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Abstract

Due to the structural characteristics of multi-redundancy and multi-closed loops in flight control systems,
their fault propagation modes are complex, and the internal physical structure is closely coupled with system
components, which poses challenges for analysis and modeling. To improve the accuracy and predictive ability
of flight control system fault diagnosis, this study proposes a flight control system fault diagnosis method built
on an improved bidirectional long short-term memory network. By integrating convolutional neural networks
and bidirectional long short-term memory networks to extract local and temporal features of the data space, the
classification and regression problems of flight control system state prediction have been solved. The results
indicated that the proposed fault diagnosis algorithm had the highest recognition accuracy for the four modes.
Compared with single convolutional neural networks and long short-term memory networks, the accuracy has
increased by 2.11% and 1.32%, and the fault diagnosis accuracy has reached 99.49%, which could accurately
identify various types of faults. The improved network proposed this time significantly improves the accuracy
of flight control system fault diagnosis and reduces false alarm and missed alarm rates.
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1. INTRODUCTION

The Flight Control System (FCS) constitutes a
vital component of contemporary civil aviation
aircraft. It is responsible for controlling key
parameters such as flight attitude, speed, and altitude
of the aircraft, and uses flight control computers to
issue control commands to various control surfaces,
greatly improving the accuracy and reliability of
control (1). To further enhance the reliability and
safety of FCS, redundancy technology is often used
to construct redundant FCS. Internal data exchange
and voting mechanisms have been established
between different flight control computers to
significantly reduce system failure rates and ensure
the safe operation of the aircraft (2-3). However, the
application of this technology also brings challenges,
especially in terms of the overall structure and
control logic of the system. Due to the need to design
and manage multiple backup components, the
complexity of FCS significantly increases. This
requires designers to carefully design the system
architecture, ensure the coordinated work between
various components, and be able to quickly switch to
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the backup system in emergency situations, thereby
avoiding safety issues caused by main system
failures (4-5). There are two major problems with the
existing health management methods for FCS:
Firstly, the low accuracy of FCS operational status
prediction leads to false alarms or omissions;
Secondly, FCS involves multiple physical quantities
and dynamic processes, and its predictive ability has
significant uncertainty. During the operation of FCS,
a massive amount of operational data is generated,
and Deep Learning (DL) algorithms can process this
large amount of data. By autonomously learning the
feature information in the data, real-time monitoring
and fault diagnosis of FCS machines can be
achieved.

By real-time monitoring and analysis of multiple
monitoring parameters of aircraft FCS, advanced
algorithms and models can be used to predict
possible system failures and take measures in
advance to ensure flight safety. Han et al. proposed
a system that can identify incorrect configurations or
unreasonable parameter combinations to improve
the physical stability of drone flight. The system
evaluated the fitness of configurations through
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Machine Learning (ML), optimized parameter
combinations using multi-objective optimization
algorithms, and successfully identified potential
erroneous configurations (6). Yuksek et al. proposed
a Reinforcement Learning (RL)-based FCS to
enhance the flight operation performance of closed-
loop reference model adaptive control systems. This
method improved the transient response
performance of all relevant indicators (7). Guo et al.
proposed a health management system for FCS to
achieve non-linear degradation signal extraction of
FCS. It adopted a time-varying Markov auto-
regressive exogenous system with time delay to
establish a system level degradation model for FCS,
and detected FCS through health indicators. The
method was found to successfully extract
degradation information of FCS (8). Zhao et al.
constructed a fault diagnosis deep residual
convolution bidirectional Long Short-Term Memory
(LSTM) attention network to achieve fixed time
fault-tolerant control of hypersonic aircraft. The use
of transfer learning techniques for fault diagnosis
ensured the tracking performance of the system in
the event of actuator damage (9). Kosova et al.
designed a novel aircraft hydraulic system health
monitoring system based on digital twins. Through
the use of SVM and several ensemble learning
algorithms (ML) for troubleshooting, the results
showed that this method had high accuracy in early
evaluation and diagnosis (10).

DL and RL methods can autonomously gain
experience and gradually optimize decision-making
strategies through trial and error and reward and
punishment mechanisms, possessing the ability to
balance exploration and utilization, and have
enormous application prospects in the aerospace
field. Guo et al. proposed a data-driven
comprehensive safety risk warning model based on
DL to apply real-time data from aircraft rapid access
recorders to safety monitoring, risk prediction, and
early warning. This model combined the
characteristics of aircraft system faults and adopted
methods such as fault mode and effect analysis,
cause chain analysis, and LSTM (11). Djalel et al.
proposed a data-driven aircraft fault prediction
method that describes the availability of data during
the degradation process and solves the data scarcity
problem in remaining useful life prediction through
LSTM. This method could improve the prediction
accuracy of LSTM technology (12). Sun et al.
developed an improved risk assessment algorithm
grounded on LSTM and autoencoder to address the
issue of inability to identify the quality of risk level
labels in the field of flight safety. This algorithm
utilized the time series characteristics of flight data
to achieve an accuracy of 86.45% and had good risk
assessment capabilities (13). Yildirim et al. used
LSTM architecture and engine sensor data to predict
the remaining life of aircraft engines in order to
achieve predictive maintenance of aircraft. The
classification accuracy of the LSTM model reached
98.916% (14). Bell et al. proposed a method

combined with LSTM-DL autoencoder to improve
the safety of unmanned aerial vehicles and reduce
operating costs. This method used dynamic
threshold algorithm and weighted Loss Function
(LF) for anomaly detection in unmanned aerial
vehicle datasets, with high accuracy and fast fault
detection speed (15).

In summary, in flight control environments, it
often requires a significant amount of cost,
simplicity, and the expenditure of a lot of manpower
and resources. At the same time, in control systems,
it is often not possible to directly use existing
datasets for learning, and higher costs need to be paid
to collect or construct datasets on their own. The
application of deep RL in FCS often requires
complex environments and unexpected situations.
To ensure the operational efficiency and reliability
of FCS, this paper proposes a fault prediction
method on the basis of LSTM and Multi-Task
Learning (MTL). Firstly, this study takes the
historical data of FCS as the input of the model, and
then extracts the temporal features through
Convolutional Neural Networks (CNN). Finally, a
neural network model combining LSTM and MTL is
proposed to simultaneously solve the classification
and regression problems of FCS state prediction.

2. METHODS AND MATERIALS

This study proposes an FCS fault diagnosis
system based on deep RL. It uses LSTM as the
shared layer for MTL load forecasting, simulates the
coupling characteristics between multiple loads
through the shared layer, and achieves the goal of
improving prediction accuracy and reducing the
incidence of accidents.

2.1. FCS fault diagnosis based on CNN-LSTM

LSTM is widely used to process time-series data.
The unique structure of LSTM enables it to
effectively capture and utilize long-term
dependencies in sequences, resulting in significant
achievements in tasks like Natural Language
Processing (NLP), speech recognition, and time
series analysis (16-17). In addition, the structure of
LSTM allows the model to have depth, which means
that more complex models can be constructed by
stacking multiple LSTM layers, further improving
the ability to handle complex tasks. The internal
structure of the LSTM unit is shown in Figure 1. It
introduces memory units and 3 '"gate" structures
(input gate, forget gate, and output gate) that control
information flow, allowing the model to selectively
remember or forget certain information, thereby
better handling long-term dependency problems.

LSTM generates a value of f; from 0 to 1 based
on the previous output h;_; and the current input x;,
to determine whether the information C;_; learned
in the previous time was partially transmitted, as
shown in equation (1).

fe = U(Wf[ht—pxt] + bf) Q)
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Fig. 1. LSTM internal structure

In equation (1), o denotes the sigmoid function.
W and b are corresponding weights and bias terms.
Step 2 is to update and generate new message.
Firstly, the "input gate" layer is updated using
sigmoid. Secondly, a tanh layer is taken to generate
novel candidate values €, and added to the cell state.
Typically, the values obtained from these two parts
are combined for updating, as shown in equation (2).

{it = o(Wilhe—1,xc] + by) @)
Ce = tanh(We[he_y, %] + bc)

In equation (2), tanh is the function. The old cell
state is updated by first multiplying it by f; to forget
needless information, and then adding it to i,C, to
gain candidate values. The fusion of one and 2 steps
is the period of discarding unnecessary data and
adding new detail, as given by equation (3).

Ce = fiCeq +i:Cy (3)

Step 3 is to decide the model’s output, calculate
the output of the model using sigmoid, scale the
value of C; to between -1 and 1 using tanh, and

J—e—{n}——F

multiply it pairwise with the output of sigmoid.
Thus, the model’s output represented by equation (4)
is obtained.

0 = o(W,[ht—y, %] + b,) 4)

Finally, the cell C; value is updated using
equation (5) to obtain the value of the next hidden
layer.

hy = o, tanh(C;) (5)

According to different functions, FCS can be
segmented into longitudinal control system and
lateral control system. The former is mainly
responsible for controlling the pitch motion of the
aircraft, that is, the altitude and speed changes of the
aircraft. This control is achieved by adjusting the
aircraft's elevators and other control surfaces,
ensuring the stability and controllability of the
aircraft in the vertical direction. The latter is mainly
responsible for controlling the rolling and yaw
movements of the aircraft, that is, the direction
control of the aircraft. It controls the direction of the
aircraft by adjusting control surfaces such as
ailerons, ensuring the stability and controllability of
the aircraft in the horizontal direction. This study
focuses on the servo control in the directional control
pathway. The most critical and prone to failure link
is the servo control unit performing closed-loop
control according to the commands of the Actuator
Control Electronics (ACE). Figure 2 is its control
block diagram.

In Figure 2, the system sends it to the
Electrohydraulic Servo Valve (EHSV) located in the
rudder Power Control Unit (PCU) through a set of
proportional integral controllers and a set of rudder
angle limiters. By driving the actuator through
EHSV, the rudder deflects, achieving control over
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Fig. 3. CNN-LSTM model structure
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the rudder. In FCS fault diagnosis, there is a direct
correlation between multiple monitoring parameters,
which can fully utilize the CNN's ability to capture
its spatial local features (18). Meanwhile, due to the
temporal characteristics and continuity of the
collected system parameters, LSTM can be used to
describe them. Therefore, this study constructs a
multi-modal deep neural network model based on
CNN-LSTM to effectively extract local spatial and
temporal sequences of data. Figure 3 shows the
framework of CNN-LSTM.

In order to achieve a balance between the feature
extraction ability and model complexity of the CNN-
LSTM model. The convolutional layer part adopts a
two-layer one-dimensional convolutional network.
One-dimensional convolution is chosen for the local
correlation of multi-sensor time series data in the
time dimension. The first layer uses 64 x 3
convolutional kernels to capture short-term and
high-frequency transient features. The second layer
uses a 128x5 convolution kernel to extract patterns
on a slightly longer time scale. The LSTM layer part
stacks two layers of LSTM, with the number of
hidden units set to 128 and 64 respectively. The first-
layer LSTM requires sufficient capacity (128 units)
to learn the complex temporal dynamic
characteristics of the input features (from CNN). The
second-level LSTM (64 units) is used to abstract
higher-level time dependencies.

Assuming L = {l;, 15, ..., l;, ..., l,} ER™" is a
2D matrix with m X n dimensions, used to record
the changes of n state parameters [ at different time
points m. This data are input into the network
through two channels, one above and one below.
First, through the hierarchical structure and training
process of CNN, spatial correlation features are
extracted from the original input data. Finally, the
extracted features are integrated and output as a fixed
1 X n -dimensional feature vector D,., as shown in
equation (6).

D, = [d} d?, ..., d., ..., d7"] (6)

In equation (6), after processing by CNN, the
neuron (or filter) generates i specific output feature
dL. The input of LSTM is the transpose of the input
data of the CNN layer. If the output dimension of the
LSTM hidden layer is v and a fixed sequence length
is specified as m, then it is transformed into a m X v
-dimensional eigenvector K. through LSTM, as
shown in (7).

In equation (7), k! is the hidden layer output of
the j -th time step of the LSTM. This study uses
attention mechanism to fuse the features obtained by
the two methods. Firstly, the spatial feature D,
extracted by CNN is used as a query vector, and the

hidden layer output k! at each time step of LSTM is
used as the key value and output value. The
calculation of attention weights is based on equation
(8).
§(kl,D,) = tanh(kWD} + b) (8)
In equation (8), W is the m X n -dimensional
weight matrix and b is the bias term. Both are
obtained through learning during the training phase.
DI is the transpose of D, , while equation (7)
calculates the similarity function between the query
vector and the key values. By using Softmax to
standardize the attention weights, ; as shown in
equation (9) is obtained.
exp(&(kg,Dr))
;- P exp(é(ké,Dr)) ©)
Finally, based on the -calculated attention
weights, the original features are re-weighted to
obtain a weighted feature table. The features in this
table have been adjusted by the model based on their
importance, which helps the model better understand
and process input information, as shown in equation
(10).
f =Bk (10)
This context vector will be passed on to the next
stage of the model for further processing. Through
this process, the model can dynamically adjust
weights based on the significance of various parts of
the input, thereby capturing key information more
accurately. The CNN-LSTM model utilizes the
spatial features extracted by CNN and the time series
characteristics of LSTM to weight attention, thereby
adjusting the weights of LSTM temporal features for
specific time enhancements. This enables the model
to have more complete feature representation
capabilities.

2.2. FCS state prediction based on MTL-LSTM

The integrity of FCS will directly affect the
safety and quality of flight. Therefore, real-time
monitoring of FCS is essential to quickly switch to
the backup system in case of FCS failure, ensuring
flight safety. This study takes the pitch channel in
FCS as an example and proposes a dual closed-loop
control method, as shown in Figure 4.

— 11,2 j m
K, = [kL k2, ...kl .., k" (7
» x|
S
A A
f I _*_ - Proportional link
Pitch command Pitch Angle i - K /S

o ] —e—— /]

Pitch rate Elevator command

limiting

Integrating element

Pitch Angle
feedback

limiting limiting

Pitch velocity
feedback

Steering engine

e

Aircraft

Fig. 4. Pitch loop control system
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In Figure 4, FCS consists of multiple control
loops, such as altitude control, speed control, etc.
The coupling between various control loops makes it
impossible to accurately model them physically, and
data-driven methods are needed to model them. This
study constructs a state set H = {hy, hy, ..., h,} by
selecting multiple state parameters related to the
system. Then, using the predicted parameter h;
obtained after ) time steps as the predicted value
Sid, a training set {H, Si,d} is constructed, and the
mapping relationship of H — s; 4 is obtained during
the training phase.

Predicting the future state of a parameter based
solely on its historical data does not fully consider
the correlation between various parameters.
Traditional prediction methods based on multiple
parameters cannot effectively extract information
from sequences, and due to the inability to obtain
unpredictable future data, they cannot be applied to
iterative prediction. Meanwhile, in engineering
practice, it is often necessary to make predictions for
multiple  state  parameters with common
characteristics. In response to the above issues, this
study introduces the idea of MTL in flight control
multi-variable state prediction. MTL is a recursive
migration mechanism. The core idea is to achieve

parallel learning of multiple tasks with the same
representation by mining the domain knowledge
contained in multiple related tasks, in order to
improve the generalization ability of the model.
Figure 5 shows the state prediction process for
multitasking.

Single task learning refers to independently
processing multiple prediction tasks in the same state
set and mapping them separately. Due to the lack of
correlation information with future state parameters,
this method can only predict a certain moment at a
certain time. When the step size is too large, its
prediction accuracy is not high. The multitasking
mode integrates multiple tasks from the same state
set, sharing the weights of most models, thereby
improving the learning efficiency of the entire model
and overcoming the disadvantage of not being able
to make iterative predictions (19). On this basis, this
study proposes a multi-layer adaptive neural network
model MTL-LSTM based on multi-layer neural
networks, whose structure is shown in Figure 6.In
Figure 6, the MTL-LSTM model uses two layers of
LSTM as shared layers, and the number of hidden
units is set to 100 for both. This is because the shared
layer needs to have a sufficiently powerful
representation capability to learn the fundamental
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Fig. 5. State prediction process of multiple tasks
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spatiotemporal features that are common to all tasks
and related to the dynamic characteristics of the
flight control system. Secondly, the two-layer
structure is adopted to construct a deeper time series
model, enabling it to learn multi-level dependencies
from low-level temporal patterns to high-level
temporal contexts. Each task-specific output layer is
designed as a lightweight fully connected network,
with its input being a 100-dimensional feature vector
output by the shared layer, and the output dimension
is determined by the specific prediction task. This
design paradigm of "emphasizing sharing over
tasks" effectively promotes knowledge transfer
among tasks while avoiding overfitting for
individual tasks.

Each task shares 2 LSTMs, where L =
{l,l,...,l,}ER™ and H ={hy,hy, .., h}E
RY™™ are inputs to the upper and lower LSTMs. [; is
the state vector of the feature parameter set H at time
i . The relationship between L and H can be
represented by equation (11).

L=HT (11)

At each time point, the upper input [; is passed
through an LSTM network with a m -dimensional
vector to obtain y*, which is then output through the
hidden layer at each time point as a mXt -
dimensional feature vector Y%, The input data h; on
the lower side can obtain a ¢ X n -dimensional
feature vector YR through LSTM with an output
dimension of ¢ in the hidden layer. The expressions
for Y% and Y® are shown in equation (12).

L — [yl 4L L
{YR_ [le’yZR”yt};l (12)
Yo =1y yz, o vnl

Each task in MTL-LSTM has two attributes, Y'*
and YR, and attention mechanisms are established
based on the impact of different time and feature
parameters on each task, as shown in equation (13).

a? = soft max(W,Y* + b,)
B? = soft max(WzY® + bg) (13)

v* = [T eyl X Bl
In equation (13), z refers to the z -th task. W,
and Wy are the weight matrices of a” and f”. b,
and bg are utilized to adjust the output of the
activation function to minimize the LF. a” and §*
are the weight sets of different state parameters in the
z -th task. In the LSTM model, the output vector of
each time step goes through a fully connected layer,
which is taken to weight and sum the output vectors
of the time dimension and feature dimension to
obtain the final output. Specifically, the output
vector for each time step has a weight matrix. Each
row of this matrix corresponds to a feature, and each
column corresponds to a time step. By multiplying
the output vectors y? of the time dimension and
feature dimension by their respective weights, and
then adding the results, the merged input data can be
obtained. This process can be expressed
mathematically as equation (14).
s? = sigmoid(Wy* + b) (14)

In equation (14), W and b are the weight matrix
and bias term. In practical applications, the
prediction of key state parameters also involves
more complex data analysis and model construction,
requiring  higher accuracy and real-time
requirements.  Therefore, the formula for
constructing a weight LF for the entire network is
shown in equation (15).

Loss = 2:1%23:1 loss(sZ—38%2) (15)

In equation (15), sZ and $7 are the true and
predicted values of the u -th sample in the z -th task.
loss( ) is a function of mean square error. U is the
total number of samples taken. A, is a punitive
factor. Among them, for the key state parameters
expected to be predicted, the larger the penalty
factor, the more severe the penalty when the
prediction deviates.

3. RESULTS

This study selected three common faults for
simulation and used them as the target of fault
diagnosis to verify the performance of CNN-LSTM
structure and MTL-LSTM, respectively.

3.1. Performance analysis of fault diagnosis
based on CNN-LSTM

This study chose AMESim as the system model
and sampled every 30 seconds at 100 Hz to obtain
3,000 time points of sampling data. According to the
above method, 11,408 samples were obtained from
4 different models. Then, these samples were
divided into 8,213 training datasets, 2,054 validation
datasets, and 1,141 testing datasets. This study set up
a software experimental environment of Python 3.5
and Tensorflow 1.15.0 on a computer with hardware
configuration of Intel(R) Core(TM) i5-3210M CPU
@2.50GHz and 8GB memory. Finally, a CNN-
LSTM model was constructed using the Keras DL
network framework.

In order to verify the applicability of the model
in complex fault scenarios and real systems, this
study further designed synchronous fault mode
experiments, and introduced the Boeing 777 rudder
control system as a real case for analysis. The system
structure of this case is complex, and the sensor and
actuator are closely coupled, which has typical flight
control system characteristics. The following two
synchronous fault situations are simulated:
synchronous  fault 1:  hydraulic  source
leakage+actuator hydraulic leakage; Synchronous
fault 2: hydraulic oil air mixture+control surface
control circuit intermittently fails. At the same time,
the research has extracted real operation data
containing multiple fault modes from a certain type
of civil aviation flight data recorder, and constructed
a real system data set containing 12000 groups of
samples, covering normal state, single fault and
synchronous fault.

The loss curve and accuracy curve of CNN-
LSTM model on training set and test set are shown
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in Figure 7 In Figure 7 (a), the absolute value of the
slope of the loss curve of both training samples and
verification samples is large and very smooth in the
first 10 single training iterations, and basically keeps
the horizontal synchronous change, which indicates
that the model is converging rapidly: in the 10th to
25th single training iteration interval, the absolute
value of the slope of the loss curve of both training
samples and verification samples gradually
decreases and approaches 0, and the loss value of
both training samples and verification samples
decreases from 0.025 to about 0.010 after 15 single
training iterations, indicating that the model is
further learning and will complete convergence: the
loss curve of both training samples and verification
samples basically coincides in the last 5 single
training iterations, the absolute value of the slope of
the curve is infinitely close to 0, and the loss value
will no longer change, indicating that the model has
completed training and converged successfully. In
Figure 7 (b), except for the first five single training
iterations, the accuracy change curve of training
samples and verification samples is very smooth, and
there is no fluctuating broken line, indicating that the
model is stable.

030
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025 N\ Validation set
., 0.20
&
= 0.15

0.10
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0
0o 5 10 15 20 25 30

Single training iteration
(a) Changes in the loss of training samples and
validation samples
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0 5 10 15 20 25 30
Single training iteration

(b) Changes in training samples and validation
samples

Fig. 7. Convergence performance analysis

In order to further evaluate the stability and
generalization ability of the proposed CNN-LSTM
model and avoid the accidental impact of a single
data partition on the performance evaluation, a 50
fold cross validation was conducted. As shown in
Table 1, the CNN-LSTM model shows a high degree
of stability and robustness in the five fold cross
validation. The accuracy of 50% verification has a
very small fluctuation range, ranging from 99.35%
to 99.63%, with an average accuracy of 99.50%.
More importantly, the standard deviation of each
performance index is very small, which indicates
that the model is not sensitive to the division of
different data subsets, and its excellent performance
is not caused by specific training test set division.
The results of cross validation strongly prove that the
CNN-LSTM model has excellent and consistent
generalization capability. The research takes
accuracy as the evaluation criterion, conducts fault
classification diagnosis experiments, and evaluates
the performance of five methods: CNN, LSTM,
CNN-GRU, CNN-Transformer, and CNN-LSTM.
As shown in Table 2, CNN-LSTM ranks first with
an overall accuracy rate of 99.49% and an overall F1
score of 99.48%, significantly outperforming the
existing baseline and frontier fusion architectures.
Compared with traditional networks, the accuracy
rate is 2.13 percentage points higher than that of
CNN and 1.18 percentage points higher than that of
LSTM. Compared with the fusion schemes of the
same period, it leads CNN-GRU and CNN-
Transformer by 1.04 and 0.61 percentage points
respectively. The fine-grained results show that this
method achieves the best results in three out of the
four types of faults: the recognition rate of hydraulic
oil mixed gas faults is 99.21%, which is the highest
in the entire field; The most challenging actuator
hydraulic leakage task reached 98.42%, leading the
suboptimal model by 1.35 percentage points. The
leakage of the hydraulic source achieves 100% zero
misjudgment. Although it is slightly lower than
CNN-Transformer under normal working conditions
(99.44% vs. 99.25%), the comprehensive spatio-
temporal feature extraction ability still maintains an
absolute advantage, fully verifying the effectiveness
and robustness of the CNN-LSTM collaborative
architecture in the fault diagnosis of flight control
systems.

Table 1. Performance results of 5-fold cross-validation of the CNN-LSTM model

Fold times Accuracy (%) Precision (%) Recall (%) F1-Score (%)
1 99.52 99.5 99.55 99.52
2 99.41 99.38 99.45 99.41
3 99.63 99.61 99.66 99.63
4 99.35 99.32 99.39 99.35
5 99.58 99.56 99.61 99.58
Average value 99.5 99.47 99.53 99.5
Standard deviation 0.11 0.12 0.1 0.11
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Table 2. Fault diagnosis accuracy (%)

Hydraulic oil Actuator Hydraulic
Model accO:aecraliate ngf:aolieFl- Normal mode gas mixing hydraulic source leakage
uracy fault leakage fault fault
CNN 97.36 97.30 97.82 99.03 97.46 95.12
LSTM 98.31 98.28 98.63 97.44 97.48 97.52
CNN-GRU 98.45 98.41 98.80 97.85 97.91 97.25
CNN-Transformer 98.88 98.85 99.25 98.50 98.23 98.55
CNN-LSTM 99.49 99.48 99.44 99.21 98.42 98.67
B feature dimensionality reduction on CNN-LSTM
20 ¢ EJ and Bior3.7, resulting in 128 connected levels of
2 features and achieving feature visualization. Figure
0 . . . .
3 1 'lh} 2 8 shows the visualization effect. Figure 8 (a) shows
£, 1 ® .m' Aa E the wavelet transform characteristics after wavelet
N7 - Bl -
'lé :«f transformation. In the process of wavelet transform,
0t 0-&2 @ _"y there may be overlapping between sampling points,
and it is difficult to determine the category surface.
T Figure 8 (b) is a visualization view of CNN-LSTM
() Wavelet-based feature visualization features. The features extracted by CNN-LSTM
20 | By oy have significant clusters and can clearly determine
A

P

Dimension 2
5‘ =}
gi.
[0}
m‘ °

Dimension 1

(b) Visualization of CNN-LSTM feature representation

Fig. 8. Feature visualization

This study uses the T-SEN (20) dimensionality
reduction technique to perform wavelet-based

the classification plane, once again demonstrating
the powerful ability of the model in feature
expression.

Table 3 shows the diagnosis performance of
CNN-GRU, CNN-Transformer and CNN-LSTM
models under various fault modes in a real system
case. Table 3 shows that in the real system case, the
three models all show good fault diagnosis ability,
but there are gradient differences in performance.
CNN-LSTM consistently leads in various indicators,
especially in the most challenging synchronous
failure scenarios. In synchronous fault 2, the

Table 3. Fault diagnosis performance analysis of each model under real system case

Failure mode Model Accuracy (%) Precision (%)  Recall (%)  Fl1-Score (%)
CNN-GRU 98.72 98.85 98.63 98.74
Normal mode CNN-Transformer 99.15 99.23 99.08 99.15
CNN-LSTM 99.36 99.41 99.32 99.36
CNN-GRU 98.45 98.32 98.61 98.46
Hydraulic oil gas mixing fault CNN-Transformer 98.93 98.87 99.02 98.94
CNN-LSTM 99.28 99.25 99.34 99.29
CNN-GRU 96.83 96.95 96.74 96.84
Actuator h?‘;ﬁ‘t‘“c leakage CNN-Transformer 97.52 97.68 97.41 97.54
CNN-LSTM 98.15 98.27 98.06 98.16
CNN-GRU 99.28 99.35 99.22 99.28
Hydraulic o leakage CNN-Transformer 99.51 99.58 99.45 99.51
CNN-LSTM 99.67 99.72 99.63 99.67
CNN-GRU 95.64 95.52 95.78 95.65
Synchronous fault 1 CNN-Transformer 96.88 96.75 97.03 96.89
CNN-LSTM 97.95 97.83 98.09 97.96
CNN-GRU 94.27 94.13 94.45 94.29
Synchronous fault 2 CNN-Transformer 95.86 95.72 96.03 95.87
CNN-LSTM 96.73 96.61 96.88 96.74
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accuracy of CNN-LSTM reached 96.73%, 0.87 and
2.46 percentage points higher than that of CNN-
Transformer and CNN-GRU respectively. In
relatively simple fault types such as hydraulic source
leakage, the three models can achieve excellent
performance of more than 99%, but CNN-LSTM
still maintains a weak advantage with an accuracy of
99.67%. It is worth noting that the accuracy of
98.15% of CNN-LSTM is significantly better than
that 0of 97.52% of CNN-Transformer in such medium
difficult faults as actuator hydraulic leakage, which
shows its special advantages in dealing with
complex fault modes. These results fully prove that
the CNN-LSTM architecture has the best robustness
and reliability in fault diagnosis of real flight control
systems.

The results of the CNN-LSTM model
architecture ablation experiment are shown in Table
4. As can be seen from the table, when the CNN or
LSTM modules are removed respectively, the model
performance drops significantly, with the accuracy
rates decreasing by 2.61% and 1.97% respectively.
Secondly, replacing the double-layer LSTM
structure with a single-layer LSTM led to a 1.28%
decrease in accuracy, verifying the necessity of
deeper temporal modeling for capturing complex
fault dynamics. Furthermore, reducing the number of
convolutional kernels in the CNN or removing the
Dropout layer both led to varying degrees of
performance degradation (by 0.54% and 0.73%
respectively), indicating that the model capacity and
regularization strategy we selected are effective and
moderate.

To ensure that the proposed fault diagnosis
model has the potential to be deployed on the
embedded flight control computer, the study
analyzed its computational complexity and real-time
performance. Flight control systems typically
require the completion of a control cycle within a
few milliseconds to tens of milliseconds, so the
reasoning time of the fault diagnosis algorithm must
be much shorter than this period. The research
transformed the model into the TensorFlow Lite
format and deployed it on an embedded development
board with an ARM Cortex-A53 CPU (simulating
the computing power level of a typical flight control
computer) for inference speed tests. The test results
are shown in Table 5. The test results show that the
CNN-LSTM model proposed in the study only
requires approximately 8.7ms in one forward
inference. Considering that the main cycle period of
a typical flight control system is usually between 20
and 50ms, this reasoning time fully meets the real-
time requirements, leaving sufficient time margin for
online fault diagnosis.

3.2. Performance analysis of prediction based on

MTL-LSTM

A significant advantage of multitasking mode is
the ability to perform iterative prediction. This
method is commonly used for processing time series
data, where each data point depends on the value of
the previous data point or points. The core of
iterative prediction lies in using historical data to
predict future data points, continuously updating the

Table 4. Results of the ablation experiment for the CNN-LSTM model architecture

Model variant Overall accuracy Overall F1- Gap with full model
rate (%) Score (%) accuracy

Complete CNN-LSTM model (benchmark) 99.49 99.48 -
Remove the CNN module (use only LSTM) 97.52 97.48 -1.97
Remove the LSTM module (use only CNN) 96.88 96.82 -2.61
Replace the doubI}eS %ﬁe(rlligzﬁt\:)nh a single-layer 9821 98.17 1.8
Reduce the number of CNN convolution kernels 98.95 98.93 0.54

(32—16)

Remove all Dropout layers 98.76 98.74 -0.73
Replace LSTM units with GRU units 99.02 99 -0.47

Table 5. Inference performance of the model on the embedded platform (Based on single inference,
input sequence length T=50)

CNN-

CNN-

Performance indicators LSTM Transformer CNN-GRU LSTM
Parameter quantity 185220 210580 168500 154300
Model file size 0.74 MB 0.84 MB 0.68 MB 0.62 MB

Single inference FLOPs 125M 151 M 10.8 M 9.5M
Reasoning time (mean 8.7 ms 11.2 ms 7.5 ms 6.8 ms
Peak memory usage (at runtime) ~2.1 MB ~2.5 MB ~1.8 MB ~1.6 MB
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Fig. 9. Iteration prediction results of MTL-LSTM pitch
angle

model with predicted values as new inputs to achieve
dynamic data prediction. Compared with fixed step
prediction, iterative method has stronger adaptability
and does not require training for each step. Figure 9
shows the results of iterative prediction of tilt angle
using MTL-LSTM model. The error of iterative
method is relatively large, because when the
prediction step size increases, the prediction error of
the last step will be carried over to the next step,
resulting in the accumulation of errors. As the
forecast step size increases, the forecast error will
also increase. However, iterative prediction only
requires training one model, thus having greater
flexibility, and at a certain level of accuracy, iterative
prediction is more realistic.

In the case of a single operating condition and
single failure mode, the average attention weight of
the model in the time dimension is shown in Figure
10. The model pays more attention to the data at the
end of the sequence, and the weights of each time
step have been increased compared to the FD0O1
data, with relatively reduced temporal differences.

0.20
0.15
£ o010
o
=
<
B W
0
0 5 10 15 20 25 30 35 40
Cycle
Fig. 10. Changes in attention weight of MTL-
LSTM model

In MTL, the importance of each task varies. In
the multi-variable state prediction of FCS, the role of
system key parameters is much greater than that of
non key parameters. Therefore, it becomes very
important to apply different penalty factors to
different flight missions. Punishment factors are
commonly used in optimization problems to adjust
the weights of different parameters or constraints,
thereby affecting the final optimization results. To
test the influence of penalty factors on forecast
accuracy, this study takes pitch angle as the main
parameter and analyzes other parameters as non
critical parameters. Assuming that the importance of
key parameters relative to non key parameters is
represented by the ratio of the two, the result of the
change in pitch angle error when the ratio changes is
shown in Figure 11. As the ratio increases, the
prediction error of pitch angle becomes smaller, and
as the weight increases, the decreasing trend also
becomes smaller and tends to stabilize.

0.0135

0.0125

0.0115

0.0105

0.0095

0.0085

Root mean square log error

0.0075
1 3 5 7 9

The ratio of penalty factors
Fig. 11. Variation trend of pitch angle error

The change curves of the LF and learning rate
on the two sets for the FD0O1 single working state
in the case of a single machine failure are shown in
Figure 12 (a). An engine is randomly selected from
the FDOO1 test set for complete testing, and the
results are shown in Figure 12 (b). On the 24
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engines in the FDOO1 dataset, the predicted values
are mostly smaller than the actual values, which can
provide early warning in the late stage of engine
operation and prevent accidents from occurring.
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(b) Prediction results of MTPL-LSTM
model
Fig. 12. Comparison of prediction of MTL-LSTM
model

4. DISCUSSION AND CONCLUSION

In response to the problem of traditional
intelligent diagnostic methods relying on signal
processing and fault diagnosis experience to extract
fault features and poor model generalization ability,
this study proposed to combine CNN algorithm with
LSTM based on DL theory. Aiming at the problem
of imbalanced dataset, model optimization
techniques like weighted LF, regularization, and
batch normalization were introduced to build an
MTL-LSTM model suitable for FCS fault diagnosis.
The model learned layer by layer from the state
parameters of real FCS to achieve feature extraction
and target classification. The results showed that the
proposed CNN-LSTM method had high accuracy in
four modes, with improvements of 1.80% and 0.99%
compared to CNN and LSTM. This method has been
used for fault diagnosis of FCS, with an accuracy
rate of 99.49%. It could accurately identify various
types of faults and had good application prospects.
The CNN-LSTM method yielded a large number of
feature expression clusters and could effectively
identify class surfaces, demonstrating strong feature
expression ability. Compared with FD0O1, the MTL-

LSTM model focused more on the data at the end of
the sequence, and the weights of each time step were
increased, while the time difference was
correspondingly reduced. The forecast results of this
model were mostly smaller than the measured
values, which could provide timely warnings in the
late stage of engine operation to prevent accidents
from occurring. The research model relies on
massive labeled data and lacks effective collection
and storage of FCS fault data, resulting in
insufficient research on FCS fault analysis. In the
future, it is necessary to further build a
comprehensive FCS fault database and conduct in-
depth research on failure mechanisms.
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