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Rolling element bearings are critical components in rotating machinery. Their failure can lead to catastrophic
consequences. Therefore, effective condition monitoring is very necessary to avoid the occurrence of such
unexpected breakdowns and ensure safety. This review focuses on the recent advances in vibration-based feature
extraction techniques for bearing fault diagnosis. More than 70 peer-reviewed journal articles published since 2019
are analysed. The analysis covers feature extraction techniques in the temporal domain, spectral domain, and joint
temporal—spectral domain. Then, the reviewed features are critically assessed in terms of their diagnostic sensitivity,
robustness to noise, and applicability under different operating conditions. The review aims to adopt a feature-
centric and decision-oriented perspective and provides guidance for selecting suitable health indicators. It can serve
as a useful reference for researchers and practitioners working in rolling element bearing fault diagnosis.
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1. INTRODUCTION

The beating heart of any factory or manufacturing
unit is the rotary machines [1]. Rolling element
bearings (REBs) serve as crucial components for
precise rotating equipment, allowing components to be
relative one to another, and transmit load more easily
[2]. In these components, failure can occur and
develop over time for multiple reasons, such as design
errors, usage circumstances, severe environments,
lifespan constraints, and assembly concerns. Serious
outcomes might result from such failure, including
mechanical damage and production halts [3,4]. The
failure in rolling element bearings is responsible for
almost 30% of mechanical defects in various industrial
sectors [5]. High load and running speed are common
operation conditions in bearings. Furthermore,
bearings are subject to defects due to contact of metal
to metal. A survey in Europe demonstrated that 34%
of bearings were able to maintain their life, and 66%
have been changed prematurely due to various causes.
These causes are as follows: 16% of bearing
replacements were due to improper installation or
dismounting, 14% were due to contamination or
unfavorable operation conditions, and 34% were due
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to improper lubrication [6]. Consequently, bearing
fault diagnosis was much required [7].

The research on condition monitoring focuses on
numerous industrial components with rotary parts,
such as rolling [8] and journal bearings [9], wind
turbines [10], gearboxes [11], pumps [12], and
induction motors [13]. The abnormality diagnosis
approaches in a rotary system utilizing the data
acquired via vibration [14], electric current [15],
acoustic emissions [16], and temperature following up
[17] have been extensively studied in the last few
decades. Among them, vibration signal is the most
suitable and prevalent condition utilized in the industry
for rotating machines. Malla et al. [18] reported that
monitoring vibration-based conditions enables the
detection of 90% of failures or problems in machinery.
This is because each machine component carries a
specific dynamic signature that can be represented by
vibration signal associated with the operating
parameters of the machinery. A vibration-based
condition monitoring approach in rotating machinery
is utilized to detect various faults, including unbalance,
eccentricity, looseness, misalignment, blade defects,
defective bearings, cracked or bent shafts, and
damaged gears.
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Utilizing information from data sources and several
sensors has been proven beneficial in fault diagnosis to
increase the degree of accuracy [19]. The processing
of several source data according to their specific data
types [20] was utilized to obtain usable features via
transformation steps to improve the outcomes of fault
diagnosis [21]. Features in machine learning represent
independent data points from which the algorithms
drive insights. These features were utilized with
machine learning algorithms to perform predictions or
tasks. Data preprocessing involves transforming the
collected data into representation so the machine
learning model can utilize it to learn. So, the features
are the attributes that create the modified
representation and contain valuable information
derived from the data [22]

Vibration analysis techniques can be categories to
three types: temporal, spectral, and joint temporal-
spectral Domains [23], [24], [25]. Figure 1 illustrates
some of the signal analysis and feature formation
methods utilized in different domains. Numerous
research have used various feature extraction methods
to classify bearing abnormalities.

I_ Feature extraction/ signal analysis _‘
=

Time domain Frequency domain Time-frequency domain
— kurtosis FFT DWT
— RMS Envelope CWT
— Mean Spectrum STFT
L standard Deviation Cepstrum HHT

Fig 1. Signal analysis and Feature extraction techniques

Although enormous number of survey articles have
been published on rolling element bearing fault
diagnosis such as [3], [4], [18], [19], [22], [26], [27],
[28], [29], [30], many of them focus primarily on the
methods related to a specific signal domain or focus on
the diagnostic algorithms. Contrarily, the current study
introduces a feature-centric study that examines the
feature extraction from the temporal, spectral, and joint
temporal-spectral domains. Rather than listing
surveyed methods, this study examines them to
synthesise evidence to draw feature categories, their
limitations and strengths under various challenging
operating environments. The main goal is to provide a
guideline, especially for early- stage researchers and
practitioners to select the suitable features and
adopting them as machine health indicators.

In this study, 104 peer-reviewed articles were
surveyed to form the scope and context of the present
work. More than 70 of them, which were published

since 2019 and based on vibration signal analysis, were
examined in depth in the temporal, spectral, and
temporal-spectral domain features sections. They were
analysed to form the basis of feature selection
guidance per domain under various scenarios of
diagnosis.

The main contributions of this study can be
summarized as follows:

e It analyzes the feature extraction techniques in
the temporal, spectral, and temporal-spectral
domains and discussing their diagnostic
importance, and limitations.

e A number of comparative tables is prepared to
guide the early- researchers in choosing suitable
features for fault diagnosis in REBs.

e More than 70 peer-reviewed articles published
since 2019 are analysed in depth and categorised
according to the signal domain. Popular features
were compared under various diagnostic
scenarios.

In addition to the summary and comparative
analysis for features across different domain, the
current study highlights the challenges scenarios in
research such as the investigation of fault diagnosis
under the presence of noise and variability of operating
environment.

Notably, a quantitative overview of the reviewed
prior work is presented in Section 2 to emphasize the
publication trends and domain-wise research emphasis

The remaining outline of the present manuscript is
organised as follows: Section 2 of this review presents
a quantitative overview for the literature surveyed and
focuses on existing approaches for extraction compact
information (i.e. features) in the three common
domains and evaluates different types of features
applied for bearing fault diagnosis. Discussion in
section 3 illustrates the advantages, limitation, and
challenges of the current approaches in signal analysis
and feature extraction. Finally, section 4 summarizes
the review's main contribution and provides the
conclusion.

2. SIGNAL ANALYSIS AND FEATURE
EXTRACTION

The researchers follow a series of steps in bearing
fault diagnosis utilizing vibration signals. The first step
is the data acquisition from bearings during operation.
Then, this data is well-processed which is followed by
extraction of features and selecting the optimum set of
them. Finally, the classification step is conducted by
utilizing machine learning algorithms [1]. Data and
signal processing techniques such as filtering, outlier
removal, and data cleaning assist in processing the
collected data by converting it into a comprehensible
and coherent format while eliminating irregularities
that might adversely impact a model's efficacy. The
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data processing stages involved in feature extraction
approaches improve the visualization and analysis of
the data.

The temporal domain analysis serves as a
fundamental aspect of bearing fault detection. In this
field, the signal resulting from vibrations or acoustic
emission from damaged bearings is studied directly in
its time form without complex transformations. The
potential strength of temporal domain analysis excels
in its simplicity and ability to provide a primary look
into the behavior of the system, but it can be less
accurate when dealing with complex or non-stationary
signals. Many statistical features, such as Root mean
square, Kurtosis, max, min, mean, can be extracted in
the temporal domain and help in identifying bearing
failures. The temporal domain provides a quick and
simple analysis of the signal, and it can help in early
detection of minor faults before they become more
complicated [26].

The fault signal collected from the rotating
machines is presented in the temporal domain and
comprises intricate information from various system
components. To overcome this, the signal amplitude
was analyzed in the spectral domain and forming the
signal spectrum. The predominant method to execute
this transformation is to utilize the Fast Fourier
Transformation (FFT) and envelope analysis[24]
These approaches were utilized to convert the signal of
the temporal domain, with a lot of information, to the
succession of spectral domain signals, emphasizing
frequency value and amplitude [24]. Traditional
vibration analysis methods are primarily based on the
characteristics in both domains cannot be
simultaneously identified. ~Consequently, these
approaches are unsatisfactory for examining the non-
stationary signals. Such inadequacies necessitate the
utilisation of more advanced methods such as Hilbert
Huang transform (HHT) [31], short-time Fourier
transforms (STFT) [32], Continuous Wavelet
Transform (CWT) [33], Winger- Ville distribution
(WVD) [34] that can handle with non-stationary signal
and commonly utilized to demonstrate the fault
location. Based on signal processing approaches,
bearing fault detection research will be split into four
categories for organised analysis. Studies on each topic
will be evaluated and discussed to emphasize their
significant  contributions, = methodologies, and
conclusions. The categories are arranged as follows:

2.1. Scope of the Reviewed Literature

This review focuses on peer-reviewed journal
articles published since 2019 that address rolling
element bearing fault diagnosis using vibration-based
signal analysis. More than 70 articles were analysed
and clustered according to the domain where features
were extracted. A quantitative overview showed that
joint temporal-spectral approaches were the most

dominant in the recent literature. In addition, the
combining of multi domain features has recently
received increasing interest.

2.2. Temporal Domain

This approach examines the vibration signal's form
in relation to time. Metrics such as mean, maximum,
and minimum value were employed to analyze the
vibration signal. Table 1 illustrates popular temporal
domain features and their mathematical equations.
Kumbhar et al. [35] obtained a number of statistical
features from temporal domain including crest factor,
standard deviation, kurtosis, maximum, minimum, and
root mean square. They uses these features in
combination with the dimensional analysis (DA)
technique and artificial neural network (ANN) to
detect the bearing fault size. The findings showed a
high prediction accuracy with very low rate error. The
challenges include the loss of linearity with developing
failure size, the effect of noise, and the necessity for
adjustment of the simulation parameters. A key
improvement of their model involves the use of RLS
and LMS to suppress the noise and employing Kurtosis
as a dominant diagnostic indicator. Shen et al. [36]
employed the temporal domain to derive
characteristics from vibration signals. The collected
features contained four-dimensional features (peak
value, effective value-RMS, standard deviation, and
average value) and four dimensionless features (pulse
factor, margin coefficient, kurtosis coefficient, and
peak factor). The study showed that the parameters of
dimensional features have significant sensitivity and
low stability, while the parameters of dimensionless
features have high stability and low sensitivity [37,38].
Ma et al. [39] utilized thirteen statistical features such
as Kurtosis, average value, crest factor and use them as
input of the back propagation artificial neural network
for classification defects in bearings. The proposed
method enhanced the signals by reducing the noise and
achieving high classification accuracy.

Meltem et al. [23] extracted fifteen features in the
temporal domain from the CWRU bearing's dataset
including Skewness, Min, Var. To select the optimal
features, the authors utilized five different feature
selection algorithms such as Mutual Information (MI)
and Random Forest Importance (FRI). The final stage
was the classification utilizing using two kinds of
machine learning classifiers. The RFI method was the
most efficient in identifying the features most
influencing the classification. AbsMax, P2P, and
Complexity were the most selected features across
different strategies, demonstrating their importance in
bearing fault diagnosis.

Kaya et al. [40] presented a statistical approach
utilizing a one-dimensional local binary pattern (1D-
LBP) and one-dimensional grey level co-occurrence
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Table 1. Popular temporal domain features.

Temporal domain features

Mathematical expression

Root Mean Square

Kurtosis

Kurtosis =
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Standard deviation

Std =

Peak to peak Peak to Peak = Xpgy — Xmin
Crest factor CF = max x|
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Impulse factor IM =
P MAV
Form factor F tor = RMS
orm factor = VAV
N
Entropy Entropy = — Z pi-log(p;)
i=1
N
1
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i=1
1 N
Variance Variance = NZ(x,- - w?
i=1
Min Min = min (x;)
Max Max = max (x;)
N
Energy Energy = z xf
i=1

Impact factor

Impact factor =

Peak amplitude
Energy

*Where N denotes the dimensionality of the vector x, u is the athematic mean value, and x; corresponds to the i component.

matrix (1D-GLCM) techniques, where the original
vibration signals were re-scaled between 0 to 255,
followed by the extraction of statistical features such
as energy, correlation, contrast, and homogeneity. The
model showed low computational cost and high
diagnosis accuracy with the aim of effectively
characterizing the vibration signals. However, the
model experienced challenges such as sensitivity to
settings, where increasing parameters such as P
(neighbor value) increases the size of co-occurrence
matrices and is time-consuming. Some of the extracted
features, such as energy, showed less efficiency than
the others. The outcomes demonstrated that correlation
and homogeneity were the best characteristics.

Kuncan et al. [6] transformed the raw vibration
signal into the 1D-LBP. After that, the effective
features are extracted from the new signal. Twelve
statistical features, Mean, Standard deviation, energy,
etc., were utilized to detect the bearing fault. The
sensitivity to slight variations in signal and calculation
simplicity are the most significant benefits of 1D-LBP,
which improved the accuracy of time signal analysis.
The study showed that skewness was the best features
for speed-variation datasets while entropy was the best
for fault size discrimination. In addition, kurtosis was
the most suitable for fault type -classification.
However, mean value was consistently the worst
feature across all datasets.
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Stepanic et al. [41] performed temporal domain
digital processing to extract features from every
recorded vibration signal. The developed ML-based
algorithms utilized the nine retrieved characteristics
including arithmetic mean, RMS, Modified square
mean, Skewness index, Kurtosis index, and Shape
factor as inputs and produce the categorization of
bearings as either healthy or defective.

The latest progress in deep learning, especially
convolutional neural networks (CNNs), have
revolutionized the methodologies of fault diagnosis in
REBs. These deep learning networks showed
significant performance in automating the feature
selection and powerful image processing [42],[43].
Some studies have represented the raw vibration
signals into image formats suitable to with CNN to
avoid traditional feature extraction problems such as
the need for prior knowledge, experience, and the
effect of human parameters [44].

Pinedo et al. [14] analysed the use of temporal
domain statistical features for bearing wear
assessment. It was found that RMS and kurtosis are
identified as the most informative features as they
behave in a monotonic trend with the degradation
level. However, crest, impulse, and margin factors are
neglected because of their poor sensitivity.

In their review, Jian et al. [27] found that Kurtosis
performs better than crest factor as a fault indicator.
Kurtosis grows with defect size at first but eventually
decreases. RMS increased when defect size, load, and
speed increased. Subsequently, when the speed was
increased, the performance of fault diagnosis of RMS
was increased. Compared to RMS and Kurtosis,
Skewness was the poorest indicator. They also found
that load and speed have no effect on Kurtosis and
Skewness. These two parameters diagnose a tiny pit
when driving at low speed.

Although the conventional temporal-domain
analysis depend on manually extracted statistical
features, recent studies have focused on investigation
the use of deep learning models to automatically obtain
diagnostic features from temporal-domain signals.
Zhang et al. [45] presented an efficient data
preprocessing technique that transforms raw temporal
domain signals into images without employing
intricate processing techniques such as frequency
transformation. The time signals were segmented into
overlapping samples. Subsequently, these samples
were mapped to grey image format scaled between 0
and 255 to correspond with pixel intensity. This
approach intended to represent time signals as images
to enhance the process of learning the representative
features by the Convolutional neural network (CNN).
After that, the raw signal was converted to small
images, each data point represented one pixel in the
tiny square image to utilize the powerful classification
techniques offered by CNN for processing the images.

Han et al. [46] transformed the vibration signature into
temporal domain images and fed them to the CNN. The
proposed model combined CNN to obtain fault
features from temporal domain signals and SVM for
classification. Three cut-off conditions were applied to
identify the appropriate time to stop training CNN and
send the features to SVM. The improvements of the
presented model were obtaining high classification
accuracy, reducing time consumption to one-third of
CNN, and high generalization ability. Gong et al. [47]
combined SVM and a CNN. The raw signals were
transformed into 2D representation through the data
reconstruction approach [48] for analysis and feature
extraction utilizing CNN, with the result classified by
SVM to enhance the diagnosis accuracy. The
performance was improved, and overfitting was
mitigated by utilizing techniques such as global
average pooling (GAP) and dropout. The model
showed enhanced accuracy compared to traditional
methods, but it depended upon the data quality and was
computationally intensive. Kolar et al. [49] utilized the
raw signals extracted from a three-axis accelerometer.
These signals were directly fed into a multi-channel
deep convolutional neural network (MC-DCNN) to
analyze and classify faults without pre-processing
requirements. The research showed that selecting
optimal parameters like the number of kernels in the
layers of the neural network was a significant
challenge to enhance the performance. The
recommendations included expanding the tests and
utilizing additional data encompassing diverse fault
types and operation conditions, emphasizing the
necessity of integrating additional data such as electric
current or acoustic signals to enhance the accuracy of
diagnosis. The research indicated obstacles such as
needing a long time for model training and utilizing a
robust Graphic Processing Unit (GPU) to facilitate
intensive computations. Kolar et al. [50] fed the
triaxial raw vibration signals as high-resolution data
into the CNN for fault diagnosis of rotary machinery.
They optimized the hyperparameters utilizing the
Bayesian technique. The proposed model obtained a
high classification accuracy for two evaluation tests,
eliminating the necessity of signal preprocessing.
Nevertheless, training and evaluation data were
acquired in laboratory conditions, which required
further testing in real industrial environments and
under simulated noisy conditions. Jin et al. [51]
designed a model utilizing the raw signals without
bypassing the necessity of manual feature selection or
traditional noise removal techniques. The adaptive
anti-noise neural network (AAnNet) model was based
on CNN for feature extraction and the gated recurrent
unit (GRU) for analyzing time dependencies with an
attention mechanism to enhance feature classification
accuracy generated by the CNN component. The
challenges of high noise and various loads were
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overcome by utilizing random sampling to simulate the
noise during the training. The outcomes showed the
model achieved high classification performance under
fluctuating operation conditions and noise.

When fast outcomes are needed, the temporal domain
approach is preferred. In this approach, it is possible to
extract features from the same domain as data
collection, and complex signal-processing techniques
are rendered unnecessary. Therefore, the temporal
domain analysis achieved a precise result with a wide
range of intelligent algorithm techniques. In this
domain, it is allowable to put some assumptions about
the sorts of REB defects in the form of the vibration
signal. However, the analysis approaches in the
temporal domain lack accuracy and sensitivity
compared to other approaches [26].

2.2.1 Comparative Analysis and Guidance for
Temporal-Domain Features Selection

Features extracted from temporal-domain remain
popular and be widely used for bearing fault diagnosis.
This can be attributed to their simplicity and physical
interpretability. Despite this, a comparative analysis of
recent studies showed that their diagnostic importance
is considerably dependent on noise severity, operating
conditions, and fault severity. Statistical features like
kurtosis, crest factor, and impulse factor showed great
sensitivity to impulsive fault signatures. For this
reason, they were considered effective for early fault
detection, in particular at constant speed and noise
level is low. In spite of that, several studies indicate
that these indicators loss their effectiveness under the
increase of background noise or fault size.

On the contrary, RMS and peak-to-peak values
showed a more reliable correlation with damage
progress that makes them useful for monitoring
degradation trends. However, their sensitivity to the
variation of bearing rotational speed and load, limits
their robustness under variable operating environment.

The analysis of the literature also showed that there
is no single feature in temporal- domain can perform
accurate diagnosis over different operating scenarios.
As a result, the combination of features and using
features selection techniques will be suitable to
increase the diagnosis reliability.

Temporal-domain features are suitable for real time
applications; however, they lose this advantage when
the machine works under noisy and none-stationary
environment. A guidance for temporal features
selection is summarised as in Table 2.

2.3. Spectral Domain

This approach involves converting the signal into
discrete frequency parts, facilitating the analysis of the
distinctive frequency components related to the failure.

Table 2. A guidance for temporal-domain features selection

. . Recommended
Diagnostic o
e temporal Key limitation
objective
features
Early fault Kurtos%s, crest . o
. factor, impulse ~ Noise sensitivity
detection
factor
Fault severity RMS, peak-to- Speed/load
tracking peak dependence
Real-time RMS, mean, Limited fault
monitoring variance localization
Noisy Selected features Reduced
environments +FS impulsiveness
Temporal
Variable features not . .
Poor invariance
speed/load recommended
alone

The modified signal is referred to as the signal
spectrum. Table 3 provides a list of some of the
popular spectral domain features. Alonso et al. [24]
utilized the FFT and envelope analysis to analyze the
vibration signals and detect failures in bearings.
Furthermore, a kurtogram was employed to obtain the
optimal bandwidth. The drawbacks of the proposed
approach were difficulty in identifying ball fault by
utilizing envelope analysis and computational cost of
kurtogram. Combining the results from the envelope
analysis with machine learning algorithms such as
KNN and the Decision Tree achieved a high accuracy
rate.Suhail et al. [52] build a model for automatically
features formation utilizing the envelope analysis from
the vibration signal in the spectral domain. Firstly, the
Auto-Regressive (AR) approach was employed to
filter the original signal, improve the residual signal for
more analysis, and eliminate deterministic
components. Secondly, the relevant frequency band
was identified by Spectral Kurtosis (SK) analysis,
which contains the characteristic frequencies of the
bearings. Finally, the envelope analysis was utilized to
isolate the signals, which interfaced with different
forms of noise, and examine the frequency spectrum
via Hilbert transform. FFT was utilized on the
envelope signal to obtain the fault features. The
developed method showed significant improvement in
detection performance and its effectiveness in
obtaining the features at resonance frequencies, and
the features were independent of the fluctuation of
speed. Khalil et al. [53] applied the spectral domain for
vibration signals analysis and feature extraction via
FFT, where the time signals were transformed into a
frequency spectrum. This spectrum was divided into
suitable bands called bins.

Then the cumulative energy of each bins was
calculated to generate attributes representing the
equipment's operational status. The attributes were
employed to train the machine learning model, such as
SVM and Ensemble Algorithms to precisely classify
the bearing faults. The finding showed diagnosis
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Table 3. List of spectral domain features [28].

Spectral domain features

Mathematical Equation

Frequency center

Frequency center =

Y, ?

N
2 2
472 ) iq Xi

Discrete Fourier Transform

(o)

x(w) = fx(t)e‘j‘“dt

—o00

N 2 N 2
Root Variance frequency RVF = 25 () o ¢ 25 () )2
an2 YV 2 Cam? 3V x2
i=1 i i=1 i
N a2
Zi:z(xi)

RMS frequency

N
2 2
472 ) g Xi

*Where N represents the total number of elements in vector x, j denotes the imaginary unit, w signifies the angular frequency, and
xi signifies the ith element.

accuracy of over 90%, in addition to decreasing
dependence on human interaction and simplifying
application to analogous systems.

Envelope spectrum analysis was utilized in [54] to
analyze vibration signals and detect the bearing
defects. The signals were enhanced via a band pass
filter, and the Hilbert function was applied to obtain
the envelope spectrum and determine the fundamental
frequencies related to the faults. The stochastic
gradient descent with momentum (SGDM) algorithm
was utilized to accelerate the process of learning, and
techniques such as dropout and batch normalization
were utilized to enhance the performance. The
presented method reduced the interference and
enhanced the signals, precisely determining the fault
frequencies, achieved a significant diagnostic accuracy
with 207,493 parameters by utilizing CNNSs, and the
average response time was 0.03 s. The characteristics
of the motor states are frequently limited and singular
due to limitations introduced by real-world operation
conditions. To deal with these problems, Xu et al. [55]
employed FFT to analyze vibration signals and extract
impacted information related to bearing faults. For the
purpose of reducing data dimensionality and securing
data noise elimination, they utilized the singular value
decomposition (SVD) technique. The extracted
features were combined with the CNN and long short-
term memory algorithm (LSTM) for further analysis
and to improve diagnostic accuracy. Validation of the
proposed model utilizing CWRU data showed a high
accuracy. Walther et al. [56] proposed two approaches,
hybrid and conventional, to classify bearing failure.
The conventional approach employed the LSTM
method to analyze raw data, obtaining excellent

diagnostic accuracy utilizing all sensors. However, it
exhibited inadequate accuracy with individual data or
complicated microphone signals. The hybrid approach
utilizing FFT to extract characteristic frequencies
related to fault and LSTM as a classifier produced very
high diagnostic accuracy with better result stability
despite little data availability. The hybrid approach
improved the performance by adding physical
knowledge while reducing the need for large number
of datasets. However, it requires prior knowledge of
the system and provides complexity to the design by
adding processing steps to transform data utilizing FFT
and combining physical knowledge with the LSTM
model.

The FFT demonstrates certain limits in
performance, particularly with the hiding of unique
frequencies by the source frequency and its inaccurate
depiction of transitory events [29]. In addition to
Fourier analysis,

Multiple techniques were employed to derive
spectral spectrum characteristics from original
vibration data. Shannon entropy [57], spectral
Skewness, envelope spectrum analysis, and spectral
Entropy were further strategies for feature extraction
in the spectral domain [30]. Kannan et al. [58]
automated the appropriate selection of bandpass filter
settings for envelope analysis utilizing a real-coded
genetic algorithm with a unique fitness function and
cross-over choosing mechanism; this enabled
differentiation for fault-related frequencies for rolling
element bearings.

Under various bearing fault conditions, Chen et al.
[59] employed the envelope spectrum characteristics
peak intensity and frequency fluctuations as fault
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indicators. These attributes with a simple Naive Bayes
classifier simplify the algorithms utilized to obtain the
features and diagnose the faults. Their suggested
method also speeds up the time for diagnosing
industrial bearing faults and minimizes the hardware
setup and operation costs. Their classification method
may fail on complex datasets with variable speed
situations. In order to demodulate the signal, Chen et
al. [60] utilized the simplified Box-Cox transform to
build generalized envelopes (GEs) from the analytical
signal. Then, they developed a family of spectra called
generalized envelope spectra (GESs) to demonstrate
cyclostationarity. A connection between logarithmic
and exponentiation operations is established via the
Box-Cox transformation. The findings from
simulations reveal that GESs with varied values for
transformation parameter (p) behave differently when
subjected to varying levels of interference. To improve
the cyclostationarity detection capabilities of
individual GES, a new improved demodulation
spectrum known as product envelope spectrum (PES)
was created. This spectrum combines the performance
benefits of many GESs.

2.3.1. Comparative Analysis and Guidance for
Spectral-Domain Features Selection

Spectral-domain features are broadly utilised in
bearing fault diagnosis because of their significant
interpretability and straight correlation with the
bearing fault characteristic frequencies. The
examination of recent studies showed that these
features are efficient for fault diagnosis particularly in
the inner-, outer race, rolling elements and cage.

The conventional spectral spectrum - based
features can be reliable for fault localisation when the
operating conditions are steady; however, they lose
their reliability under the non-stationarity of load and
speed.

The comparative analysis also indicates that
envelope spectrum-based features significantly
improves the bearing fault characteristic frequencies
through the demodulation of resonance frequency
band. However, the selection of improper frequency
band may lead to the deterioration of fault detection
due to the induction of noise that my buried the fault
signature. To cover this limitation, automatic
resonance band-selection methods, such as spectral
kurtosis, can be adopted. The use of these techniques
enhance the isolation of high impulsiveness spectral
bands and then subject them for further analysis.

In general, the diagnostic activeness of spectral-
domain features relies on frequency band selection. A
selection guidance for spectral domain features is
summarized in Table 4.

Table 4. Selection guidelines for frequency-domain features

. . Recommended
Diagnostic T
e frequency- Main limitation
objective .
domain features
FFT peaks at
localfl?;lalltion BPFO, BPF, de Seiledecilce
BSF, FTF P
Early fault I:Jnevcilr?fg Sensitive to
detection P band selection
features
SK-guided /
Noisy optimized Computational
environments envelope cost
features
Low SNR Log-envelope / Parameter
.. product- .
conditions tuning
envelope spectra
Real-time FFT band- .Ln.m.t ed
monitoring energy features incipient
sensitivity
Frequency
Variable features not Frequency
speed/load recommended smearing
alone

2.4. Temporal-spectral domain

The representation of vibration signals in temporal-
spectral domain provides an effective scan for the non-
stationary and transient components of the signal,
which are commonly observed in rolling element
bearings. The temporal-spectral feature extraction
methods are useful in characterisation of the overtime
evolving defect impulses or those buried in
background noise.

Wavelet-based techniques, namely continuous
wavelet transform (CWT), discrete wavelet transform
(DWT), and wavelet packet decomposition (WPD),
are among the most popular utilized temporal—spectral
methods for bearing fault diagnosis. These techniques
assist, by providing multi-resolution analysis, the
accurate identification of transient components of a
signal over different spectral bands.

Many studies indicate that wavelet-based features,
such as entropy, wavelet energy, and statistical
moments, perform accurate diagnosis when used with
machine learning classification models. However, the
surveyed literature report that their effectiveness is
considerably reliable on comparative evidence
indicates that their performance is largely influenced
by a number of parameters such wavelet type and
decomposition level. In addition, the computational
burdens  highly rises  for  high-resolution
representations, in particular in real-time applications
[61], [62], [63], [64], [65], [66], [67], [68].

Many signal decomposition techniques, such as
variation mode decomposition (VMD), empirical
mode decomposition (EMD), ensemble EMD have
been widely also employed broadly for generating
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Table 5. List of the temporal-spectral domain features [28].

Features

Mathematical Equation

STFT

STFTx(t) (t, w)

)

f x(t) w(t — 1) eJ@Ddt

—0

Wavelet Packet Transform

djeaom = ) hm =2
m

Continuous Wavelet Transform

1 t—1
Wi (s,1) = [ 29" (e

Discrete Wavelet Transform

1 t—k2J
Wiy (s,7) = Ef x(O¢" (—5adt

Empirical Mode Decomposition

x(t) = Zn G+

j=1

*Where 7 is the time variable, o (z) is the window function, ¢* is the complex conjugate of ¢ (?), m is the number of coefficients, j
and k are integers, dju, dj+1,2, and dj+1,2.+1 correspond to wavelet coefficients at sub-band n, 2n, 2n+1. Additionally, ¢; refers to the
j™ intrinsic mode function, r»is the residual of the data x(z) following the extraction of 7 intrinsic mode function.

temporal-spectral domain features. The main idea of
these techniques includes decomposing of a vibration
signal into a number of in intrinsic mode functions
(IMFs). Then various features, including kurtosis, crest
factor, and entropy, can be extracted from all or some
of these components (i.e. IMFs). These features were
reported as strong sensitivity indicators for fault
severity. Nevertheless, the analyzed studies in this
review indicate that signal decomposition-based
techniques can usually lead to the generation of noise-
dominated components. In addition, these techniques
effectiveness is influenced by the suitable mode
selection. Missing appropriate selection of useful
mode, these methods might undergo from instability
under varying operating conditions [69], [70], [71],
[72], [73], [81], [74], [75], [76].

Recently, studies have increasingly investigated
the use of temporal-spectral representations as 2D
input for deep learning models. The 2D temporal-
spectral representations can be obtained using wavelet
scalograms, Hilbert-Huang spectrum and others. The
subjection of these representation to deep learning
model, such as convolutional neural network, enable
them to automatically extract diagnostic defect
features from complicated vibration signatures.

Although these techniques indicate considerably
accurate classification, the studies reports that
occasionally such superior performance is attributed to
the quality of the temporal-spectral representation.
Furthermore, there are several obstacles, including the
high computational burdens and sensitivity to noise,
limit the use of temporal-spectral features in real time
applications [77], [78], [79], [31], [801, [81], [82], [83],
[84], [85], [86].

2.4.1 Comparative Analysis and guidance for
Temporal - spectral Features Selection

A comparative examination of recent studies
showed that when defect impulses evolve over time or
buried in background noise, the employment of the
temporal-spectral features performed better than using
temporal- or spectral-domain features alone.

Although short-time Fourier transform (STFT)

provides features with straightforward interpretation,
these features have limited capability for identification
of short —time impulses. This is attributed to the fixed
resolution of temporal-spectral spectrum.
In wavelet-based techniques, the limitation of fixed
resolution is covered as these techniques offer the
multi-resolution representation. Consequently, they
enhance the identification of transient and nonstation
defect signatures.

The comparative analysis of recent studies also
indicates that despite the effectiveness of
decomposition techniques such as EMD and EEMD
for generating features, they usually produce
redundant components. Additionally, their
performance highly rely on the selection of useful
modes. Selection of inappropriate modes can degrade
the diagnosis accuracy.

In summary, temporal-spectral features are
considered high health diagnostic indicators under the
presence of non-stationary and complex operating
conditions. =~ However, they required high
computational burdens. Table 6 offers a selection
guidance for temporal-spectral features for different
operating scenarios.
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Table 6. Selection guidelines for temporal-spectral

features
. . Recommended
Diagnostic e
S temporal-spectral ~ Main limitation
objective
features
Non-stationary CWT / WPD- High
faults based features computation
Transient fault DWT / wavelet Parameter
detection energy & entropy sensitivity
. Optimized .
N M lect
] oisy EEMD / VMD ode s§ ection
environments required
features
Medi
Low SNR edian / Requires
.. entropy-based TF S
conditions optimization
features
Unknown fault Decomposition- Redundant
frequencies based TF features modes
. TF i
Peplemn o, Mo
inpu i
P WPD) g
Not
Real-time ©
o recommended Latency
monitoring
alone

2.5. Multi-domain analysis

Multi-domain integration approaches can be
classified into three levels, namely, data-level
integration, feature-level integration, and decision-
level integration. The first category refers to the
combination of data that obtained from multiple
sources, such as vibration and acoustic emission [87],
[88]. Raw signal concatenation is an example for the
representative techniques in this category. Although
data-level techniques preserve maximum information
about the system condition, they may suffer from
increased data dimensionality, incompatibility of
sampling rate ,noise amplification and the sensitivity
to domain shift under which signals were acquired
[87], [88].

The second category, i.e. feature-level integration,
includes approaches, such as deep fusion networks,
that combine features from different domains,
including temporal, spectral and temporal-spectral
domains [21], [87], [89]. They typically require
dimensionality-mitigation techniques; nevertheless,
they improve diagnostic effectiveness. Additionally,
these techniques can be configured to learn the
variations of signals under domain shifts that
consequently reduce the influence of operation non-
stationarity [88], [89].

The third category contains the techniques, such as
Bayesian inference, that aggregate the multiple
classifiers outputs. The advantages of these techniques
include the flexibility of training individual classifiers
independently and the ability to make decisions even
if one signal source fails. However, the techniques

performance is limited by the availability of sufficient
training labels and the risk of having similar failure
mode across classifiers [12], [18].

In the current section, multi-domain techniques are
analysed mainly from the perspective of feature-level
integration.

Sharma et al. [90] utilized the temporal domain and
spectral domain for signal analysis and feature
extraction for fault diagnosis of electric motors.
Features were extracted from the temporal domain (11
features), such as standard deviation, as well as from
the spectral domain (2 features), including mean
frequency and median frequency. The temporal
domain analysis suffered from a variety of noise in the
vibration signals, which made it difficult to accurately
identify engine faults. While frequency analysis can be
effective in identifying faults from vibration signals,
manual methods such as visual inspection of frequency
characteristics were often inadequate, requiring
reliable and rapid automated systems to improve
diagnosis. Overcoming these challenges required
advanced feature selection and analysis methods such
as principal component analysis (PCA) [91] and
sequential floating forward selection (SFFS) [92] to
reduce dimensionality and enhance performance. Saha
et al. [93] analyzed the raw vibration signals obtained
from bearings utilizing the FFT approach to transform
time data into frequency spectrum. Statistical features
such as RMS and standard deviation were extracted
from the temporal domain. The SVM algorithm was
employed as the primary approach to classify the
bearing faults, and its performance was improved by
utilizing the PSO algorithm to obtain the optimum
value of the required the parameters. The proposed
model showed high classification accuracy compared
with conventional algorithms. The improvements
engaged employing improved PSO to obtain optimal
parameters and the introduction of various temporal
features to improve model performance. Altaf et al.
[94] extracted statistical features such as Kurtosis,
RMS, Average, Skewness, and second derivative from
the vibration signatures in the temporal domain,
spectral domain, and power spectral domain to
diagnose bearing fault. The features were obtained
from the original signal and its second derivative.
The authors integrated these features to create a
comprehensive feature vector that improved the
accuracy. The findings demonstrated that the presented
approach obtained high accuracy of diagnosis up to
99.13% utilizing kernel linear discriminant analysis
(KLDA) and 96.64% utilizing K-nearest neighbor
(KNN), with high performance in decreasing the data
size by 95%, which diminished the computational
burden and time. In addition, the researchers present
sufficient analysis of the obtained statistical features,
and emphasise their physical relevance, and
discriminative ability. For instance, features extracted
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from the second derivative and the PSD domain were
shown to improve the fault.

Sahraoui et al. [95] analyzed the bearing vibration
waveforms and the stator current to inspect the
presence of bearing defects utilizing Adaptive time-
varying morphological filtering (ATVMF) to obtain
features in the temporal and spectral domain. Twenty
statistical features from the temporal and spectral
domain were extracted. They employed the ant colony
optimization (ACO) algorithm to obtain the most
significant features. The obtained features were
classified utilizing the Random Forest (RF) algorithm.
The outcomes showed high accuracy of up to 98.5%
with strong stability for the two types of data. Song et
al. [96] extracted 15 features in the temporal and
spectral domains from vibration signals utilizing the
Discrete Fourier Transform (DFT) technique, which
addressed the problems of nonlinearity and non-
stationarity of the signals. The obtained features
included a unified representation of the temporal and
frequency information. The proposed model fed the
extracted features into a hybrid kernel SVM model
optimized by the Bayesian Optimization (BO)
algorithm. The outcomes demonstrated a high
diagnostic accuracy in verification and experimental
procedures. Xue et al. [97] utilized the first 256 data of
the envelope spectrum, collected by the Hilbert
transform (HT) as input to (DCNN) model that
identifies the characteristics features of the signals in
the temporal and spectral domains. The collected
features were merged with two features extracted from
the temporal domain (peak to peak and kurtosis index)
to create a hybrid features set that was utilized to train
the support vector machine (SVM). The findings
revealed that the presented methods, which merged
deep learning with the human experience, increased
the diagnostic accuracy to 98.71% compared to
90.29% utilizing DCNN alone. Said et al. [98] utilized
the time, frequency, and temporal-spectral domains for
signal processing and feature extraction. The time
signals were analyzed to extract features like RMS,
peak, Kurtosis, etc., which represent the characteristics
of the signal in time. Spectral descriptors such as
characteristic frequencies of defects (outer race
frequency, ball frequency, and inner race frequency)
were utilized. Wavelet packet transformation (WPT)
was utilized to segment the signal into several
frequency bands, providing multi-resolution analysis
that can identify small defects and more accurately
represent the non-stationary signal. This approach
combined temporal, spectral, and temporal-spectral
analysis utilizing WPT and neural networks, which has
significantly improved the accuracy of diagnosis and
classification of bearing defects. Features analysis was
performed to examine their sensitivity for fault
presence across frequency sub-bands and then
discarded those features whose sensitivity are low.

Metwally et al. [99] initiated the analysis utilizing the
temporal domain to analyze the raw signal and
statistical features such as RMS, peak, and energy
were extracted. After that, they convert the signal to
the spectral domain with FFT. Finally, the researchers
utilized an auto-regressive model to extract hidden
features and reduce the noise. This process enhanced
the classification accuracy. The results illustrate that
the autoregressive model reported excellent
classification accurace, which makes it the best choice
in complicated faults and contaminated data. Sawaqed
et al. [87] utilized multi domain to analyze the signals
and identify the failure of the bearings in rotary
machines. Eleven characteristics, such as variance,
Skewness, and Kurtosis, were extracted in the
temporal domain. In the spectral domain, two features
were identified utilizing FFT. Wavelet Packet
Decomposition was also utilized to decompose the
signals into numerous levels and analyze energy across
various time and spectral domains. The research
showed that the temporal domain was effective for
pulse signals, but the accuracy was low when the
severity of the fault increased or when the bearings
were overloaded. In such cases, it is appropriate to
utilize the spectral domain to detect the faults. The
spectral domain exhibits difficulties in identifying
low-energy fault signals because of noise. Therefore,
when the characteristics of the fault signal are non-
stationary, the wavelet transformation is the best
solution [100]. Cui et al. [101] obtained various
statistical features from the temporal domain, spectral
domain, and temporal-spectral domain to detect the
bearing fault in wind turbines utilizing machine
learning algorithms such as SVM, ANN, KNN, and
Naive Bayes. The Neighborhood Components
Analysis (NCA) technique was employed to obtain the
optimal parameters and reduce dimensionality. The
significance of numerous features could vary under
various operation situations. The proposed model
achieved the best classification accuracy of 89% with
KNN and effectively obtained features from non-
stationary vibration signals.

Abburi et al. [102] utilized the temporal domain,
spectral domain, and temporal-spectral domain to
analyze the vibration signal for the classification of
bearing faults. Statistical features such as mean, crest
factor, RMS, and Kurtosis were obtained. The authors
also utilized advanced techniques such as the Real Fast
Fourier Transform (RFFT) and STFT. Their method
improved the accuracy and dealt with non-stationary
signals with machine learning algorithms such as SVM
and random Forest (RF). However, in their approach
there is a chance for data leakage due to partitions and
less performance due to imbalanced data. Chen et al.
[103] introduced an MOCNN-LSTM model that
combined a multi-scale convolutional neural network
and long short-term memory with direct feature
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extraction from the raw data without preprocessing for
bearing fault diagnosis, which improved efficiency and
conserved time. Ten comparative trials were
conducted utilizing two groups of features, the first
group extracted from the temporal domain and spectral
domain, the other from the temporal domain and
(EMD) and (HT). The proposed model obtained a
classification accuracy of 98.46% with robust
performance in high-noise situations and minimized
computational complexity by decreasing the input
data. Nevertheless, it faced challenges in significant
noise environments and similar signals. The findings
demonstrated that the model considerably improved
the efficiency of bearing fault diagnosis compared to
conventional approaches. Su et al. [104] presented
knowledge-based features to detect rolling bearing
defects. They proposed a deep convolutional neural
network (CNN) technique called knowledge-informed
deep network (KIDN) to extract and integrate features
driven by knowledge and data. The features that are
based on knowledge include temporal domain
statistics associated to a fault, such as (RMS, kurtosis,
Skewness, etc.) and spectral domain features,
including the energy of the fault spectrum as calculated
by the Hilbert transform and FFT. In order to classify
faults, a feature fusion layer is created to combine
knowledge-based features with data-driven features
acquired from the CNN network's dense layer.
The created feature vector is then utilized as a fused
feature map. Theoretically, combining the two kinds of
characteristics  should increase accuracy and
robustness by yielding more detailed information for
system failure identification. In practical applications,
multi-domain data representation captures more fault
features under varied operation situations, improving
model flexibility and resilience. Therefore, Sui et al.
[88] presented a multi-domain strategy to identify
bearing faults utilizing the envelope spectral transform
for spectral domain converting and the Bessel
transform for temporal-spectral domain converting.
Their method provided a new path for fault
identification, with ramifications for practice and
theory. As demonstrated in many circumstances,
features from multiple domains were more effective in
extracting useful information than features from a
single domain [89].

A comparative summary of multi-domain feature
extraction and a guidance of selection is presented in
Tables 7 and 8.

3. DISCUSSION

This section discusses, based on the comparative
analysis in section 2, the advantages, limitations, and
challenge of the surveyed feature extraction
techniques.

Table 7. Comparison of Feature Extraction Domains for
Bearing Fault Diagnosis

Ke Recomme
Domain Typical Main Limita};ion nded
Features ~ Advantages s Applicatio
ns
Simple
implementa  Sensitive Fast
RMS, tion, low to noise, monitorin
Tempor Kurtosi,  computatio limited g, low-
alp Skewnes n cost, capability cost
s, Peak- effective for non- systems,
to-Peak for early stationary  early fault
fault signals screening
detection
Spectral Steady-
energy, Accurate
. . . Loss of state
center identificati .
temporal operation,
Spectra  frequenc  on of fault . .
. informatio  frequency-
1 Y, characterist . .
. n, noise specific
envelope ic .
. sensitivity fault
spectru  frequencies . .
diagnosis
m peaks
Wavelet Effective .
. . Variable
coefficie for non- High
Tempor . . speed/load
nts, IMF stationary computati
al- . , complex
energy, signals, onal cost, . .
Spectra . industrial
entropy rich fault parameter .
1 . i environme
measure representati  sensitivity nts
s on
Table 8. Guidance for Selecting Suitable Health
Indicators
Operating Recommended  Preferred Rationale
Condition Domain Health
Indicators
Simple
Low noise, RMS, mdlc_ators
constant Temporal Kurtosis sufficient to
speed capture defect
growth
. . Wavelet Enhanced
High noise Temporal— entropy, .
; noise
environment Spectral IMF
robustness
energy
Early fault Kurtosis, S'ensmv'e to
. Temporal Impulse impulsive
detection .
factor behavior
CWT
energy .
Variable Temporal— maps, Cap‘tl;reisntlme
speed/load Spectral EEMD- ying
behavior
based
features
Real-time Temporal / RMS, LOWA
. spectral computational
constraint Spectral
energy burden

The review highlights that feature extraction
remain highly necessary step in the fault diagnosis of
rolling element bearings process. Temporal-domain
features provides low computational cost and
interpretable health metrics. However, they suffer
from poor robustness under noisy and non-stationary
operating environment. Spectral features are helpful
in localization of bearing defect characteristic
frequencies, but their performance deteriorates with
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the presence of transient signal interference.
Temporal—spectral approaches mostly overcome the
limitations in temporal and spectral features, but they
generate obstacles related to costly computation
requirements and the mneed for parameters
optimization.
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4. CONCLUSIONS

Although this study does not propose a new
taxonomy, it aims to provide a structured review of
feature extraction and selection.

In this study, recent studies on bearing fault
diagnosis techniques have been examined and more
emphasis has been given to the advancements in
feature extraction method in different signal domains.

It is reported that temporal features enable low
computational cost and interpretation while spectral
features offer accurate frequency-based classification.
Additionally, temporal-spectral features show
significant diagnostic performance for non-stationary
signals.

In comparison to existing surveys, this study
highlights feature-domain extraction and selection
guidance under various operating challenges including
noise robustness, non-stationary conditions and online
application.

Despite the considerable progress, it is observed
the increasing dependency on laboratory datasets
obtained with unchanged speed and load conditions.
This highlights the challenges of generalization to real
world applications where noise and non-stationary
operational conditions are common.

In addition, in spite of the automation of features
learning by deep learning techniques, the
explainability of obtained features remains in need for
more research.
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