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Abstract 

The paper presents the practical application of a wireless vibration sensor system for the ongoing 

monitoring of the technical condition of industrial fans used in gas furnaces to heat metal billets prior to plastic 

working. During almost a year of research, vibration and temperature data was collected and subjected to time 

domain analysis. The measurement results were divided into weekly time intervals and statistically processed. 

In order to facilitate the decoding, segmentation into time-based segments, and statistical analysis of the 

research data, a software solution was developed. The application enabled the analysis of changes in weekly 

histograms and statistical parameters of data sets. A critical analysis was made of the statistical parameters 

obtained from the research material. The average weekly value of rms vibration acceleration and the highest 

weekly value of the relative frequency of data were selected as the parameters that best reflects changes in 

industrial fan technical condition. Functions modelling these changes were also developed. During the research, 

significant changes in the recorded vibration accelerations on fan motor No. 2 were observed. The developed 

functions proved useful for assessing and predicting changes in the technical condition of the tested fans. 
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ARM – Advanced RISC Machines 

avg, 𝑥̅ – average value of dataset; 

CC0 – Creative Commons Zero 1.0 licence; 

CDF – cumulative distribution function; 

CF – crest factor; 

csv – comma-separated values file; 

DF – dynamic factor; 

f1(t), f2(t), f3(t), f4(t) – declared functions; 

FFT – Fast Fourier Transform algorithm; 

GPRS – General Packet Radio Service; 

Havg – average relative frequency of data; 

Hmax – highest relative frequency of data; 

i – measurement index; 

IT – Information Technology; 

kurt, 2 – kurtosis; 

max, peak – maximum, largest observation; 

med, Q2 – median; 

MEMS – micro-electromechanical systems; 

mod – mode, dominant; 

n – number of recorded measurements; 

nw – number of measurements during week; 

Q1 – first quartile; 

Q3 – third quartile; 

R – Pearson correlation coefficient; 

R2 – coefficient of determination; 

RMS – effective value (Root Mean Square); 

std,  – standard deviation; 
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Temp. – temperature; 

VCBM - vibration-based condition monitoring 

 

1. INTRODUCTION  

 

Machines and equipment used in metallurgical 

plants often operate in very harsh environmental 

conditions. High loads, continuous operation and 

dust often affect their technical condition. An 

unforeseen failure of such equipment can even lead 

to a production line stoppage, which results in 

significant material losses for the company. That is 

why systems are being developed and implemented 

to monitor the technical condition of companies' 

machinery [1 - 3]. 

A properly designed system for monitoring the 

technical condition of machinery measures selected 

physical quantities, and the measurement results are 

collected and analysed on an ongoing basis [4, 5]. 

Various physical quantities that are measurable and 

correlate with the progressive wear or degradation of 

the functional properties of the monitored machine 

can be used as parameters for assessing the technical 

condition [6]. Systems are used to monitor the 

temperature of bearing nodes, working parts and 

machine engines. A rise in temperature may indicate 
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a deterioration in lubrication conditions or overload. 

Even inexpensive technical devices, such as power 

tools, are often equipped with thermal switches that 

disconnect the motor when the safe operating 

temperature range is exceeded. Most of the drives of 

machines operating in industrial plants are based on 

electric motors. Therefore, the results of measuring 

the current consumed by the motor can be used as a 

diagnostic parameter. This is all the more so as 

motors are increasingly working with controllers 

(e.g. inverters) that have built-in current 

measurement circuits. A deterioration in technical 

condition can increase movement resistance, which 

will be detected by the system as an increase in the 

machine drive's electricity demand. 

One of the most commonly used methods in 

industrial practice is vibroacoustic diagnostics of 

technical objects or vibration-based condition 

monitoring (VBCM) [7]. Many papers have been 

published describing the application of vibroacoustic 

methods in the automotive industry [8 - 10] or, more 

broadly, in transport [11, 12], as well as in the 

diagnostics of industrial machinery and equipment 

[13 - 15]. 

When used correctly, it allows for early detection 

of symptoms of impending machine failure. The key 

to the effective use of vibroacoustic methods is the 

correct selection of signal processing methods . The 

analysis may consist of comparing current 

measurement results with predefined threshold 

values, or more advanced computational methods 

tracking trends, such as time domain analysis, may 

be used [16, 17]. By examining data that changes 

over time, it allows for the identification of trends in 

the measured quantities. This method is one of the 

less complicated ones and is therefore widely used in 

practice in a variety of applications [18, 19]. It 

involves collecting measurement data from a 

vibration sensor, eg. vibration acceleration [20] and 

then calculating statistical parameters describing the 

collected data. Changes in the values of selected 

parameters over time should correlate with changes 

in the technical condition of the machine under test. 

A frequently selected statistical parameter of the 

signal is its effective value (RMS) [21 - 23], 

expressed by formula 1. 

𝑅𝑀𝑆 = √
∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛
   (1) 

where: 

i – measurement index, 

n – number of recorded measurements, 

xi – value of a specific measurement. 

According to the results of [24], a change in the 

effective value allows for the detection of, in 

particular, the imbalance of rotating machine parts. 

However, it may not be sensitive enough to detect 

early signs of failure. 

Another statistical signal parameter frequently 

used in practice is the peak value of the recorded 

vibrations [23]. It is calculated according to formula 

2. 

𝑝𝑒𝑎𝑘 = |𝑣(𝑡)|max.  (2) 

where: 

v(t) – measured signal 

As the damage progresses, the peak values of the 

forces exerted by the rotating elements also increase. 

However, it should be noted that despite the 

advantages associated with the simplicity of the 

algorithm for determining maximum values, this 

parameter is sensitive to noise and random events 

occurring in the measurement system. 

Based on the two parameters described above, a 

quantity called the peak factor can be created [21, 

23], described by formula 3. 

𝐶𝐹 =
𝑝𝑒𝑎𝑘

𝑅𝑀𝑆
    (3) 

Due to its independence from rotational speed, 

this parameter is useful in cases of monitoring 

devices operating at variable rotational speeds. 

However, there are areas where its usefulness is 

limited, e.g. bearing diagnostics. 

A more computationally complex statistical 

parameter of a data set is kurtosis [23], described by 

formula 4. 

𝑘𝑢𝑟𝑡 = 𝛾2 =
𝜇4

𝜎4 =
1

𝑛
∑ (𝑥𝑖−𝑥̅)4𝑛

𝑖=1

(
1

𝑛
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1 )
2  (4) 

where: 

4 – fourth central moment, 

 – standard deviation, 

𝑥̅ – average value of measurements. 

It is a dimensionless quantity describing the 

distribution of the measured quantity. Its advantage 

is that it is not sensitive to changes in load or 

rotational speed. Kurtosis analysis is sometimes used 

competitively with the peak factor, but the latter is 

more widely used in practice.  

In more advanced cases, frequency domain 

analysis methods are used [25, 26] for example FFT 

[27] or wavelet approach [28]. Vibration-based 

condition monitoring systems also frequently 

employ sophisticated computational methodologies, 

including neural networks [29], deep machine 

learning [30, 31], and fuzzy logic [32]. 

Breaking down the measured signal into its 

component frequencies allows for a broader analysis 

and detection of faults manifested by changes in 

limited frequency ranges [33]. Although the 

computational complexity of, for example, FFT 

analysis is much greater than that of the time domain 

analysis methods discussed above, the increase in the 

computing power of IT systems and microcontrollers 

available on the market allows the use of pre-

processing algorithms already at the first stage of 

data acquisition. Modern sensors are most often 

equipped with digital outputs that work with a 

microcontroller built into the sensor. The dynamic 

development of 32-bit microcontrollers based on the 

ARM core, which currently have significant 

computing power and memory resources, has 

significantly influenced the design philosophy of 

measuring devices [7, 34]. In contrast to classic 8-bit 

solutions, it is now possible to use advanced signal 
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processing at the sensor stage, such as performing 

FFT analysis. 

The evolution of electronic, wireless data 

transmission systems has had a significant impact on 

the design and construction of vibroacoustic 

diagnostic systems [35]. The utilisation of solutions 

that do not necessitate the use of cables for both 

power supply and data transmission is gaining 

popularity. The utilisation of such solutions is 

particularly advantageous when the measurement of 

machines already in operation within industrial 

contexts is required. In such cases, there is no 

necessity to modify the existing cabling 

infrastructure. Wireless sensors are most often 

powered by chemical energy sources. The 

development of solutions that are based on the 

acquisition of diverse forms of energy and its 

subsequent conversion to electricity is also 

underway. This process is referred to as energy 

harvesting [36]. The utilisation of such solutions 

enables the construction of self-powered sensors that 

do not require periodic replacement or recharging of 

power sources. 

 

2. MEASURING SYSTEM 

 

The tests were conducted using the SDM-1 

machine diagnostics system developed and 

implemented by the Katowice-based company 

Somar S.A. in one of the non-ferrous metal 

processing plants in central Poland as part of the 

project ‘Hardware and software system for the 

diagnostics of machines and devices based on a 

wireless network of monitoring sensors and methods 

of knowledge engineering and computational 

intelligence’. During the work, the technical 

condition of machines crucial for the continuity of 

the plant's production process was monitored, such 

as fume extraction fans, gas furnace fans, 42 MPa 

pumps, 60 MPa pumps, emulsion filtration pumps, 

conveyor rollers and coiler drive gears. 

WS-VT1 sensors were placed in selected 

locations on the devices to measure vibrations and 

temperature at these points. WS-VT1 sensors (Fig. 

1) are advanced devices based on a microcontroller 

that works with, among other things, a three-axis 

MEMS accelerometer, a semiconductor temperature 

measurement circuit and an 868 MHz transceiver. 

These sensors are completely wireless in terms of 

both power supply and data transmission, so they do 

not require any cabling of the tested devices. This is 

particularly important in the case of industrial 

machines that are already in operation. 

The WS-VT1 sensor is powered by a built-in LS 

14250 lithium battery, which, thanks to the use of 

hardware solutions and energy-saving algorithms, 

can power the sensor for up to several months. The 

length of the operating period between battery 

replacements depends on the sensor's operating 

parameters, mainly the frequency of measurements 

and data transmission. During the measurement 

cycle, the built-in triaxial MEMS accelerometer 

performs a series of measurements, the results of 

which are processed by a microcontroller. The 

results are given as the effective value of vibration 

acceleration (vibr AVG) and the maximum value of 

recorded vibrations (vibr MAX). These values, 

supplemented by temperature measurement results 

and diagnostic parameters such as the sensor's 

battery voltage and radio signal level, are sent to the 

diagnostic system's transceivers. When employing a 

vibration sensor, consideration should be given to its 

mounting [37]. The sensor can be mounted on the 

tested device in a non-invasive manner by gluing or 

using a magnetic adapter. It is also possible to use an 

M12 threaded connection. The method of connecting 

the sensor has little effect on its frequency 

characteristics (Fig. 2).  

 
Fig. 1. Somar WS-VT1 vibration and 

temperature sensor 

 
Fig. 2. Frequency response of the WS-VT1 

sensor 

 

The onboard microcontroller collects the 

measurement results, pre-processes them and sends 

data frames to the ITR-2 transceiver using the 898 

MHz band. One transceiver can support multiple 

sensors, both reading data from them and sending 

messages controlling their operation. The transceiver 

communicates with its surroundings via a mobile 

network using GPRS technology. Data can be 

collected on a local server or, as in the case of the 

implemented solution, via an Internet connection 

and using the server infrastructure of the monitoring 

service provider. Such cloud type server [38] 

provides the functionality of a typical database 

enriched with an analytical and visualisation layer. 

A convenient option is the built-in visualisation 

interface accessible via a website for devices at the 

customer's location. The basic diagram of the 

implemented SDM-1 system, from which the 

research data was obtained, is shown in Figure 3. 
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Fig. 3. Diagram of the SDM-1 system used in 

the research 

 

The study analysed data obtained from sensors 

installed on gas furnaces fan motors used to heat 

billets before rolling. The rotors of these fans are 

driven by asynchronous three-phase motors with a 

rated speed of 2940 rpm. The first of the tested fans 

(No. 1) used a 37 kW motor weighing 255 kg. A WS-

VT1 sensor marked S74 (Fig. 4) was installed on the 

front part of the motor body, which transmitted 

information about the vibrations and temperature of 

the tested device. 

 
Fig. 4. Gas furnace fan No. 1 

 

The second of the tested fans (No. 2) was driven 

by a 45 kW motor weighing 353 kg. A sensor marked 

S76 was installed on the front cover of the motor 

(Fig. 6). The selected sensor locations enabled 

monitoring of the motor's operation and the technical 

condition of its shaft bearings.  

 

3. RESEARCH RESULTS 

 

The research data reflects less than a year of 

operation of the tested devices in a metallurgical 

plant. It comes from the SDM-1 system database for 

the period from 23 October 2024 to 11 August 2025 

for sensor S74 (292 days). The data for sensor S76 

covers the period from 7 November 2024 to 7 

October 2025 (335 days). The data was transmitted 

and stored on the diagnostic monitoring service 

provider's server at default intervals of 10 seconds. 

An extract was made from the database to *.csv text 

files. In line with supporting policies that promote 

open access to data, files containing raw 

measurement data have been uploaded to the RepOD 

open database and made available under a Creative 

Commons Zero 1.0 licence (CC0) [39]. 

 
Fig. 5. Gas furnace fan No. 2 

 

The first line is the header, and the remaining 

lines contain the test data. Each line is a single data 

record containing information about the date and 

time of the measurement and, separated by 

semicolons, the measured temperature, maximum 

vibration acceleration and effective vibration 

acceleration values (Fig. 6). During the extraction, 

auxiliary diagnostic data such as sensor battery 

voltage and radio signal strength were omitted. 

 
Fig. 6. Structure of research data contained in the *.csv 

file 

 

During the study period, approximately 8,640 

measurement records were collected per day, which, 

when converted to the length of the study period, 

gives over 2.5–2.8 million measurement records for 

each of the sensors included in the study. 

The results obtained are presented graphically in 

the charts (Fig. 7 and 8). 

The values recorded during the measurements 

are presented as small dots without connecting them 

with lines. This allows for a preliminary assessment 

of the areas of concentration of the results. However, 

the figures show a significant spread of measurement 

results, which makes it difficult to draw conclusions 

based on raw measurement data. Due to the very 

large number of recorded results, the points on the 

graph merge into coloured areas. 

 

4. ANALYSIS OF RESEARCH RESULTS 

 

In order to carry out the application process 

correctly, it is necessary to process the research data. 

The data package size is 85 MB for the S74  sensor 
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Fig. 7. Data from sensor C74 

 

 
Fig. 8. Data from sensor C76 

 

and 95 MB for the S76 sensor. With such large files, 

it is practically impossible to process them in popular 

spreadsheet programmes. Therefore, in order to 

perform calculations efficiently, the VIBRCALC 

software was written in Pascal and compiled into an 

executable file for Windows (WIBRCALC.exe) 

using the publicly available Free Pascal v.3.2.2 

compiler. Due to the functional nature of the 

programme and the possibility of running it in the 

background, no graphical interface was designed, 

and it was decided to operate the programme in 

command line mode. Additionally, this allows for 

batch mode operation with minimal user interaction, 

which is limited to specifying the programme's 

operating parameters. The VIBRCALC 

programme's operating algorithm is shown in Figure 

9. The parameters controlling the programme's 

operation are specified when it is called in the 

command line. They are listed in Table 1. 

 
Fig. 9. VIBRCALC programme operation 

algorithm 

 

Thanks to the universal design and 

parameterisation of the programme, it is possible to 

perform calculations for histograms, determine 

average values, standard deviations, medians or 

other statistical parameters for the entire data set as 

well as for virtually any specified time intervals. 

This allows to create histograms showing changes in 

data distribution over successive time intervals. 

 
Table 1. VIBCALC programme start-up parameters 

Parameter Format 

File name <file name>.csv 

Number of histogram 

data intervals 

1 … 1000 

Maximum histogram 

value range 

0,1 - 10000 

Data selection from the 

sensor 

1 – Temperature 

2 – Vibr MAX 

3 – Vibr RMS 

4 – Peak factor 

      (calculated) 

The time range for 

calculating histogram 

components 

0.1 … 30000 h 

Data filter for a switched-

off machine, cutting off 

results below a specified 

value 

0 … 8000 mg for vibr RMS 
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The programme works in a loop, sequentially 

reading lines of data from the input *.csv file. Then, 

using information about the data format, it decodes 

them from text to numerical form stored in the 

computer's memory. It then performs the necessary 

calculations cyclically and, when the end of the time 

interval is reached, saves the partial results to a text 

file containing the results of the work. 

Firstly, the frequency of data occurrence in 

specified value intervals was calculated. Based on 

this, histograms were created for the entire data sets. 

The width of the intervals was set at 25 mg. The 

vibration acceleration histogram for the S74 sensor 

is shown in Figure 10.   

 
Fig. 10. Histogram of vibration accelerations from sensor 

S74 

 

The histograms of recorded vibration 

accelerations for sensor S74, both for maximum and 

RMS values, have two local maxima. The first one 

is on the left side of the graph and is barely 

noticeable. It corresponds to the recorded 

background vibrations when the fan motor is 

switched off. The vibration acceleration values are 

then less than 100 mg. There is a clear break, and 

only at values above several hundred mg can the 

main part of the histograms be seen. For RMS 

values, the histogram is quite narrow, as most of the 

results are in the range of 500–1400 mg. There is a 

clear dominance in the range of 825 mg, with as 

much as 13.4% of the results falling within this 

range. The data distribution is slightly asymmetrical 

towards higher acceleration values.  

The histogram of the maximum vibration 

measurement results is shown in Figure 10 using red. 

It is shifted towards higher vibration acceleration 

values. The results are mainly in the range of 800–

2500 mg. It is less slender than the one described 

previously and does not have a very clear dominant. 

The highest frequencies were recorded in the 

vibration acceleration ranges of 1375, 1400 and 1450 

mg, respectively, and account for approximately 5% 

of the results. A slight asymmetry of the distribution 

towards higher vibration acceleration values is also 

more noticeable. 

A vibration acceleration histogram was also 

developed for the S76 sensor, as shown in Figure 11. 

For both maximum and RMS vibration 

accelerations, the histograms are clearly flattened 

and contain numerous local maxima. This is due to 

the gradual increase in vibrations during the test 

period, which was visible in Figure 8 showing the 

raw data from the sensor. As before, it is possible to 

distinguish the background vibration area when fan 

#2 was not operating. These are ranges below 125 

mg for effective values and below 250 mg for 

maximum vibration acceleration values. 

 
Fig. 11 Histogram of vibration accelerations from sensor 

S76 

 

The data range for the operating fan is between 

approx. 200 – 4950 mg for the recorded effective 

values and 375 – 8950 mg for the series of maximum 

values. Both distributions shown in Figure 11 are 

asymmetrical. As with the S74 sensor, the dominant 

value is clearly on the left side of the graph, and the 

right side of the distribution is elongated. 

Histograms were created in a similar manner for 

the temperatures recorded during the operation of the 

tested fans (Fig. 12). The distributions of recorded 

temperatures are similar, but they are shifted relative 

to each other by less than 10°C. The data indicate 

that the S74 sensor recorded slightly higher 

temperatures. 

Based on the collected research data on vibration 

acceleration values, cumulative distribution 

functions were developed and compiled in Figure 13. 

This figure also includes information on the mean 

values, Q2 median, Q1 and Q3 quartiles, and modes 

(dominants). The curves in Figure 13, like the 

previously presented histograms, reflect the general 

characteristics of the research data sets. The large 

angle of inclination of the curve in its middle section 

corresponds to a narrow histogram, as is the case 

with data from sensor S74. 

 
Fig. 12. Comparison of temperature histograms recorded 

during research 

 

The cumulative distributions for data obtained 

from sensor S76 show significantly smaller angles of 

inclination, which corresponds to wide and flat 

histograms. Figure 13 clearly shows the asymmetry 
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of the data distribution. All dominants are below the 

median, while the mean values are above the median. 

Next, the data was analysed in time intervals. 

Due to the long data collection period, it was decided 

to perform calculations covering data from a week. 

The use of relatively long time intervals resulted in a 

reduction in the dispersion of results. This was 

evident when compared to the results of preliminary 

analyses conducted in daily intervals. 

 
Fig. 13. Comparison of cumulative distribution functions 

(CDF), average values and dominant vibration 

accelerations based on collected test results 

 

For each 7-day time interval, slightly over 60,000 

data records were accepted. The VIBRCALC 

programme divided the data into individual series 

based on the value of the decoded time stamp. All 

recorded results were included in the current range, 

from 00:00:00 on the first day to 23:59:59 on the 

seventh day. If the fan operated for less than 168 

hours in a given week, the amount of data included 

in the calculations was less than initially assumed. 

Only data collected during fan operation was taken 

into account. Thanks to this, data from the period 

when the tested device was switched off did not 

affect, for example, the underestimation of the 

weekly average value. Therefore, the data filtering 

option in the VIBRCALC programme was enabled. 

Based on the information obtained when creating 

histograms and CDFs, it was decided that all 

measurement records in which the recorded results 

of the Vibr RMS variable are less than 125 mg will 

be filtered. 

Changes in the distribution of data in subsequent 

measurement weeks can be observed in three-

dimensional histograms. These are sets of connected 

two-dimensional histograms calculated for each 

subsequent week of testing. The height of the point 

above the xy plane corresponds to the relative 

frequency of vibrations. To improve the readability 

of the graphs, a colour scale corresponding to the 

results on the graph axis has been added. In order to 

show the variability of the data over the course of 

successive weeks of testing as accurately as possible, 

the figures have been supplemented with generated 

2D maps of the weekly distribution of maximum and 

RMS vibration accelerations. The data for sensor 

S74 is shown in Figure 14, while the data for sensor 

S76 is shown in Figure 15. 

For both analysed fans, changes in the 

distribution of vibration accelerations can be 

observed during the research. Over time, the height 

of the histogram decreases and its base width 

increases. Additionally, it can be observed that the 

range of data recorded in subsequent days shifts 

towards higher vibration acceleration values.  

For the S74 sensor, these changes are minor but 

noticeable. After almost 50 weeks of testing, the 

height of the histograms of the weekly distribution 

of the RMS vibration value decreases by about 20%. 

The range of recorded data shifts slightly but 

noticeably, with the RMS value of vibration 

acceleration increasing by about 15%. 

 
Fig. 14. Weekly changes in the distribution of vibration 

accelerations recorded by sensor S74 

 

For the data obtained from the S76 sensor, the 

variability of the weekly data distributions is very 

clear (Fig. 15). 

During the period under study, there was a 

several-fold increase in the recorded vibration 

accelerations. On two-dimensional maps, it can be 

assessed that the trend of these changes is 

progressive. At the same time, the height of the 

histogram decreases several times and its base width 

increases, which indicates a progressive degradation 

of the technical condition of the fan monitored by the 

S76 sensor. 

 

 
Fig. 15. Weekly changes in the distribution of vibration 

accelerations recorded by sensor S76 

 



DIAGNOSTYKA, Vol. 26, No. 4 (2025)  

Witaszek K, Duss Ł.: The use of wireless vibration sensors to monitor the technical condition of industrial … 

8 

Due to the data acquisition algorithms built into 

the sensor, there may be a mutual correlation 

between the maximum and RMS vibration 

acceleration values stored in the database. This is 

because the sensor takes a series of measurements 

and stores the results in its internal memory, then 

uses this set to determine the RMS and maximum 

values. The correlation between these waveforms 

can also be inferred from Figures 7, 8, 14 and 15. 

Therefore, the raw vibration acceleration data (Fig. 

16a) and their weekly averages (Fig. 16b) are shown 

in the graphs. Weekly averages were calculated from 

formula 5. The squares of the correlation coefficients 

were also calculated. 

𝑎𝑣𝑔 =
∑ 𝑥𝑖

𝑛𝑤
𝑖=1

𝑛𝑤
   (5) 

where: 

nw – number of measurements during week. 

For data from sensor S74 monitoring the 

condition of fan No. 1, there is some correlation, but 

due to the relatively small range of changes in the 

observed vibrations for the raw data, it is not strong 

(R2=0.423). Although the weekly averages from the 

measurements show a higher correlation (R2=0.78), 

the range of variation in the results is very small. 

Both on the x and y axes, it is no more than 200 mg. 

The data from fan No. 2 collected by sensor S76 

show high dynamics. Initially, slight vibrations were 

observed, which increased to the upper measurement 

range of the sensor during almost a year of testing. 

Hence, Figure 16 shows a clearly diagonal cluster of 

data. This indicates a clear correlation between the 

effective and maximum vibration acceleration 

values. For raw measurement results, the correlation 

coefficient square is (R2=0.856). For weekly 

averages, the correlation is very strong (R2=0,998). 

 
Fig. 16. Mutual correlation between maximum and RMS 

values of vibration acceleration 

 

In order to check whether other data collected 

during the tests change their weekly values over 

time, the recorded temperature values and the peak 

coefficient for vibration accelerations were taken 

into account. 

Next, a correlation matrix was calculated for the 

available weekly average values (Fig. 17). 

Additionally, the matrices were supplemented with 

dynamic factor (DF) which is rate of change 

indicator calculated using formula 6. It is the ratio of 

the weekly average values of a given quantity from 

the last week of the study to that from the first week. 

𝐷𝐹 =
𝑎𝑣𝑔(𝑙𝑎𝑠𝑡 𝑤𝑒𝑒𝑘)

𝑎𝑣𝑔(𝑓𝑖𝑟𝑠𝑡 𝑤𝑒𝑒𝑘)
  (6) 

This parameter helps to assess whether the set of 

results has changed significantly during the tests.  

 
Fig. 17. Mutual correlation between maximum and 

effective values of vibration acceleration 

 

Figure 17 shows that it is much easier to identify 

test data for fan No. 2 that is significantly correlated 

with time, as the data from sensor S76 is 

characterised by significant dynamics of changes in 

vibration acceleration. In addition, there is a strong 

correlation between their weekly effective and 

maximum values. For fan No. 1, the appropriate 

diagnostic parameter can be selected by taking into 

account both the results of the correlation matrix and 

the dynamics of changes. In general, it can be noted 

that the changes in average temperatures and the 

calculated peak coefficient recorded during the tests 

are insignificant, and therefore it is not justified to 

draw conclusions about the technical condition of 

the fans on this basis. The maximum weekly value 

of vibration acceleration for sensor S74 shows a 

weak correlation with the test time, and for sensor 

S76 it can be ignored due to its strong correlation 

with the RMS value. Therefore, the results of the 

measurements of the RMS value of vibration 

acceleration recorded by sensors S74 and S76 were 

taken into account. 

Based on weekly data sets with an average of 

approximately 60,000 RMS vibration acceleration 

values, many statistical parameters describing them 

can be determined. In addition to the mean (avg) and 

standard deviation (std), these are read from the 

distribution as follows: 

- minimum value (min), 

- first quartile (Q1), 

- median (med), 

- third quartile (Q3), 

- maximum value (max). 

Additionally, for weekly histograms, the 

following were determined: 

- kurtosis (kurt), 

- mode, dominant (mod), 

- highest relative frequency of data (Hmax), 

- average relative frequency of data (Havg) 

In order to assess the usefulness of these 

parameters for evaluating changes in the technical 

condition of fans, correlation matrices [40] were 

created, which are shown in Figures 18 and 19. 
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Fig. 18. Correlation matrix of statistical parameters of 

weekly effective acceleration values from sensor S74 

 

The data shown in the first column indicates that 

the mean, median and third quartile show the highest 

correlation with the passage of weeks for sensor S74. 

At the same time, all these variables are strongly 

correlated with each other, so they form a single 

group. A relatively high negative correlation with the 

passage of time is shown by the data series 

containing the calculation results for the highest 

relative frequency of data (Hmax), so it may be 

another parameter showing changes in the technical 

condition of the device over time. 

Two data groups can also be found for sensor 

S76. The first strongly correlated group consists of 

the mean, standard deviation and most of the data 

read from the cumulative distribution function (Q1, 

med, Q3, max) and the dominant. They illustrate the 

increase in vibration levels over time. The second 

mutually correlated group consists of values related 

to the height of the histogram bars (Hmax i Aavg). 

Their values decrease over time and show a 

reduction in height and a widening of the histogram 

base. 

 
Fig. 19. Correlation matrix of statistical parameters of 

weekly effective acceleration values from sensor S76 

 

Based on the analysis of data from Figures 18 and 

19, two parameters common to both tested fans were 

selected for further analysis: the average weekly 

effective value of vibration acceleration and the 

highest weekly value of relative data frequency 

(Hmax) i.e. the height of the histogram bar for the 

dominant frequency. Based on these parameters, 

functions describing changes in the technical 

condition of the fans during the tests were 

determined. Gnuplot 5.4.8 software was used to 

determine the form of the functions [41], which 

allows the parameters of a user-defined function to 

be determined using the Levenberg-Marquardt non-

linear algorithm. 

After a preliminary analysis of the results for 

modelling data from the S74 sensor, due to the 

significant dispersion of the results, linear functions 

defined by formulas 7 and 8 were selected 

𝑓1(𝑡)   = 𝑎1𝑡 + 𝑏1  (7) 

𝑓2(𝑡)   = 𝑎2𝑡 + 𝑏2  (8) 

A second-degree polynomial defined by the 

formula 9 was selected as the function modelling the 

average weekly effective values of vibration 

acceleration. 

𝑓3(𝑡)   = 𝑎3𝑡2 + 𝑏3𝑡 + 𝑐3      (9) 

However, the decrease in the weekly histogram 

of the effective acceleration value during the tests is 

best reflected by the power function defined by the 

formula 10. 

𝑓4(𝑡)   = 𝑎4𝑡−𝑏4     (10) 

The Gnuplot programme performed cyclical 

calculations, selecting the values of the parameters 

ai, bi, ci and calculating the standard asymptotic error 

for each of the determined parameters, which 

allowed for a reliable assessment of the selection of 

functions for the data set. The results of the selection 

of function parameters are presented in Table 2. 

In the case of fan No. 1, the results of the 

selection of function parameters describing changes 

in the weekly average values of vibration 

accelerations recorded by the S74 sensor show 

noticeable uncertainty, which is confirmed by the 

relatively low values of the R2 correlation 

coefficient. This is caused by the small range of 

changes in the technical condition of fan No. 1 

during the tests and measurement noise. 

 
Table 2. Results of function parameter selection 

function Parameter  Error, % Function to 

data R2 

f1(t) 
a1 1,742 11,31 

0,662 
b1 823,0 0,59 

f2(t) 
a2 -0,001 12,96 

0,598 
b2 0,162 2,16 

f3(t) 

a3 0,879 7,49 

0,997 b3 30,25 11 

c3 375,8 9,41 

f4(t) 
a4 0,321 3,29 

0,972 
b4 -0,568 3,03 

 

However, for fan No. 2 monitored by sensor S76, 

changes in technical condition are clearly visible 

even in the raw data set. Therefore, the selected 

functions f3(t) and f4(t) describing the relationship 

between the average weekly effective value of 
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vibration accelerations and the change in the highest 

relative frequency of data since the fan's operation 

show a very high correlation with the research data 

sets, as the calculated correlation coefficient square 

is as high as 0,997 for f3(t) and 0,972 for f4(t). 

The values of previously selected weekly data 

and functions reflecting changes in the technical 

condition of fan No. 1 are shown in Figure 20. They 

show a slight increase in the average weekly RMS 

vibration values recorded by sensor S74 (Fig. 20a). 

A decrease in the height of the histogram is also 

observed, which is consistent with the changes 

observed in Figure 14. However, there is a 

significant spread of results, which reduces the 

correlation coefficient. 

Changes in the technical condition of fan No. 2 

and functions describing weekly data are shown in 

Figure 21. Despite the small spread of results, the 

functions are selected with a high degree of 

certainty, and the obtained relationships correspond 

to the observations described for the 3D histogram 

shown in Figure 15. 

For fan No. 2, the selection of functions was 

additionally verified by comparing the prediction for 

a period of 4 weeks with subsequent data 

downloaded from the system. 

 

Fig. 20. Data and functions reflecting changes in the 

technical condition of fan #1 

 

Fig. 21. Data and functions reflecting changes in the 

technical condition of fan #2 and a 4-week forecast 

 

For the f3(t) function, the forecast of the average 

weekly RMS vibration values coincided with the 

obtained points. For the f4(t) function, the forecast 

lies within the range of measured values, but there is 

a greater spread of results. For diagnostic purposes, 

the f3(t), function is more useful, and its estimated 

computational complexity even allows for its 

implementation in a microcontroller controlling the 

operation of WS-VT1 sensors during further 

development work. 
 

5. CONCLUSIONS 

 

The results of the research conducted in this 

study demonstrate the advantages of using a long-

term monitoring system for the technical condition 

of industrial machinery and equipment.  

The implementation of a system utilising 

wireless sensors to monitor the technical condition 

of machinery and equipment in a heavy industrial 

plant has demonstrated the effectiveness of such a 

solution. The installation of the sensors was not 

technically problematic, and the radio signal strength 

was sufficient to obtain accurate readings. However, 

it should be noted that a potential drawback 

associated with this system is the periodic necessity 

for replacement of the batteries that power the 

sensors. The system, which was equipped with 

wireless sensors, provided substantial amounts of 

research data during its operation. 

The analysis of data collected during almost a 

year of research revealed significant changes in the 

technical condition of fan No. 2. A second-degree 

polynomial increase in vibration acceleration 

recorded by the S76 sensor was detected. This 

indicates the need for extended diagnostics and 

repair of this fan. Data from the following four 

weeks confirmed with high accuracy the forecast of 

changes in the fan's vibration level made by the 

developed f3(t) function. 

The average weekly vibration acceleration values 

can be used as an indicator of vibration level 

changes. This parameter was calculated for a set of 

RMS values and shows a very high correlation 

coefficient square value of 0,997. In the case of 

vibration accelerations measured by the S76 sensor, 

the average weekly maximum values are closely 

correlated with the average weekly RMS values. It 

follows that, in theory, either of the two 

aforementioned data sets can be selected as the basis 

for assessing the technical condition of this machine. 

However, the recorded RMS values are 

approximately twice as low, so they are more useful 

for diagnostics in the event of a significant increase 

in vibration. This can be seen in Figure 8, where the 

upper measurement range of the sensor is exceeded 

for the max. measurement series, while the RMS 

values are measured correctly. 

During the 292 days of research, the vibration 

level of fan No. 1 underwent slight changes, which 

are visible in the weekly acceleration histograms. 

Based on the collected results, it was possible to 

select functions that reflect these changes. However, 

due to the fact that the average weekly effective 

values of vibration acceleration during the test 

period changed by only about 10%, the selected 

functions show a noticeably lower correlation with 

the test data than in the case of fan No. 2, due to the 

natural spread of the measurement results. It is 
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therefore necessary to continue research on this 

device and to conduct a subsequent re-analysis of a 

broader research material. 
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