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The paper presents the practical application of a wireless vibration sensor system for the ongoing
monitoring of the technical condition of industrial fans used in gas furnaces to heat metal billets prior to plastic
working. During almost a year of research, vibration and temperature data was collected and subjected to time
domain analysis. The measurement results were divided into weekly time intervals and statistically processed.
In order to facilitate the decoding, segmentation into time-based segments, and statistical analysis of the
research data, a software solution was developed. The application enabled the analysis of changes in weekly
histograms and statistical parameters of data sets. A critical analysis was made of the statistical parameters
obtained from the research material. The average weekly value of rms vibration acceleration and the highest
weekly value of the relative frequency of data were selected as the parameters that best reflects changes in
industrial fan technical condition. Functions modelling these changes were also developed. During the research,
significant changes in the recorded vibration accelerations on fan motor No. 2 were observed. The developed
functions proved useful for assessing and predicting changes in the technical condition of the tested fans.
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List of Symbols/Acronyms

ARM - Advanced RISC Machines

avg, X — average value of dataset;

CCO0 — Creative Commons Zero 1.0 licence;
CDF — cumulative distribution function;

CF — crest factor;

csv — comma-separated values file;

DF — dynamic factor;

fi(¥), f2(1), f3(1), f4(t) — declared functions;
FFT — Fast Fourier Transform algorithm;
GPRS — General Packet Radio Service;
Havg — average relative frequency of data;
Hmax — highest relative frequency of data;

i — measurement index;

IT — Information Technology;

kurt, y2 — kurtosis;

max, peak — maximum, largest observation;
med, Q2 — median;

MEMS — micro-electromechanical systems;
mod — mode, dominant;

n — number of recorded measurements;

nw — number of measurements during week;
Q1 — first quartile;

Qs — third quartile;

R — Pearson correlation coefficient;

R? — coefficient of determination;

RMS — effective value (Root Mean Square);
std, o — standard deviation;
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Temp. — temperature;
VCBM - vibration-based condition monitoring

1. INTRODUCTION

Machines and equipment used in metallurgical
plants often operate in very harsh environmental
conditions. High loads, continuous operation and
dust often affect their technical condition. An
unforeseen failure of such equipment can even lead
to a production line stoppage, which results in
significant material losses for the company. That is
why systems are being developed and implemented
to monitor the technical condition of companies'
machinery [1 - 3].

A properly designed system for monitoring the
technical condition of machinery measures selected
physical quantities, and the measurement results are
collected and analysed on an ongoing basis [4, 5].
Various physical quantities that are measurable and
correlate with the progressive wear or degradation of
the functional properties of the monitored machine
can be used as parameters for assessing the technical
condition [6]. Systems are used to monitor the
temperature of bearing nodes, working parts and
machine engines. A rise in temperature may indicate
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a deterioration in lubrication conditions or overload.
Even inexpensive technical devices, such as power
tools, are often equipped with thermal switches that
disconnect the motor when the safe operating
temperature range is exceeded. Most of the drives of
machines operating in industrial plants are based on
electric motors. Therefore, the results of measuring
the current consumed by the motor can be used as a
diagnostic parameter. This is all the more so as
motors are increasingly working with controllers
(e.g. inverters) that have built-in current
measurement circuits. A deterioration in technical
condition can increase movement resistance, which
will be detected by the system as an increase in the
machine drive's electricity demand.

One of the most commonly used methods in
industrial practice is vibroacoustic diagnostics of
technical objects or vibration-based condition
monitoring (VBCM) [7]. Many papers have been
published describing the application of vibroacoustic
methods in the automotive industry [8 - 10] or, more
broadly, in transport [11, 12], as well as in the
diagnostics of industrial machinery and equipment
[13-15].

When used correctly, it allows for early detection
of symptoms of impending machine failure. The key
to the effective use of vibroacoustic methods is the
correct selection of signal processing methods . The
analysis may consist of comparing current
measurement results with predefined threshold
values, or more advanced computational methods
tracking trends, such as time domain analysis, may
be used [16, 17]. By examining data that changes
over time, it allows for the identification of trends in
the measured quantities. This method is one of the
less complicated ones and is therefore widely used in
practice in a variety of applications [18, 19]. It
involves collecting measurement data from a
vibration sensor, eg. vibration acceleration [20] and
then calculating statistical parameters describing the
collected data. Changes in the values of selected
parameters over time should correlate with changes
in the technical condition of the machine under test.

A frequently selected statistical parameter of the
signal is its effective value (RMS) [21 - 23],
expressed by formula 1.

n .2
RMS = [H=X (1)
where:

i — measurement index,

n —number of recorded measurements,

x; — value of a specific measurement.

According to the results of [24], a change in the
effective value allows for the detection of, in
particular, the imbalance of rotating machine parts.
However, it may not be sensitive enough to detect
early signs of failure.

Another statistical signal parameter frequently
used in practice is the peak value of the recorded
vibrations [23]. It is calculated according to formula
2.

peak = |v(t)|max. 2)

where:

v(t) — measured signal

As the damage progresses, the peak values of the
forces exerted by the rotating elements also increase.
However, it should be noted that despite the
advantages associated with the simplicity of the
algorithm for determining maximum values, this
parameter is sensitive to noise and random events
occurring in the measurement system.

Based on the two parameters described above, a
quantity called the peak factor can be created [21,
23], described by formula 3.

_ peak
CF = PYYES 3)

Due to its independence from rotational speed,
this parameter is useful in cases of monitoring
devices operating at variable rotational speeds.
However, there are areas where its usefulness is
limited, e.g. bearing diagnostics.

A more computationally complex statistical
parameter of a data set is kurtosis [23], described by
formula 4.

1¢n 4
kurt =y, =4 = a2=2@TD )
o (A -0?)

where:

ps — fourth central moment,

o — standard deviation,

X — average value of measurements.

It is a dimensionless quantity describing the
distribution of the measured quantity. Its advantage
is that it is not sensitive to changes in load or
rotational speed. Kurtosis analysis is sometimes used
competitively with the peak factor, but the latter is
more widely used in practice.

In more advanced cases, frequency domain
analysis methods are used [25, 26] for example FFT
[27] or wavelet approach [28]. Vibration-based
condition monitoring systems also frequently
employ sophisticated computational methodologies,
including neural networks [29], deep machine
learning [30, 31], and fuzzy logic [32].

Breaking down the measured signal into its
component frequencies allows for a broader analysis
and detection of faults manifested by changes in
limited frequency ranges [33]. Although the
computational complexity of, for example, FFT
analysis is much greater than that of the time domain
analysis methods discussed above, the increase in the
computing power of IT systems and microcontrollers
available on the market allows the use of pre-
processing algorithms already at the first stage of
data acquisition. Modern sensors are most often
equipped with digital outputs that work with a
microcontroller built into the sensor. The dynamic
development of 32-bit microcontrollers based on the
ARM core, which currently have significant
computing power and memory resources, has
significantly influenced the design philosophy of
measuring devices [7, 34]. In contrast to classic 8-bit
solutions, it is now possible to use advanced signal
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processing at the sensor stage, such as performing
FFT analysis.

The evolution of electronic, wireless data
transmission systems has had a significant impact on
the design and construction of vibroacoustic
diagnostic systems [35]. The utilisation of solutions
that do not necessitate the use of cables for both
power supply and data transmission is gaining
popularity. The utilisation of such solutions is
particularly advantageous when the measurement of
machines already in operation within industrial
contexts is required. In such cases, there is no
necessity to modify the existing cabling
infrastructure. Wireless sensors are most often
powered by chemical energy sources. The
development of solutions that are based on the
acquisition of diverse forms of energy and its
subsequent conversion to electricity is also
underway. This process is referred to as energy
harvesting [36]. The utilisation of such solutions
enables the construction of self-powered sensors that
do not require periodic replacement or recharging of
power sources.

2. MEASURING SYSTEM

The tests were conducted using the SDM-1
machine diagnostics system developed and
implemented by the Katowice-based company
Somar S.A. in one of the non-ferrous metal
processing plants in central Poland as part of the
project ‘Hardware and software system for the
diagnostics of machines and devices based on a
wireless network of monitoring sensors and methods
of knowledge engineering and computational
intelligence’. During the work, the technical
condition of machines crucial for the continuity of
the plant's production process was monitored, such
as fume extraction fans, gas furnace fans, 42 MPa
pumps, 60 MPa pumps, emulsion filtration pumps,
conveyor rollers and coiler drive gears.

WS-VT1 sensors were placed in selected
locations on the devices to measure vibrations and
temperature at these points. WS-VT1 sensors (Fig.
1) are advanced devices based on a microcontroller
that works with, among other things, a three-axis
MEMS accelerometer, a semiconductor temperature
measurement circuit and an 868 MHz transceiver.
These sensors are completely wireless in terms of
both power supply and data transmission, so they do
not require any cabling of the tested devices. This is
particularly important in the case of industrial
machines that are already in operation.

The WS-VT1 sensor is powered by a built-in LS
14250 lithium battery, which, thanks to the use of
hardware solutions and energy-saving algorithms,
can power the sensor for up to several months. The
length of the operating period between battery
replacements depends on the sensor's operating
parameters, mainly the frequency of measurements
and data transmission. During the measurement
cycle, the built-in triaxial MEMS accelerometer

performs a series of measurements, the results of
which are processed by a microcontroller. The
results are given as the effective value of vibration
acceleration (vibr AVG) and the maximum value of
recorded vibrations (vibr MAX). These values,
supplemented by temperature measurement results
and diagnostic parameters such as the sensor's
battery voltage and radio signal level, are sent to the
diagnostic system's transceivers. When employing a
vibration sensor, consideration should be given to its
mounting [37]. The sensor can be mounted on the
tested device in a non-invasive manner by gluing or
using a magnetic adapter. It is also possible to use an
M12 threaded connection. The method of connecting
the sensor has little effect on its frequency
characteristics (Fig. 2).

M12 mounting screw

LS14250 battery

__magnetic adapter |

Fig. 1. Somar WS-VT]1 vibration and
temperature sensor
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Fig. 2. Frequency response of the WS-VT1
sensor

The onboard microcontroller collects the
measurement results, pre-processes them and sends
data frames to the ITR-2 transceiver using the 898
MHz band. One transceiver can support multiple
sensors, both reading data from them and sending
messages controlling their operation. The transceiver
communicates with its surroundings via a mobile
network using GPRS technology. Data can be
collected on a local server or, as in the case of the
implemented solution, via an Internet connection
and using the server infrastructure of the monitoring
service provider. Such cloud type server [38]
provides the functionality of a typical database
enriched with an analytical and visualisation layer.
A convenient option is the built-in visualisation
interface accessible via a website for devices at the
customer's location. The basic diagram of the
implemented SDM-1 system, from which the
research data was obtained, is shown in Figure 3.
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Fig. 3. Diagram of the SDM-1 system used in
the research

The study analysed data obtained from sensors
installed on gas furnaces fan motors used to heat
billets before rolling. The rotors of these fans are
driven by asynchronous three-phase motors with a
rated speed of 2940 rpm. The first of the tested fans
(No. 1) used a 37 kW motor weighing 255 kg. A WS-
VT1 sensor marked S74 (Fig. 4) was installed on the
front part of the motor body, which transmitted
information about the vibrations and temperature of
the tested device.

Fig. 4. Gas furnace fan No. 1

The second of the tested fans (No. 2) was driven
by a 45 kW motor weighing 353 kg. A sensor marked
S76 was installed on the front cover of the motor
(Fig. 6). The selected sensor locations enabled
monitoring of the motor's operation and the technical
condition of its shaft bearings.

3. RESEARCH RESULTS

The research data reflects less than a year of
operation of the tested devices in a metallurgical
plant. It comes from the SDM-1 system database for
the period from 23 October 2024 to 11 August 2025
for sensor S74 (292 days). The data for sensor S76
covers the period from 7 November 2024 to 7
October 2025 (335 days). The data was transmitted
and stored on the diagnostic monitoring service
provider's server at default intervals of 10 seconds.
An extract was made from the database to *.csv text
files. In line with supporting policies that promote
open access to data, files containing raw

measurement data have been uploaded to the RepOD
open database and made available under a Creative
Commons Zero 1.0 licence (CCO0) [39].

Fig. 5. Gas furnace fan No. 2

The first line is the header, and the remaining
lines contain the test data. Each line is a single data
record containing information about the date and
time of the measurement and, separated by
semicolons, the measured temperature, maximum
vibration acceleration and effective vibration
acceleration values (Fig. 6). During the extraction,
auxiliary diagnostic data such as sensor battery

voltage and radio signal strength were omitted.
*.csv file from database

o file header
Timestamp; Temperature; Vibr MAX;Vibr RMS

()
2025-01-20 10:53:03754.1;1009;744
2025-01-20 10:53:13754.2;1536;902

> data
2025-01-20 10:53:23754.2;1178;850
[2025-01-20 10:53:34){54.1}:[1444}
o 7 F %\
timestamp  temperature, °C data record
(1 line)

max. vibration RMS vibration
acceleration, mg  acceleration, mg

Fig. 6. Structure of research data contained in the *.csv
file

During the study period, approximately 8,640
measurement records were collected per day, which,
when converted to the length of the study period,
gives over 2.5-2.8 million measurement records for
each of the sensors included in the study.

The results obtained are presented graphically in
the charts (Fig. 7 and 8).

The values recorded during the measurements
are presented as small dots without connecting them
with lines. This allows for a preliminary assessment
of the areas of concentration of the results. However,
the figures show a significant spread of measurement
results, which makes it difficult to draw conclusions
based on raw measurement data. Due to the very
large number of recorded results, the points on the
graph merge into coloured areas.

4. ANALYSIS OF RESEARCH RESULTS

In order to carry out the application process
correctly, it is necessary to process the research data.
The data package size is 85 MB for the S74 sensor
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Fig. 8. Data from sensor C76

and 95 MB for the S76 sensor. With such large files,
it is practically impossible to process them in popular
spreadsheet programmes. Therefore, in order to
perform calculations efficiently, the VIBRCALC
software was written in Pascal and compiled into an
executable file for Windows (WIBRCALC.exe)
using the publicly available Free Pascal v.3.2.2
compiler. Due to the functional nature of the
programme and the possibility of running it in the
background, no graphical interface was designed,
and it was decided to operate the programme in
command line mode. Additionally, this allows for
batch mode operation with minimal user interaction,

which is limited to specifying the programme's
operating parameters. The VIBRCALC
programme's operating algorithm is shown in Figure
9. The parameters controlling the programme's
operation are specified when it is called in the
command line. They are listed in Table 1.

Read command line parameters

Open input file (*.csv)

Reset global variables

New histogram - reset histogram related variables *—

4

1

Decode line (read date, time and sensor data)

1

Read line from *.csv file *-

Optional data filtering when the fan is turned off

1

Update of data counts in the appropriate interval
and global data count

yes no
r@that the end requested of the time perio%

Calculations: | relative data frequency |

| minimum ||median || mode ||maximum|

| average || standard deviation || Kkurtosis |

4

| Saving a block of results to output file |

End of input *.csv file?

Fig. 9. VIBRCALC programme operation
algorithm

Thanks to the wuniversal design and
parameterisation of the programme, it is possible to
perform calculations for histograms, determine
average values, standard deviations, medians or
other statistical parameters for the entire data set as
well as for virtually any specified time intervals.
This allows to create histograms showing changes in
data distribution over successive time intervals.

Table 1. VIBCALC programme start-up parameters

Parameter Format
File name <file name>.csv
Number of histogram 1...1000

data intervals

Maximum histogram 0,1 - 10000

value range

Data selection from the 1 - Temperature

sensor 2 — Vibr MAX
3 — Vibr RMS

4 — Peak factor

(calculated)

The time range for 0.1...30000 h
calculating histogram

components

Data filter for a switched- 0 ... 8000 mg for vibr RMS
off machine, cutting off

results below a specified

value
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The programme works in a loop, sequentially
reading lines of data from the input *.csv file. Then,
using information about the data format, it decodes
them from text to numerical form stored in the
computer's memory. It then performs the necessary
calculations cyclically and, when the end of the time
interval is reached, saves the partial results to a text
file containing the results of the work.

Firstly, the frequency of data occurrence in
specified value intervals was calculated. Based on
this, histograms were created for the entire data sets.
The width of the intervals was set at 25 mg. The
vibration acceleration histogram for the S74 sensor
is shown in Figure 10.

[ RMS m—
14
- S74 gy g—
712
Pl
2
a 10 -
=
o
£ s
o
g 6
.g 4 - Fan No. lis
@ turned off
@

ol [T—

0 500 1000 1500 2000 2500 3000

Vibration acceleration, mg
Fig. 10. Histogram of vibration accelerations from sensor
S74

The histograms of recorded vibration
accelerations for sensor S74, both for maximum and
RMS values, have two local maxima. The first one
is on the left side of the graph and is barely
noticeable. It corresponds to the recorded
background vibrations when the fan motor is
switched off. The vibration acceleration values are
then less than 100 mg. There is a clear break, and
only at values above several hundred mg can the
main part of the histograms be seen. For RMS
values, the histogram is quite narrow, as most of the
results are in the range of 500—1400 mg. There is a
clear dominance in the range of 825 mg, with as
much as 13.4% of the results falling within this
range. The data distribution is slightly asymmetrical
towards higher acceleration values.

The histogram of the maximum vibration
measurement results is shown in Figure 10 using red.
It is shifted towards higher vibration acceleration
values. The results are mainly in the range of 800—
2500 mg. It is less slender than the one described
previously and does not have a very clear dominant.
The highest frequencies were recorded in the
vibration acceleration ranges of 1375, 1400 and 1450
mg, respectively, and account for approximately 5%
of the results. A slight asymmetry of the distribution
towards higher vibration acceleration values is also
more noticeable.

A vibration acceleration histogram was also
developed for the S76 sensor, as shown in Figure 11.

For both maximum and RMS vibration
accelerations, the histograms are clearly flattened
and contain numerous local maxima. This is due to
the gradual increase in vibrations during the test

period, which was visible in Figure 8 showing the
raw data from the sensor. As before, it is possible to
distinguish the background vibration area when fan
#2 was not operating. These are ranges below 125
mg for effective values and below 250 mg for
maximum vibration acceleration values.

& s76 RMS
max.

25

0 Fan No. 2is
5 turned off

Relative data frequency, %

[ i1l " i

! MR KL —

1000 2000 3000 4000 5000 6000 7000 8000 9000
Vibration acceleration, mg

Fig. 11 Histogram of vibration accelerations from sensor
S76

The data range for the operating fan is between
approx. 200 — 4950 mg for the recorded effective
values and 375 — 8950 mg for the series of maximum
values. Both distributions shown in Figure 11 are
asymmetrical. As with the S74 sensor, the dominant
value is clearly on the left side of the graph, and the
right side of the distribution is elongated.

Histograms were created in a similar manner for
the temperatures recorded during the operation of the
tested fans (Fig. 12). The distributions of recorded
temperatures are similar, but they are shifted relative
to each other by less than 10°C. The data indicate
that the S74 sensor recorded slightly higher
temperatures.

Based on the collected research data on vibration
acceleration  values, cumulative distribution
functions were developed and compiled in Figure 13.
This figure also includes information on the mean
values, Q2 median, Q1 and Q3 quartiles, and modes
(dominants). The curves in Figure 13, like the
previously presented histograms, reflect the general
characteristics of the research data sets. The large
angle of inclination of the curve in its middle section
corresponds to a narrow histogram, as is the case

with data from sensor S74.

10
S74 =

S76

©o

Relative data frequency, %

©O =N Wd OO N ®

0 10 20 30 40 50 60 70 8 90 100
Temperature, °C

Fig. 12. Comparison of temperature histograms recorded
during research

The cumulative distributions for data obtained
from sensor S76 show significantly smaller angles of
inclination, which corresponds to wide and flat
histograms. Figure 13 clearly shows the asymmetry
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of the data distribution. All dominants are below the
median, while the mean values are above the median.

Next, the data was analysed in time intervals.
Due to the long data collection period, it was decided
to perform calculations covering data from a week.
The use of relatively long time intervals resulted in a
reduction in the dispersion of results. This was
evident when compared to the results of preliminary
analyses conducted in daily intervals.

100 f=---- s = R Tt Ies aadantd
= i third quartile
575 pee-- O S reC (TR FERRES FEr Fmmmn] Qs
£ ’ :
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Vibration acceleration, mg

. 13. Comparison of cumulative distribution functions
(CDF), average values and dominant vibration
accelerations based on collected test results
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—
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For each 7-day time interval, slightly over 60,000
data records were accepted. The VIBRCALC
programme divided the data into individual series
based on the value of the decoded time stamp. All
recorded results were included in the current range,
from 00:00:00 on the first day to 23:59:59 on the
seventh day. If the fan operated for less than 168
hours in a given week, the amount of data included
in the calculations was less than initially assumed.
Only data collected during fan operation was taken
into account. Thanks to this, data from the period
when the tested device was switched off did not
affect, for example, the underestimation of the
weekly average value. Therefore, the data filtering
option in the VIBRCALC programme was enabled.
Based on the information obtained when creating
histograms and CDFs, it was decided that all
measurement records in which the recorded results
of the Vibr RMS variable are less than 125 mg will
be filtered.

Changes in the distribution of data in subsequent
measurement weeks can be observed in three-
dimensional histograms. These are sets of connected
two-dimensional histograms calculated for each
subsequent week of testing. The height of the point
above the xy plane corresponds to the relative
frequency of vibrations. To improve the readability
of the graphs, a colour scale corresponding to the
results on the graph axis has been added. In order to
show the variability of the data over the course of
successive weeks of testing as accurately as possible,
the figures have been supplemented with generated
2D maps of the weekly distribution of maximum and
RMS vibration accelerations. The data for sensor
S74 is shown in Figure 14, while the data for sensor
S76 is shown in Figure 15.

For both analysed fans, changes in the
distribution of vibration accelerations can be

observed during the research. Over time, the height
of the histogram decreases and its base width
increases. Additionally, it can be observed that the
range of data recorded in subsequent days shifts
towards higher vibration acceleration values.

For the S74 sensor, these changes are minor but
noticeable. After almost 50 weeks of testing, the
height of the histograms of the weekly distribution
of the RMS vibration value decreases by about 20%.
The range of recorded data shifts slightly but
noticeably, with the RMS value of vibration
acceleration increasing by about 15%.
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Fig. 14. Weekly changes in the distribution of vibration
accelerations recorded by sensor S74

For the data obtained from the S76 sensor, the
variability of the weekly data distributions is very
clear (Fig. 15).

During the period under study, there was a
several-fold increase in the recorded vibration
accelerations. On two-dimensional maps, it can be
assessed that the trend of these changes is
progressive. At the same time, the height of the
histogram decreases several times and its base width
increases, which indicates a progressive degradation
of the technical condition of the fan monitored by the
S76 sensor.
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Fig. 15. Weekly changes in the distribution of vibration
accelerations recorded by sensor S76
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Due to the data acquisition algorithms built into
the sensor, there may be a mutual correlation
between the maximum and RMS vibration
acceleration values stored in the database. This is
because the sensor takes a series of measurements
and stores the results in its internal memory, then
uses this set to determine the RMS and maximum
values. The correlation between these waveforms
can also be inferred from Figures 7, 8, 14 and 15.
Therefore, the raw vibration acceleration data (Fig.
16a) and their weekly averages (Fig. 16b) are shown
in the graphs. Weekly averages were calculated from
formula 5. The squares of the correlation coefficients
were also calculated.

nw

avg = Li=1Xi (5)

nw

where:

n,, — number of measurements during week.

For data from sensor S74 monitoring the
condition of fan No. 1, there is some correlation, but
due to the relatively small range of changes in the
observed vibrations for the raw data, it is not strong
(R?=0.423). Although the weekly averages from the
measurements show a higher correlation (R?>=0.78),
the range of variation in the results is very small.
Both on the x and y axes, it is no more than 200 mg.

The data from fan No. 2 collected by sensor S76
show high dynamics. Initially, slight vibrations were
observed, which increased to the upper measurement
range of the sensor during almost a year of testing.
Hence, Figure 16 shows a clearly diagonal cluster of
data. This indicates a clear correlation between the
effective and maximum vibration acceleration
values. For raw measurement results, the correlation
coefficient square is (R?=0.856). For weekly
averages, the correlation is very strong (R?=0,998).
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Fig. 16. Mutual correlation between maximum and RMS
values of vibration acceleration

In order to check whether other data collected
during the tests change their weekly values over
time, the recorded temperature values and the peak
coefficient for vibration accelerations were taken
into account.

Next, a correlation matrix was calculated for the
available weekly average values (Fig. 17).
Additionally, the matrices were supplemented with
dynamic factor (DF) which is rate of change
indicator calculated using formula 6. It is the ratio of
the weekly average values of a given quantity from
the last week of the study to that from the first week.

__ avg(last week)
- avg(first week) (6)
This parameter helps to assess whether the set of
results has changed significantly during the tests.

Sensor S74 weekly data Sensor S76 weekly data

@ )
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Fig. 17. Mutual correlation between maximum and
effective values of vibration acceleration

Figure 17 shows that it is much easier to identify
test data for fan No. 2 that is significantly correlated
with time, as the data from sensor S76 is
characterised by significant dynamics of changes in
vibration acceleration. In addition, there is a strong
correlation between their weekly effective and
maximum values. For fan No. 1, the appropriate
diagnostic parameter can be selected by taking into
account both the results of the correlation matrix and
the dynamics of changes. In general, it can be noted
that the changes in average temperatures and the
calculated peak coefficient recorded during the tests
are insignificant, and therefore it is not justified to
draw conclusions about the technical condition of
the fans on this basis. The maximum weekly value
of vibration acceleration for sensor S74 shows a
weak correlation with the test time, and for sensor
S76 it can be ignored due to its strong correlation
with the RMS value. Therefore, the results of the
measurements of the RMS value of vibration
acceleration recorded by sensors S74 and S76 were
taken into account.

Based on weekly data sets with an average of
approximately 60,000 RMS vibration acceleration
values, many statistical parameters describing them
can be determined. In addition to the mean (avg) and
standard deviation (std), these are read from the
distribution as follows:

- minimum value (min),

- first quartile (Q1),

- median (med),

- third quartile (Q3),

- maximum value (max).

Additionally, for weekly histograms, the
following were determined:

- kurtosis (kurt),

- mode, dominant (mod),

- highest relative frequency of data (Hmax),

- average relative frequency of data (Havg)

In order to assess the usefulness of these
parameters for evaluating changes in the technical
condition of fans, correlation matrices [40] were
created, which are shown in Figures 18 and 19.
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:;"; week| avg | std | min | Q1 |med | Q3 | max | kurt | mod | Hyax | Havg
week | 1,00 possible correlation of data with operating time
avg |0.61]1,00 ‘ ‘ ‘ ‘ ‘

std ]0.68 10.6581.00 possible cross correlation
min |0.25 0,19 0,07| 1,00 / of data

Q1 J0,72 0,47 (0,17] 1,00

med | 0,81 0,64 017 1,00

Q3 ]0.85 0,75(017 1.00

max |-0,19}-0,07|-0,09|-0,26 -0,05 |-0,07|-0,08| 1,00

kurt }-0,27}-0,23/-0,29/-0,22-0,17|-0,23-0,26| 0,83 | 1,00

mod | 0,66 §0,87 | 0,47 | 0,12 0,89 0,83|-0,13 -0,29/1,00

Hmax |-0,77}-0,68 -0,67/-0,78(/0,15| 0,34 |-0,50| 1,00

Hay | 0,07 §0,01 |-0,24| 0,82 | 0,06 | 0,01 |-0,02|-0,33|-0.23| 0,03 | 0,17 | 1,00

Fig. 18. Correlation matrix of statistical parameters of
weekly effective acceleration values from sensor S74

The data shown in the first column indicates that
the mean, median and third quartile show the highest
correlation with the passage of weeks for sensor S74.
At the same time, all these variables are strongly
correlated with each other, so they form a single
group. A relatively high negative correlation with the
passage of time is shown by the data series
containing the calculation results for the highest
relative frequency of data (Hmax), so it may be
another parameter showing changes in the technical
condition of the device over time.

Two data groups can also be found for sensor
S76. The first strongly correlated group consists of
the mean, standard deviation and most of the data
read from the cumulative distribution function (Q1,
med, Q3, max) and the dominant. They illustrate the
increase in vibration levels over time. The second
mutually correlated group consists of values related
to the height of the histogram bars (Hmax 1 Aavg)-
Their values decrease over time and show a
reduction in height and a widening of the histogram
base.

S76

RMS week| avg | std ‘ min | Q1 |med | Q3 | max | kurt | mod Hpyax Hayg
week | 1,00 possible cr:!rrelation of daté with operating.i time

v [6R8] 10 T 1 ]
std 1.00 pljssib\e crc‘)ss co‘rrelation ‘

min | 0,63 0,64 [ 0,64| 1,00 of data

at 0.64]1.00 ‘ '

med 0,64 1,00

Q3 0,64 1,00

max 0,62 1,00

kurt |-0,29}-0,26|-0,30|-0,17 -0,26|-0,26 -0,26 -0,10| 1,00

mod 0,63 -0,26 1,00

Hrmax |-0,74}-0,69|-0,74 |-0,45 -0,68|-0,69|-0,69|-0,63 0,70 |-0,69| 1,00

H.v |-0.84}-0,79/-0,83|-0,44 -0,79/-0,79|-0,79|-0,83| 0,27 |-0,80| 0,84 | 1,00

Fig. 19. Correlation matrix of statistical parameters of
weekly effective acceleration values from sensor S76

Based on the analysis of data from Figures 18 and
19, two parameters common to both tested fans were
selected for further analysis: the average weekly
effective value of vibration acceleration and the
highest weekly value of relative data frequency
(Hmax) i.e. the height of the histogram bar for the

dominant frequency. Based on these parameters,
functions describing changes in the technical
condition of the fans during the tests were
determined. Gnuplot 5.4.8 software was used to
determine the form of the functions [41], which
allows the parameters of a user-defined function to
be determined using the Levenberg-Marquardt non-
linear algorithm.

After a preliminary analysis of the results for
modelling data from the S74 sensor, due to the
significant dispersion of the results, linear functions
defined by formulas 7 and 8 were selected

fi®) =ait+by (7
f2(t) =azt+b, (3)

A second-degree polynomial defined by the
formula 9 was selected as the function modelling the
average weekly effective values of vibration
acceleration.

f3(t) =ast? +bst+c; )

However, the decrease in the weekly histogram
of the effective acceleration value during the tests is
best reflected by the power function defined by the
formula 10.

fa®) = a,t™" (10

The Gnuplot programme performed cyclical
calculations, selecting the values of the parameters
ai, b;, ¢; and calculating the standard asymptotic error
for each of the determined parameters, which
allowed for a reliable assessment of the selection of
functions for the data set. The results of the selection
of function parameters are presented in Table 2.

In the case of fan No. 1, the results of the
selection of function parameters describing changes
in the weekly average values of vibration
accelerations recorded by the S74 sensor show
noticeable uncertainty, which is confirmed by the
relatively low values of the R? correlation
coefficient. This is caused by the small range of
changes in the technical condition of fan No. 1
during the tests and measurement noise.

Table 2. Results of function parameter selection

function Parameter Error, % Function to
data R?

ai 1,742 11,31

1) bi 823,0 0,59 0,662
az -0,001 12,96

S0 b2 0,162 2,16 0,598
as 0,879 7,49

f3(1) b3 30,25 11 0,997
3 375,8 9,41

0 as 0,321 3,29 0.972
b4 -0,568 3,03 ’

However, for fan No. 2 monitored by sensor S76,
changes in technical condition are clearly visible
even in the raw data set. Therefore, the selected
functions f3(¢) and f4(t) describing the relationship
between the average weekly effective value of
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vibration accelerations and the change in the highest
relative frequency of data since the fan's operation
show a very high correlation with the research data
sets, as the calculated correlation coefficient square
is as high as 0,997 for f3(t) and 0,972 for fi(?).

The values of previously selected weekly data
and functions reflecting changes in the technical
condition of fan No. 1 are shown in Figure 20. They
show a slight increase in the average weekly RMS
vibration values recorded by sensor S74 (Fig. 20a).

A decrease in the height of the histogram is also
observed, which is consistent with the changes
observed in Figure 14. However, there is a
significant spread of results, which reduces the
correlation coefficient.

Changes in the technical condition of fan No. 2
and functions describing weekly data are shown in
Figure 21. Despite the small spread of results, the
functions are selected with a high degree of
certainty, and the obtained relationships correspond
to the observations described for the 3D histogram
shown in Figure 15.

For fan No. 2, the selection of functions was
additionally verified by comparing the prediction for
a period of 4 weeks with subsequent data
downloaded from the system.
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Fig. 21. Data and functions reflecting changes in the
technical condition of fan #2 and a 4-week forecast

For the f3(#) function, the forecast of the average
weekly RMS vibration values coincided with the
obtained points. For the fy(?) function, the forecast
lies within the range of measured values, but there is
a greater spread of results. For diagnostic purposes,
the f3(¢), function is more useful, and its estimated
computational complexity even allows for its
implementation in a microcontroller controlling the

operation of WS-VTI1 sensors during further
development work.

5. CONCLUSIONS

The results of the research conducted in this
study demonstrate the advantages of using a long-
term monitoring system for the technical condition
of industrial machinery and equipment.

The implementation of a system utilising
wireless sensors to monitor the technical condition
of machinery and equipment in a heavy industrial
plant has demonstrated the effectiveness of such a
solution. The installation of the sensors was not
technically problematic, and the radio signal strength
was sufficient to obtain accurate readings. However,
it should be noted that a potential drawback
associated with this system is the periodic necessity
for replacement of the batteries that power the
sensors. The system, which was equipped with
wireless sensors, provided substantial amounts of
research data during its operation.

The analysis of data collected during almost a
year of research revealed significant changes in the
technical condition of fan No. 2. A second-degree
polynomial increase in vibration acceleration
recorded by the S76 sensor was detected. This
indicates the need for extended diagnostics and
repair of this fan. Data from the following four
weeks confirmed with high accuracy the forecast of
changes in the fan's vibration level made by the
developed f3(?) function.

The average weekly vibration acceleration values
can be used as an indicator of vibration level
changes. This parameter was calculated for a set of
RMS values and shows a very high correlation
coefficient square value of 0,997. In the case of
vibration accelerations measured by the S76 sensor,
the average weekly maximum values are closely
correlated with the average weekly RMS values. It
follows that, in theory, either of the two
aforementioned data sets can be selected as the basis
for assessing the technical condition of this machine.
However, the recorded RMS values are
approximately twice as low, so they are more useful
for diagnostics in the event of a significant increase
in vibration. This can be seen in Figure 8, where the
upper measurement range of the sensor is exceeded
for the max. measurement series, while the RMS
values are measured correctly.

During the 292 days of research, the vibration
level of fan No. 1 underwent slight changes, which
are visible in the weekly acceleration histograms.
Based on the collected results, it was possible to
select functions that reflect these changes. However,
due to the fact that the average weekly effective
values of vibration acceleration during the test
period changed by only about 10%, the selected
functions show a noticeably lower correlation with
the test data than in the case of fan No. 2, due to the
natural spread of the measurement results. It is
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therefore necessary to continue research on this
device and to conduct a subsequent re-analysis of a
broader research material.
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