10.1080/0952813X.2020.173553. 

41. Stepanić P, Dučić N, Vidaković J, Baralić J, Popović M. 

Implementation and evaluation of machine learning 

algorithms in ball bearing fault detection. Measurement 

Science Review. 2025;25:22–9.  

https://doi.org/10.2478/msr-2025-0004. 

42. Wang B, Qiu W, Hu X, Wang W. A rolling bearing fault 

diagnosis technique based on recurrence quantification 

analysis and Bayesian optimization SVM. Appl Soft 

Comput. 2024;156:111506. 

https://doi.org/10.1016/j.asoc.2024.111506. 

43. Huang X, Xie T, Wu J, Zhou Q, Hu J. Deep continuous 

convolutional networks for fault diagnosis. Knowl 

Based Syst. 2024;292:111623. 

https://doi.org/10.1016/j.knosys.2024.111623. 

44. Qiu S, Cui X, Ping Z, Shan N, Li Z, Bao X, et al. Deep 

learning techniques in intelligent fault diagnosis and 

prognosis for industrial systems: A review. Sensors 

2023;23. https://doi.org/10.3390/s23031305. 

45. Zhang J, Sun Y, Guo L, Gao H, Hong X, Song H. A 

new bearing fault diagnosis method based on modified 

convolutional neural networks. Chinese Journal of 

Aeronautics. 2020;33:439–47. 

https://doi.org/10.1016/j.cja.2019.07.011. 

46. Han T, Zhang L, Yin Z, Tan ACC. Rolling bearing fault 

diagnosis with combined convolutional neural networks 

and support vector machine. Measurement. 2021;177. 

https://doi.org/10.1016/j.measurement.2021.109022. 

47. Gong W, Chen H, Zhang Z, Zhang M, Wang R, Guan 

C, et al. A novel deep learning method for intelligent 

fault diagnosis of rotating machinery based on 

improved CNN-SVM and multichannel data fusion. 

Sensors. 2019;19. https://doi.org/10.3390/s19071693. 

48. Hoang DT, Kang HJ. Rolling element bearing fault 

diagnosis using convolutional neural network and 

vibration image. Cogn Syst Res 2019;53:42–50. 

https://doi.org/10.1016/j.cogsys.2018.03.002. 

49. Kolar D, Lisjak D, Pajak˛ M, Pavković D. Fault 

diagnosis of rotary machines using deep convolutional 

neural network with wide three axis vibration signal 

input. Sensors. 2020;20:1–13.  

https://doi.org/10.3390/s20144017. 

50. Kolar D, Lisjak D, Pajak M, Gudlin M. Intelligent fault 

diagnosis of rotary machinery by convolutional neural 

network with automatic hyper-parameters tuning using 

bayesian optimization. Sensors. 2021;21.  

https://doi.org/10.3390/s21072411. 

51. Jin G, Zhu T, Akram MW, Jin Y, Zhu C. An adaptive 

anti-noise neural network for bearing fault diagnosis 

under noise and varying load conditions. IEEE Access. 

2020;8:74793–807. 

https://doi.org/10.1109/ACCESS.2020.2989371. 

52. Suhail Najim H. automatic feature extraction based on 

envelope analysis and its application in rolling-element 

bearing fault detection. Basrah Journal for Engineering 

Science. 2023;23:34–44. 

https://doi.org/10.33971/bjes.23.2.5. 

53. Khalil AF, Rostam S. Machine learning-based 

predictive maintenance for fault detection in rotating 

machinery: a case study. Engineering. Technology and 

Applied Science Research. 2024;14:13181–9. 

https://doi.org/10.48084/etasr.6813. 

54. Skowron M, Frankiewicz O, Jarosz JJ, Wolkiewicz M, 

Dybkowski M, Weisse S, et al. Detection and 

classification of rolling bearing defects using direct 

signal processing with deep convolutional neural 

network. Electronics. 2024;13.  

https://doi.org/10.3390/electronics13091722. 

55. Xu M, Yu Q, Chen S, Lin J. rolling bearing fault 

diagnosis based on CNN-LSTM with FFT and SVD. 

Information. 2024;15. 

https://doi.org/10.3390/info15070399. 

56. Walther S, Fuerst A. Reduced data volumes through 

hybrid machine learning compared to conventional 

machine learning demonstrated on bearing fault 

classification. Applied Sciences. 2022;12.  

https://doi.org/10.3390/app12052287. 

57. Wu J, Wu C, Cao S, Or SW, Deng C, Shao X. 

Degradation data-driven time-to-failure prognostics 

approach for rolling element bearings in electrical 

machines. IEEE Transactions on Industrial Electronics. 

2019;66:529–39. 

https://doi.org/10.1109/TIE.2018.2811366. 

58. Kannan V, Li H, Dao DV. Demodulation band 

optimization in envelope analysis for fault diagnosis of 

rolling element bearings using a real-coded genetic 

algorithm. IEEE Access 2019;7:168828–38. 

https://doi.org/10.1109/ACCESS.2019.2954704. 

59. Chen Y, Chen Q, Wang R. bearing fault diagnosis based 

on vibration envelope spectral characteristics. Applied 

Sciences. 2025;15.  

https://doi.org/10.3390/app15042240. 

60. Chen B, Zhang W, Gu JX, Song D, Cheng Y, Zhou Z, 

et al. Product envelope spectrum optimization-gram: 

An enhanced envelope analysis for rolling bearing fault 

diagnosis. Mech Syst Signal Process. 

2023;193:110270.  

https://doi.org/10.1016/j.ymssp.2023.110270. 

61. Wang J, Mo Z, Zhang H, Miao Q. A deep learning 

method for bearing fault diagnosis based on time-

https://doi.org/10.3390/s22186769
https://doi.org/10.3390/s22186769
https://doi.org/10.1504/IJHM.2021.118009
https://doi.org/10.1117/12.3026463
https://doi.org/10.1080/0952813X.2020.173553
https://doi.org/10.2478/msr-2025-0004
https://doi.org/10.1016/j.asoc.2024.111506
https://doi.org/10.1016/j.knosys.2024.111623
https://doi.org/10.3390/s23031305
https://doi.org/10.1016/j.cja.2019.07.011
https://doi.org/10.1016/j.measurement.2021.109022
https://doi.org/10.3390/s19071693
https://doi.org/10.1016/j.cogsys.2018.03.002
https://doi.org/10.3390/s20144017
https://doi.org/10.3390/s21072411
https://doi.org/10.1109/ACCESS.2020.2989371
https://doi.org/10.33971/bjes.23.2.5
https://doi.org/10.48084/etasr.6813
https://doi.org/10.3390/electronics13091722
https://doi.org/10.3390/info15070399
https://doi.org/10.3390/app12052287
https://doi.org/10.1109/TIE.2018.2811366
https://doi.org/10.1109/ACCESS.2019.2954704
https://doi.org/10.3390/app15042240
https://doi.org/10.1016/j.ymssp.2023.110270


DIAGNOSTYKA, Vol. 27, No. 1 (2026) 

Thajeel M. M, Al-Bugharbee H. Bearing condition monitoring: a review of feature extraction in temporal … 

16 

frequency image. IEEE Access. 2019;7:42373–83. 

https://doi.org/10.1109/ACCESS.2019.2907131. 

62. Liu Q, Huang C. A fault diagnosis method based on 

transfer convolutional neural networks. IEEE Access. 

2019;7:171423–30.  

https://doi.org/10.1109/ACCESS.2019.2956052. 

63. Yuan Z, Zhou T, Liu J, Zhang C, Liu Y. Fault diagnosis 

approach for rotating machinery based on feature 

importance ranking and selection. Shock and Vibration. 

2021;2021. https://doi.org/10.1155/2021/8899188. 

64. Zhu H, He Z, Wei J, Wang J, Zhou H. Bearing fault 

feature extraction and fault diagnosis method based on 

feature fusion. Sensors. 2021;21. 

https://doi.org/10.3390/s21072524. 

65. Dahmane S, Berrabah F, Defdaf M, Salah S. Diagnosis 

and monitoring method for detecting and localizing 

bearing faults. Indonesian Journal of Electrical 

Engineering and Informatics. 2024;12:1–14. 

https://doi.org/10.52549/ijeei.v12i1.4612. 

66. Peixi Y, Zheng X, He J. Rolling bearing fault diagnosis 

based on DWT-BPNN. WSEAS Transactions on 

Systems. 2023;22:264–71. 

https://doi.org/10.37394/23202.2023.22.28. 

67. Mohiuddin M, Islam MS, Uddin J. Feature optimization 

for machine learning based bearing fault classification. 

Indonesian Journal of Electrical Engineering and 

Informatics. 2024;12:610–24. 

https://doi.org/10.52549/ijeei.v12i3.5671. 

68. Siddique MF, Saleem F, Umar M, Kim CH, Kim JM. A 

Hybrid Deep Learning approach for bearing fault 

diagnosis using continuous wavelet transform and 

attention-enhanced spatiotemporal feature extraction. 

Sensors. 2025;25.  

https://doi.org/10.3390/s25092712. 

69. Lee J, Park B, Lee C. Fault diagnosis based on the 

quantification of the fault features in a rotary machine. 

Appl Soft Comput. 2020;97.  

https://doi.org/10.1016/j.asoc.2020.106726. 

70. Yang J, Huang D, Zhou D, Liu H. Optimal IMF 

selection and unknown fault feature extraction for 

rolling bearings with different defect modes. 

Measurement. 2020;157.  

https://doi.org/10.1016/j.measurement.2020.107660. 

71. Wang J, Du G, Zhu Z, Shen C, He Q. Fault diagnosis of 

rotating machines based on the EMD manifold. Mech 

Syst Signal Process. 2020;135. 

https://doi.org/10.1016/j.ymssp.2019.106443. 

72. Gai J, Shen J, Hu Y, Wang H. An integrated method 

based on hybrid grey wolf optimizer improved 

variational mode decomposition and deep neural 

network for fault diagnosis of rolling bearing. 

Measurement. 2020;162. 

https://doi.org/10.1016/j.measurement.2020.107901. 

73. Minhas AS, Singh S. A new bearing fault diagnosis 

approach combining sensitive statistical features with 

improved multiscale permutation entropy method. 

Knowl Based Syst. 2021;218. 

https://doi.org/10.1016/j.knosys.2021.106883. 

74. Imane M, Rahmoune C, Benazzouz D. Rolling bearing 

fault feature selection based on standard deviation and 

random forest classifier using vibration signals. 

Advances in Mechanical Engineering. 2023;15.  

https://doi.org/10.1177/16878132231168503. 

75. Shi L, Liu W, You D, Yang S. Rolling bearing fault 

diagnosis based on CEEMDAN and CNN-SVM. 

Applied Sciences. 2024;14. 

https://doi.org/10.3390/app14135847. 

76. Lu Y, Xie R, Liang SY. CEEMD-assisted kernel 

support vector machines for bearing diagnosis. 

International Journal of Advanced Manufacturing 

Technology. 2020;106:3063–70.  

https://doi.org/10.1007/s00170-019-04858-w. 

77. Jiang Q, Chang F, Sheng B. Bearing fault classification 

based on convolutional neural network in noise 

environment. IEEE Access. 2019;7:69795–807. 

https://doi.org/10.1109/ACCESS.2019.2919126. 

78. Chen Z, Cen J, Xiong J. Rolling bearing fault diagnosis 

using time-frequency analysis and deep transfer 

convolutional neural network. IEEE Access. 

2020;8:150248–61.  

https://doi.org/10.1109/ACCESS.2020.3016888. 

79. Yuan L, Lian D, Kang X, Chen Y, Zhai K. Rolling 

bearing fault diagnosis based on convolutional neural 

network and support vector machine. IEEE Access. 

2020;8:137395–406.  

https://doi.org/10.1109/ACCESS.2020.3012053. 

80. Mohiuddin M, Islam MS. rolling element bearing faults 

detection and classification technique using vibration 

signals. engineering proceedings. 2022;27.  

https://doi.org/10.3390/ecsa-9-13339. 

81. Wang H, Sun W, He L, Zhou J. Rolling bearing fault 

diagnosis using multi-sensor data fusion based on 1D-

CNN model. Entropy. 2022;24. 

https://doi.org/10.3390/e24050573. 

82. Attaran B, Ghanbarzadeh A, Moradi S. A novel 

intelligent fault diagnosis approach for critical rotating 

machinery in the time-frequency domain. International 

Journal of Engineering, Transactions A: Basics. 

2020;33:668–75. 

https://doi.org/10.5829/IJE.2020.33.04A.18. 

83. Li G, Deng C, Wu J, Chen Z, Xu X. Rolling bearing 

fault diagnosis based on wavelet packet transform and 

convolutional neural network. Applied Sciences. 

2020;10. https://doi.org/10.3390/app10030770. 

84. Saad A, Liwicki M, Usman A, Almqvist A, Arif S. 

Bearing fault detection scheme using machine learning 

for condition monitoring applications. international 

conference on mechanical. Automotive and 

Mechatronics Engineering (ICMAME 2023). 29-30 

April 2023, Dubai, UAE, ICMAME; 2023.  

https://doi.org/10.53375/icmame.2023.137. 

85. Mohiuddin M, Islam MS, Islam S, Miah MS, Niu MB. 

Intelligent fault diagnosis of rolling element bearings 

based on modified AlexNet. Sensors. 2023;23.  

https://doi.org/10.3390/s23187764. 

https://doi.org/10.1109/ACCESS.2019.2907131
https://doi.org/10.1109/ACCESS.2019.2956052
https://doi.org/10.1155/2021/8899188
https://doi.org/10.3390/s21072524
https://doi.org/10.52549/ijeei.v12i1.4612
https://doi.org/10.37394/23202.2023.22.28
https://doi.org/10.52549/ijeei.v12i3.5671
https://doi.org/10.3390/s25092712
https://doi.org/10.1016/j.asoc.2020.106726
https://doi.org/10.1016/j.measurement.2020.107660
https://doi.org/10.1016/j.ymssp.2019.106443
https://doi.org/10.1016/j.measurement.2020.107901
https://doi.org/10.1016/j.knosys.2021.106883
https://doi.org/10.1177/16878132231168503
https://doi.org/10.3390/app14135847
https://doi.org/10.1007/s00170-019-04858-w
https://doi.org/10.1109/ACCESS.2019.2919126
https://doi.org/10.1109/ACCESS.2020.3016888
https://doi.org/10.1109/ACCESS.2020.3012053
https://doi.org/10.3390/ecsa-9-13339
https://doi.org/10.3390/e24050573
https://doi.org/10.5829/IJE.2020.33.04A.18
https://doi.org/10.3390/app10030770
https://doi.org/10.53375/icmame.2023.137
https://doi.org/10.3390/s23187764


DIAGNOSTYKA, Vol. 27, No. 1 (2026) 

Thajeel M. M, Al-Bugharbee H. Bearing condition monitoring: a review of feature extraction in temporal … 

17 

86. Yu P, Zhang J, Zhang B, Cao J, Peng Y. Research on 

small sample rolling bearing fault diagnosis method 

based on mixed signal processing technology. 

Symmetry. 2024;16:1178. 

https://doi.org/10.3390/sym16091178. 

87. Sawaqed LS, Alrayes AM. Bearing fault diagnostic 

using machine learning algorithms. Progress in 

Artificial Intelligence. 2020;9:341–50. 

https://doi.org/10.1007/s13748-020-00217-z. 

88. Sui T, Feng Y, Sui S, Xie X, Li H, Liu X. A Bearing 

fault diagnosis method combining multi-source 

information and multi-domain information fusion. 

Machines. 2025;13. 

https://doi.org/10.3390/machines13040289. 

89. Mishra RK, Choudhary A, Mohanty AR, Fatima S. 

Multi-domain bearing fault diagnosis using support 

vector machine. 2021 IEEE 4th international 

conference on computing, power and communication 

technologies (GUCON), IEEE. 2021, p. 1–6. . 

https://doi.org/10.1109/GUCON50781.2021.9573613 

90. Sharma A, Mathew L, Chatterji S, Goyal D. Artificial 

intelligence-based fault diagnosis for condition 

monitoring of electric motors. Intern J Pattern Recognit 

Artif. Intell. 2020;34. 

https://doi.org/10.1142/S0218001420590430. 

91. You K, Qiu G, Gu Y. Rolling bearing fault diagnosis 

using hybrid neural network with principal component 

analysis. Sensors. 2022;22. 

https://doi.org/10.3390/s22228906. 

92. Goyal D, Dhami SS, Pabla BS. Vibration response-

based intelligent non-contact fault diagnosis of 

bearings. J Nondestruct Eval Diagn Progn Eng Syst. 

2021;4. https://doi.org/10.1115/1.4049371. 

93. Saha DK, Hoque ME, Badihi H. Development of 

Intelligent Fault Diagnosis Technique of Rotary 

Machine Element Bearing: A Machine Learning 

Approach. Sensors. 2022;22.  

https://doi.org/10.3390/s22031073. 

94. Altaf M, Akram T, Khan MA, Iqbal M, Ch MMI, Hsu 

CH. A new statistical features based approach for 

bearing fault diagnosis using vibration signals. Sensors. 

2022;22. https://doi.org/10.3390/s22052012. 

95. Sahraoui MA, Rahmoune C, Meddour I, Bettahar T, 

Zair M. New criteria for wrapper feature selection to 

enhance bearing fault classification. Advances in 

Mechanical Engineering. 2023;15. 

https://doi.org/10.1177/16878132231183862. 

96. Song X, Wei W, Zhou J, Ji G, Hussain G, Xiao M, et al. 

Bayesian-optimized Hybrid Kernel SVM for rolling 

bearing fault diagnosis. Sensors. 2023;23.  

https://doi.org/10.3390/s23115137. 

97. Xue Y, Dou D, Yang J. Multi-fault diagnosis of rotating 

machinery based on deep convolution neural network 

and support vector machine. Measurement. 2020;156.  

https://doi.org/10.1016/j.measurement.2020.107571. 

98. Said D, Kamel M, Khaled K, Mohsein T, Lakhdar S. 

Detection and diagnosis of fault bearing using wavelet 

packet transform and neural network. Frattura Ed 

Integrita Strutturale. 2019;13:291–301.  

https://doi.org/10.3221/IGF-ESIS.49.29. 

99. Metwally M, Moustafa HM, Hassaan G. Diagnosis of 

rotating machines faults using artificial intelligence 

based on preprocessing for input data. Conference of 

Open Innovations Association, FRUCT, FRUCT Oy. 

2020, p. 572–82. 

100. Prabhakar S, Mohanty AR, Sekhar AS. Application of 

discrete wavelet transform for detection of ball bearing 

race faults. Tribol Int. 2002;35:793–800.  

https://doi.org/10.1016/S0301-679X(02)00063-4. 

101. Cui B, Weng Y, Zhang N. A feature extraction and 

machine learning framework for bearing fault 

diagnosis. Renew Energy. 2022;191:987–97. 

https://doi.org/10.1016/j.renene.2022.04.061. 

102. Abburi H, Chaudhary T, Ilyas H, Manne L, Mittal D, 

Williams D, et al. A closer look at bearing fault 

classification approaches. ArXiv Preprint ArXiv. 

230917001 2023  

https://doi.org/10.48550/arXiv.2309.17001. 

103. Chen X, Zhang B, Gao D. Bearing fault diagnosis base 

on multi-scale CNN and LSTM model. J Intell Manuf. 

2021;32:971–87.  

https://doi.org/10.1007/s10845-020-01600-2. 

104. Su Y, Shi L, Zhou K, Bai G, Wang Z. Knowledge-

informed deep networks for robust fault diagnosis of 

rolling bearings. Reliab Eng Syst Saf. 

2024;244:109863. 

https://doi.org/10.1016/j.ress.2023.109863. 

 Hussein AL-BUGHARBEE was 

born in Iraq in 1980. He received his 

BSc degree in mechanical 

engineering from University of 

Baghdad, Iraq, in 2002. Then, he 

received his M.sc in applied 

mechanics from University of 

Baghdad in 2006. In 2016, he 

received his PhD in Aerospace and 

mechanical engineering from Strathclyde University, UK. 

He has worked in the college of engineering –in Wait 

University since 2006 and his research focus on machinery 

condition monitoring and vibration analysis. 

e-mail: hrazzaq@uowasit.edu.iq  

 

Mohammed  M. THAJEEL 

was born in Iraq in 1988. He 

received his bachelor's degree in 

Mechanical Engineering from 

University of Technology - Iraq, in 

2011. He is currently a postgraduate 

student in the Department of 

Mechanical Engineering, Wasit 

University, Iraq. 

e-mail: mohammed.mutar2@gmail.com  

https://doi.org/10.3390/sym16091178
https://doi.org/10.1007/s13748-020-00217-z
https://doi.org/10.3390/machines13040289
https://doi.org/10.1109/GUCON50781.2021.9573613
https://doi.org/10.1142/S0218001420590430
https://doi.org/10.3390/s22228906
https://doi.org/10.1115/1.4049371
https://doi.org/10.3390/s22031073
https://doi.org/10.3390/s22052012
https://doi.org/10.1177/16878132231183862
https://doi.org/10.3390/s23115137
https://doi.org/10.1016/j.measurement.2020.107571
https://doi.org/10.3221/IGF-ESIS.49.29
https://doi.org/10.1016/S0301-679X(02)00063-4
https://doi.org/10.1016/j.renene.2022.04.061
https://doi.org/10.48550/arXiv.2309.17001
https://doi.org/10.1007/s10845-020-01600-2
https://doi.org/10.1016/j.ress.2023.109863
mailto:hrazzaq@uowasit.edu.iq
mailto:mohammed.mutar2@gmail.com

