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Abstract 

Due to the structural characteristics of multi-redundancy and multi-closed loops in flight control systems, 

their fault propagation modes are complex, and the internal physical structure is closely coupled with system 

components, which poses challenges for analysis and modeling. To improve the accuracy and predictive ability 

of flight control system fault diagnosis, this study proposes a flight control system fault diagnosis method built 

on an improved bidirectional long short-term memory network. By integrating convolutional neural networks 

and bidirectional long short-term memory networks to extract local and temporal features of the data space, the 

classification and regression problems of flight control system state prediction have been solved. The results 

indicated that the proposed fault diagnosis algorithm had the highest recognition accuracy for the four modes. 

Compared with single convolutional neural networks and long short-term memory networks, the accuracy has 

increased by 2.11% and 1.32%, and the fault diagnosis accuracy has reached 99.49%, which could accurately 

identify various types of faults. The improved network proposed this time significantly improves the accuracy 

of flight control system fault diagnosis and reduces false alarm and missed alarm rates. 
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1. INTRODUCTION 

 

The Flight Control System (FCS) constitutes a 

vital component of contemporary civil aviation 

aircraft. It is responsible for controlling key 

parameters such as flight attitude, speed, and altitude 

of the aircraft, and uses flight control computers to 

issue control commands to various control surfaces, 

greatly improving the accuracy and reliability of 

control (1). To further enhance the reliability and 

safety of FCS, redundancy technology is often used 

to construct redundant FCS. Internal data exchange 

and voting mechanisms have been established 

between different flight control computers to 

significantly reduce system failure rates and ensure 

the safe operation of the aircraft (2-3). However, the 

application of this technology also brings challenges, 

especially in terms of the overall structure and 

control logic of the system. Due to the need to design 

and manage multiple backup components, the 

complexity of FCS significantly increases. This 

requires designers to carefully design the system 

architecture, ensure the coordinated work between 

various components, and be able to quickly switch to 
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the backup system in emergency situations, thereby 

avoiding safety issues caused by main system 

failures (4-5). There are two major problems with the 

existing health management methods for FCS: 

Firstly, the low accuracy of FCS operational status 

prediction leads to false alarms or omissions; 

Secondly, FCS involves multiple physical quantities 

and dynamic processes, and its predictive ability has 

significant uncertainty. During the operation of FCS, 

a massive amount of operational data is generated, 

and Deep Learning (DL) algorithms can process this 

large amount of data. By autonomously learning the 

feature information in the data, real-time monitoring 

and fault diagnosis of FCS machines can be 

achieved. 

By real-time monitoring and analysis of multiple 

monitoring parameters of aircraft FCS, advanced 

algorithms and models can be used to predict 

possible system failures and take measures in 

advance to ensure flight safety. Han et al. proposed 

a system that can identify incorrect configurations or 

unreasonable parameter combinations to improve 

the physical stability of drone flight. The system 

evaluated the fitness of configurations through 
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Machine Learning (ML), optimized parameter 

combinations using multi-objective optimization 

algorithms, and successfully identified potential 

erroneous configurations (6). Yuksek et al. proposed 

a Reinforcement Learning (RL)-based FCS to 

enhance the flight operation performance of closed-

loop reference model adaptive control systems. This 

method improved the transient response 

performance of all relevant indicators (7). Guo et al. 

proposed a health management system for FCS to 

achieve non-linear degradation signal extraction of 

FCS. It adopted a time-varying Markov auto-

regressive exogenous system with time delay to 

establish a system level degradation model for FCS, 

and detected FCS through health indicators. The 

method was found to successfully extract 

degradation information of FCS (8). Zhao et al. 

constructed a fault diagnosis deep residual 

convolution bidirectional Long Short-Term Memory 

(LSTM) attention network to achieve fixed time 

fault-tolerant control of hypersonic aircraft. The use 

of transfer learning techniques for fault diagnosis 

ensured the tracking performance of the system in 

the event of actuator damage (9). Kosova et al. 

designed a novel aircraft hydraulic system health 

monitoring system based on digital twins. Through 

the use of SVM and several ensemble learning 

algorithms (ML) for troubleshooting, the results 

showed that this method had high accuracy in early 

evaluation and diagnosis (10). 

DL and RL methods can autonomously gain 

experience and gradually optimize decision-making 

strategies through trial and error and reward and 

punishment mechanisms, possessing the ability to 

balance exploration and utilization, and have 

enormous application prospects in the aerospace 

field. Guo et al. proposed a data-driven 

comprehensive safety risk warning model based on 

DL to apply real-time data from aircraft rapid access 

recorders to safety monitoring, risk prediction, and 

early warning. This model combined the 

characteristics of aircraft system faults and adopted 

methods such as fault mode and effect analysis, 

cause chain analysis, and LSTM (11). Djalel et al. 

proposed a data-driven aircraft fault prediction 

method that describes the availability of data during 

the degradation process and solves the data scarcity 

problem in remaining useful life prediction through 

LSTM. This method could improve the prediction 

accuracy of LSTM technology (12). Sun et al. 

developed an improved risk assessment algorithm 

grounded on LSTM and autoencoder to address the 

issue of inability to identify the quality of risk level 

labels in the field of flight safety. This algorithm 

utilized the time series characteristics of flight data 

to achieve an accuracy of 86.45% and had good risk 

assessment capabilities (13). Yildirim et al. used 

LSTM architecture and engine sensor data to predict 

the remaining life of aircraft engines in order to 

achieve predictive maintenance of aircraft. The 

classification accuracy of the LSTM model reached 

98.916% (14). Bell et al. proposed a method 

combined with LSTM-DL autoencoder to improve 

the safety of unmanned aerial vehicles and reduce 

operating costs. This method used dynamic 

threshold algorithm and weighted Loss Function 

(LF) for anomaly detection in unmanned aerial 

vehicle datasets, with high accuracy and fast fault 

detection speed (15). 

In summary, in flight control environments, it 

often requires a significant amount of cost, 

simplicity, and the expenditure of a lot of manpower 

and resources. At the same time, in control systems, 

it is often not possible to directly use existing 

datasets for learning, and higher costs need to be paid 

to collect or construct datasets on their own. The 

application of deep RL in FCS often requires 

complex environments and unexpected situations. 

To ensure the operational efficiency and reliability 

of FCS, this paper proposes a fault prediction 

method on the basis of LSTM and Multi-Task 

Learning (MTL). Firstly, this study takes the 

historical data of FCS as the input of the model, and 

then extracts the temporal features through 

Convolutional Neural Networks (CNN). Finally, a 

neural network model combining LSTM and MTL is 

proposed to simultaneously solve the classification 

and regression problems of FCS state prediction. 

 

2. METHODS AND MATERIALS 

 

This study proposes an FCS fault diagnosis 

system based on deep RL. It uses LSTM as the 

shared layer for MTL load forecasting, simulates the 

coupling characteristics between multiple loads 

through the shared layer, and achieves the goal of 

improving prediction accuracy and reducing the 

incidence of accidents. 

 

2.1. FCS fault diagnosis based on CNN-LSTM 

LSTM is widely used to process time-series data. 

The unique structure of LSTM enables it to 

effectively capture and utilize long-term 

dependencies in sequences, resulting in significant 

achievements in tasks like Natural Language 

Processing (NLP), speech recognition, and time 

series analysis (16-17). In addition, the structure of 

LSTM allows the model to have depth, which means 

that more complex models can be constructed by 

stacking multiple LSTM layers, further improving 

the ability to handle complex tasks. The internal 

structure of the LSTM unit is shown in Figure 1. It 

introduces memory units and 3 "gate" structures 

(input gate, forget gate, and output gate) that control 

information flow, allowing the model to selectively 

remember or forget certain information, thereby 

better handling long-term dependency problems. 

LSTM generates a value of 𝑓𝑡 from 0 to 1 based 

on the previous output ℎ𝑡−1 and the current input 𝑥𝑡, 
to determine whether the information 𝐶𝑡−1  learned 

in the previous time was partially transmitted, as 

shown in equation (1). 

 𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 
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Fig. 1. LSTM internal structure 

 

In equation (1), 𝜎 denotes the sigmoid function. 

𝑊 and 𝑏 are corresponding weights and bias terms. 

Step 2 is to update and generate new message. 

Firstly, the "input gate" layer is updated using 

sigmoid. Secondly, a tanh layer is taken to generate 

novel candidate values 𝐶̃𝑡 and added to the cell state. 

Typically, the values obtained from these two parts 

are combined for updating, as shown in equation (2). 

 {
𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)
 (2) 

In equation (2), 𝑡𝑎𝑛ℎ is the function. The old cell 

state is updated by first multiplying it by 𝑓𝑡 to forget 

needless information, and then adding it to 𝑖𝑡𝐶̃𝑡  to 

gain candidate values. The fusion of one and 2 steps 

is the period of discarding unnecessary data and 

adding new detail, as given by equation (3). 

 𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̃𝑡 (3) 

Step 3 is to decide the model’s output, calculate 

the output of the model using sigmoid, scale the 

value of 𝐶𝑡  to between -1 and 1 using 𝑡𝑎𝑛ℎ , and 

multiply it pairwise with the output of sigmoid. 

Thus, the model’s output represented by equation (4) 

is obtained. 

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4) 

Finally, the cell 𝐶𝑡  value is updated using 

equation (5) to obtain the value of the next hidden 

layer. 

 ℎ𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ(𝐶𝑡) (5) 

According to different functions, FCS can be 

segmented into longitudinal control system and 

lateral control system. The former is mainly 

responsible for controlling the pitch motion of the 

aircraft, that is, the altitude and speed changes of the 

aircraft. This control is achieved by adjusting the 

aircraft's elevators and other control surfaces, 

ensuring the stability and controllability of the 

aircraft in the vertical direction. The latter is mainly 

responsible for controlling the rolling and yaw 

movements of the aircraft, that is, the direction 

control of the aircraft. It controls the direction of the 

aircraft by adjusting control surfaces such as 

ailerons, ensuring the stability and controllability of 

the aircraft in the horizontal direction. This study 

focuses on the servo control in the directional control 

pathway. The most critical and prone to failure link 

is the servo control unit performing closed-loop 

control according to the commands of the Actuator 

Control Electronics (ACE). Figure 2 is its control 

block diagram. 

In Figure 2, the system sends it to the 

Electrohydraulic Servo Valve (EHSV) located in the 

rudder Power Control Unit (PCU) through a set of 

proportional integral controllers and a set of rudder 

angle limiters. By driving the actuator through 

EHSV,  the  rudder  deflects,  achieving  control over 
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Fig. 2. B777 rudder control block diagram 
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Fig. 3. CNN-LSTM model structure 
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the rudder. In FCS fault diagnosis, there is a direct 

correlation between multiple monitoring parameters, 

which can fully utilize the CNN's ability to capture 

its spatial local features (18). Meanwhile, due to the 

temporal characteristics and continuity of the 

collected system parameters, LSTM can be used to 

describe them. Therefore, this study constructs a 

multi-modal deep neural network model based on 

CNN-LSTM to effectively extract local spatial and 

temporal sequences of data. Figure 3 shows the 

framework of CNN-LSTM. 

In order to achieve a balance between the feature 

extraction ability and model complexity of the CNN-

LSTM model. The convolutional layer part adopts a 

two-layer one-dimensional convolutional network. 

One-dimensional convolution is chosen for the local 

correlation of multi-sensor time series data in the 

time dimension. The first layer uses 64 × 3 

convolutional kernels to capture short-term and 

high-frequency transient features. The second layer 

uses a 128×5 convolution kernel to extract patterns 

on a slightly longer time scale. The LSTM layer part 

stacks two layers of LSTM, with the number of 

hidden units set to 128 and 64 respectively. The first-

layer LSTM requires sufficient capacity (128 units) 

to learn the complex temporal dynamic 

characteristics of the input features (from CNN). The 

second-level LSTM (64 units) is used to abstract 

higher-level time dependencies. 

Assuming 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑖 , … , 𝑙𝑛} ∈ 𝑅𝑚×𝑛  is a 

2D matrix with 𝑚 × 𝑛  dimensions, used to record 

the changes of 𝑛 state parameters 𝑙 at different time 

points 𝑚 . This data are input into the network 

through two channels, one above and one below. 

First, through the hierarchical structure and training 

process of CNN, spatial correlation features are 

extracted from the original input data. Finally, the 

extracted features are integrated and output as a fixed 

1 × 𝑛 -dimensional feature vector 𝐷𝑟 , as shown in 

equation (6). 

 𝐷𝑟 = [𝑑𝑟
1, 𝑑𝑟

2, … , 𝑑𝑟
𝑖 , … , 𝑑𝑟

𝑛] (6) 

In equation (6), after processing by CNN, the 

neuron (or filter) generates 𝑖 specific output feature 

𝑑𝑟
𝑖 . The input of LSTM is the transpose of the input 

data of the CNN layer. If the output dimension of the 

LSTM hidden layer is 𝑣 and a fixed sequence length 

is specified as 𝑚, then it is transformed into a 𝑚 × 𝑣 

-dimensional eigenvector 𝐾𝑐  through LSTM, as 

shown in (7). 

 𝐾𝑐 = [𝑘𝑐
1, 𝑘𝑐

2, … , 𝑘𝑐
𝑗
, … , 𝑘𝑐

𝑚] (7) 

In equation (7), 𝑘𝑐
𝑗
 is the hidden layer output of 

the 𝑗  -th time step of the LSTM. This study uses 

attention mechanism to fuse the features obtained by 

the two methods. Firstly, the spatial feature 𝐷𝑟  

extracted by CNN is used as a query vector, and the 

hidden layer output 𝑘𝑐
𝑗
 at each time step of LSTM is 

used as the key value and output value. The 

calculation of attention weights is based on equation 

(8). 

 𝛿(𝑘𝑐
𝑗
, 𝐷𝑟) = 𝑡𝑎𝑛ℎ(𝑘𝑐

𝑗
𝑊𝐷𝑟

𝑇 + 𝑏) (8) 

In equation (8), 𝑊  is the 𝑚 × 𝑛  -dimensional 

weight matrix and 𝑏  is the bias term. Both are 

obtained through learning during the training phase. 

𝐷𝑟
𝑇  is the transpose of 𝐷𝑟 , while equation (7) 

calculates the similarity function between the query 

vector and the key values. By using Softmax to 

standardize the attention weights, 𝛽𝑗  as shown in 

equation (9) is obtained. 

 𝛽𝑗 =
𝑒𝑥𝑝(𝛿(𝑘𝑐

𝑗
,𝐷𝑟))

∑ 𝑒𝑥𝑝(𝛿(𝑘𝑐
𝑖 ,𝐷𝑟))

𝑛
𝑖=1

 (9) 

Finally, based on the calculated attention 

weights, the original features are re-weighted to 

obtain a weighted feature table. The features in this 

table have been adjusted by the model based on their 

importance, which helps the model better understand 

and process input information, as shown in equation 

(10). 

 𝑓 = ∑ 𝛽𝑗𝑘𝑐
𝑗𝑛

𝑗=1  (10) 

This context vector will be passed on to the next 

stage of the model for further processing. Through 

this process, the model can dynamically adjust 

weights based on the significance of various parts of 

the input, thereby capturing key information more 

accurately. The CNN-LSTM model utilizes the 

spatial features extracted by CNN and the time series 

characteristics of LSTM to weight attention, thereby 

adjusting the weights of LSTM temporal features for 

specific time enhancements. This enables the model 

to have more complete feature representation 

capabilities. 

 

2.2. FCS state prediction based on MTL-LSTM 

The integrity of FCS will directly affect the 

safety and quality of flight. Therefore, real-time 

monitoring of FCS is essential to quickly switch to 

the backup system in case of FCS failure, ensuring 

flight safety. This study takes the pitch channel in 

FCS as an example and proposes a dual closed-loop 

control method, as shown in Figure 4. 
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Fig. 4. Pitch loop control system 
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In Figure 4, FCS consists of multiple control 

loops, such as altitude control, speed control, etc. 

The coupling between various control loops makes it 

impossible to accurately model them physically, and 

data-driven methods are needed to model them. This 

study constructs a state set 𝐻 = {ℎ1, ℎ2, … , ℎ𝑛} by 

selecting multiple state parameters related to the 

system. Then, using the predicted parameter ℎ𝑖  
obtained after 𝑦  time steps as the predicted value 

𝑠𝑖,𝑑 , a training set {𝐻, 𝑠𝑖,𝑑} is constructed, and the 

mapping relationship of 𝐻 → 𝑠𝑖,𝑑 is obtained during 

the training phase. 

Predicting the future state of a parameter based 

solely on its historical data does not fully consider 

the correlation between various parameters. 

Traditional prediction methods based on multiple 

parameters cannot effectively extract information 

from sequences, and due to the inability to obtain 

unpredictable future data, they cannot be applied to 

iterative prediction. Meanwhile, in engineering 

practice, it is often necessary to make predictions for 

multiple state parameters with common 

characteristics. In response to the above issues, this 

study introduces the idea of MTL in flight control 

multi-variable state prediction. MTL is a recursive 

migration mechanism. The core idea is to achieve 

parallel learning of multiple tasks with the same 

representation by mining the domain knowledge 

contained in multiple related tasks, in order to 

improve the generalization ability of the model. 

Figure 5 shows the state prediction process for 

multitasking. 

Single task learning refers to independently 

processing multiple prediction tasks in the same state 

set and mapping them separately. Due to the lack of 

correlation information with future state parameters, 

this method can only predict a certain moment at a 

certain time. When the step size is too large, its 

prediction accuracy is not high. The multitasking 

mode integrates multiple tasks from the same state 

set, sharing the weights of most models, thereby 

improving the learning efficiency of the entire model 

and overcoming the disadvantage of not being able 

to make iterative predictions (19). On this basis, this 

study proposes a multi-layer adaptive neural network 

model MTL-LSTM based on multi-layer neural 

networks, whose structure is shown in Figure 6.In 

Figure 6, the MTL-LSTM model uses two layers of 

LSTM as shared layers, and the number of hidden 

units is set to 100 for both. This is because the shared 

layer needs to have a sufficiently powerful 

representation  capability  to  learn  the  fundamental 
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Fig. 5. State prediction process of multiple tasks 
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Fig. 6. MTL-LSTM network structure 
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spatiotemporal features that are common to all tasks 

and related to the dynamic characteristics of the 

flight control system. Secondly, the two-layer 

structure is adopted to construct a deeper time series 

model, enabling it to learn multi-level dependencies 

from low-level temporal patterns to high-level 

temporal contexts. Each task-specific output layer is 

designed as a lightweight fully connected network, 

with its input being a 100-dimensional feature vector 

output by the shared layer, and the output dimension 

is determined by the specific prediction task. This 

design paradigm of "emphasizing sharing over 

tasks" effectively promotes knowledge transfer 

among tasks while avoiding overfitting for 

individual tasks. 

Each task shares 2 LSTMs, where 𝐿 =
{𝑙1, 𝑙2, … , 𝑙𝑡} ∈ 𝑅𝑛×𝑡  and 𝐻 = {ℎ1, ℎ2, … , ℎ𝑡} ∈
𝑅𝑡×𝑛 are inputs to the upper and lower LSTMs. 𝑙𝑖 is 

the state vector of the feature parameter set 𝐻 at time 

𝑖 . The relationship between 𝐿  and 𝐻  can be 

represented by equation (11). 

 𝐿 = 𝐻𝑇  (11) 

At each time point, the upper input 𝑙𝑖 is passed 

through an LSTM network with a 𝑚 -dimensional 

vector to obtain 𝑦𝑖
𝐿 , which is then output through the 

hidden layer at each time point as a 𝑚 × 𝑡  -

dimensional feature vector 𝑌𝐿 . The input data ℎ𝑗 on 

the lower side can obtain a 𝑐 × 𝑛  -dimensional 

feature vector 𝑌𝑅  through LSTM with an output 

dimension of 𝑐 in the hidden layer. The expressions 

for 𝑌𝐿  and 𝑌𝑅 are shown in equation (12). 

 {
𝑌𝐿 = [𝑦1

𝐿 , 𝑦2
𝐿 , … , 𝑦𝑡

𝐿]

𝑌𝑅 = [𝑦1
𝑅 , 𝑦2

𝑅 , … , 𝑦𝑛
𝑅]

 (12) 

Each task in MTL-LSTM has two attributes, 𝑌𝐿  

and 𝑌𝑅 , and attention mechanisms are established 

based on the impact of different time and feature 

parameters on each task, as shown in equation (13). 

 {

𝛼𝑧 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥(𝑊𝛼𝑌
𝐿 + 𝑏𝛼)

𝛽𝑧 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥(𝑊𝛽𝑌
𝑅 + 𝑏𝛽)

𝛾𝑧 = [∑ 𝛼𝑖
𝑘𝑦𝑖

𝐿𝑡
𝑖=1 , ∑ 𝛽𝑗

𝑘𝑦𝑗
𝑅𝑛

𝑗=1 ]
𝑇

 (13) 

In equation (13), 𝑧  refers to the 𝑧  -th task. 𝑊𝛼 

and 𝑊𝛽  are the weight matrices of 𝛼𝑧  and 𝛽𝑧 . 𝑏𝛼 

and 𝑏𝛽  are utilized to adjust the output of the 

activation function to minimize the LF. 𝛼𝑧  and 𝛽𝑧 

are the weight sets of different state parameters in the 

𝑧 -th task. In the LSTM model, the output vector of 

each time step goes through a fully connected layer, 

which is taken to weight and sum the output vectors 

of the time dimension and feature dimension to 

obtain the final output. Specifically, the output 

vector for each time step has a weight matrix. Each 

row of this matrix corresponds to a feature, and each 

column corresponds to a time step. By multiplying 

the output vectors 𝛾𝑧  of the time dimension and 

feature dimension by their respective weights, and 

then adding the results, the merged input data can be 

obtained. This process can be expressed 

mathematically as equation (14). 

 𝑠𝑧 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝛾𝑧 + 𝑏) (14)
 

In equation (14), 𝑊 and 𝑏 are the weight matrix 

and bias term. In practical applications, the 

prediction of key state parameters also involves 

more complex data analysis and model construction, 

requiring higher accuracy and real-time 

requirements. Therefore, the formula for 

constructing a weight LF for the entire network is 

shown in equation (15). 

 𝐿𝑜𝑠𝑠 = ∑
𝜆𝑧

𝑈

𝑛
𝑧=1 ∑ 𝑙𝑜𝑠𝑠(𝑠𝑢

𝑧 − 𝑠̂𝑢
𝑧)𝑈

𝑢=1  (15) 

In equation (15), 𝑠𝑢
𝑧  and 𝑠̂𝑢

𝑧  are the true and 

predicted values of the 𝑢 -th sample in the 𝑧 -th task. 

𝑙𝑜𝑠𝑠( ) is a function of mean square error. 𝑈 is the 

total number of samples taken. 𝜆𝑧  is a punitive 

factor. Among them, for the key state parameters 

expected to be predicted, the larger the penalty 

factor, the more severe the penalty when the 

prediction deviates. 

 

3. RESULTS 

 

This study selected three common faults for 

simulation and used them as the target of fault 

diagnosis to verify the performance of CNN-LSTM 

structure and MTL-LSTM, respectively. 

 

3.1. Performance analysis of fault diagnosis 

based on CNN-LSTM 

This study chose AMESim as the system model 

and sampled every 30 seconds at 100 Hz to obtain 

3,000 time points of sampling data. According to the 

above method, 11,408 samples were obtained from 

4 different models. Then, these samples were 

divided into 8,213 training datasets, 2,054 validation 

datasets, and 1,141 testing datasets. This study set up 

a software experimental environment of Python 3.5 

and Tensorflow 1.15.0 on a computer with hardware 

configuration of Intel(R) Core(TM) i5-3210M CPU 

@2.50GHz and 8GB memory. Finally, a CNN-

LSTM model was constructed using the Keras DL 

network framework. 

In order to verify the applicability of the model 

in complex fault scenarios and real systems, this 

study further designed synchronous fault mode 

experiments, and introduced the Boeing 777 rudder 

control system as a real case for analysis. The system 

structure of this case is complex, and the sensor and 

actuator are closely coupled, which has typical flight 

control system characteristics. The following two 

synchronous fault situations are simulated: 

synchronous fault 1: hydraulic source 

leakage+actuator hydraulic leakage; Synchronous 

fault 2: hydraulic oil air mixture+control surface 

control circuit intermittently fails. At the same time, 

the research has extracted real operation data 

containing multiple fault modes from a certain type 

of civil aviation flight data recorder, and constructed 

a real system data set containing 12000 groups of 

samples, covering normal state, single fault and 

synchronous fault. 

The loss curve and accuracy curve of CNN-

LSTM model on training set and test set are shown 
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in Figure 7 In Figure 7 (a), the absolute value of the 

slope of the loss curve of both training samples and 

verification samples is large and very smooth in the 

first 10 single training iterations, and basically keeps 

the horizontal synchronous change, which indicates 

that the model is converging rapidly: in the 10th to 

25th single training iteration interval, the absolute 

value of the slope of the loss curve of both training 

samples and verification samples gradually 

decreases and approaches 0, and the loss value of 

both training samples and verification samples 

decreases from 0.025 to about 0.010 after 15 single 

training iterations, indicating that the model is 

further learning and will complete convergence: the 

loss curve of both training samples and verification 

samples basically coincides in the last 5 single 

training iterations, the absolute value of the slope of 

the curve is infinitely close to 0, and the loss value 

will no longer change, indicating that the model has 

completed training and converged successfully. In 

Figure 7 (b), except for the first five single training 

iterations, the accuracy change curve of training 

samples and verification samples is very smooth, and 

there is no fluctuating broken line, indicating that the 

model is stable. 
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Fig. 7. Convergence performance analysis 

 

In order to further evaluate the stability and 

generalization ability of the proposed CNN-LSTM 

model and avoid the accidental impact of a single 

data partition on the performance evaluation, a 50 

fold cross validation was conducted. As shown in 

Table 1, the CNN-LSTM model shows a high degree 

of stability and robustness in the five fold cross 

validation. The accuracy of 50% verification has a 

very small fluctuation range, ranging from 99.35% 

to 99.63%, with an average accuracy of 99.50%. 

More importantly, the standard deviation of each 

performance index is very small, which indicates 

that the model is not sensitive to the division of 

different data subsets, and its excellent performance 

is not caused by specific training test set division. 

The results of cross validation strongly prove that the 

CNN-LSTM model has excellent and consistent 

generalization capability. The research takes 

accuracy as the evaluation criterion, conducts fault 

classification diagnosis experiments, and evaluates 

the performance of five methods: CNN, LSTM, 

CNN-GRU, CNN-Transformer, and CNN-LSTM. 

As shown in Table 2, CNN-LSTM ranks first with 

an overall accuracy rate of 99.49% and an overall F1 

score of 99.48%, significantly outperforming the 

existing baseline and frontier fusion architectures. 

Compared with traditional networks, the accuracy 

rate is 2.13 percentage points higher than that of 

CNN and 1.18 percentage points higher than that of 

LSTM. Compared with the fusion schemes of the 

same period, it leads CNN-GRU and CNN-

Transformer by 1.04 and 0.61 percentage points 

respectively. The fine-grained results show that this 

method achieves the best results in three out of the 

four types of faults: the recognition rate of hydraulic 

oil mixed gas faults is 99.21%, which is the highest 

in the entire field; The most challenging actuator 

hydraulic leakage task reached 98.42%, leading the 

suboptimal model by 1.35 percentage points. The 

leakage of the hydraulic source achieves 100% zero 

misjudgment. Although it is slightly lower than 

CNN-Transformer under normal working conditions 

(99.44% vs. 99.25%), the comprehensive spatio-

temporal feature extraction ability still maintains an 

absolute advantage, fully verifying the effectiveness 

and robustness of the CNN-LSTM collaborative 

architecture in the fault diagnosis of flight control 

systems. 

 

Table 1. Performance results of 5-fold cross-validation of the CNN-LSTM model 

Fold times Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

1 99.52 99.5 99.55 99.52 

2 99.41 99.38 99.45 99.41 

3 99.63 99.61 99.66 99.63 

4 99.35 99.32 99.39 99.35 

5 99.58 99.56 99.61 99.58 

Average value 99.5 99.47 99.53 99.5 

Standard deviation 0.11 0.12 0.1 0.11 
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Table 2. Fault diagnosis accuracy (%) 

Model 
Overall 

accuracy rate 

Overall F1-

Score 
Normal mode 

Hydraulic oil 

gas mixing 
fault 

Actuator 

hydraulic 
leakage fault 

Hydraulic 

source leakage 
fault 

CNN 97.36 97.30 97.82 99.03 97.46 95.12 

LSTM 98.31 98.28 98.63 97.44 97.48 97.52 

CNN-GRU 98.45 98.41 98.80 97.85 97.91 97.25 

CNN-Transformer 98.88 98.85 99.25 98.50 98.23 98.55 

CNN-LSTM 99.49 99.48 99.44 99.21 98.42 98.67 
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Fig. 8. Feature visualization 

 

This study uses the T-SEN (20) dimensionality 

reduction technique to perform wavelet-based 

feature dimensionality reduction on CNN-LSTM 

and Bior3.7, resulting in 128 connected levels of 

features and achieving feature visualization. Figure 

8 shows the visualization effect. Figure 8 (a) shows 

the wavelet transform characteristics after wavelet 

transformation. In the process of wavelet transform, 

there may be overlapping between sampling points, 

and it is difficult to determine the category surface. 

Figure 8 (b) is a visualization view of CNN-LSTM 

features. The features extracted by CNN-LSTM 

have significant clusters and can clearly determine 

the classification plane, once again demonstrating 

the powerful ability of the model in feature 

expression. 

Table 3 shows the diagnosis performance of 

CNN-GRU, CNN-Transformer and CNN-LSTM 

models under various fault modes in a real system 

case. Table 3 shows that in the real system case, the 

three models all show good fault diagnosis ability, 

but there are gradient differences in performance. 

CNN-LSTM consistently leads in various indicators, 

especially in the most challenging synchronous 

failure   scenarios.   In   synchronous   fault   2,   the 

 

Table 3. Fault diagnosis performance analysis of each model under real system case 

Failure mode Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Normal mode 

CNN-GRU 98.72 98.85 98.63 98.74 

CNN-Transformer 99.15 99.23 99.08 99.15 

CNN-LSTM 99.36 99.41 99.32 99.36 

Hydraulic oil gas mixing fault 

CNN-GRU 98.45 98.32 98.61 98.46 

CNN-Transformer 98.93 98.87 99.02 98.94 

CNN-LSTM 99.28 99.25 99.34 99.29 

Actuator hydraulic leakage 

fault 

CNN-GRU 96.83 96.95 96.74 96.84 

CNN-Transformer 97.52 97.68 97.41 97.54 

CNN-LSTM 98.15 98.27 98.06 98.16 

Hydraulic source leakage 

fault 

CNN-GRU 99.28 99.35 99.22 99.28 

CNN-Transformer 99.51 99.58 99.45 99.51 

CNN-LSTM 99.67 99.72 99.63 99.67 

Synchronous fault 1 

CNN-GRU 95.64 95.52 95.78 95.65 

CNN-Transformer 96.88 96.75 97.03 96.89 

CNN-LSTM 97.95 97.83 98.09 97.96 

Synchronous fault 2 

CNN-GRU 94.27 94.13 94.45 94.29 

CNN-Transformer 95.86 95.72 96.03 95.87 

CNN-LSTM 96.73 96.61 96.88 96.74 
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accuracy of CNN-LSTM reached 96.73%, 0.87 and 

2.46 percentage points higher than that of CNN-

Transformer and CNN-GRU respectively. In 

relatively simple fault types such as hydraulic source 

leakage, the three models can achieve excellent 

performance of more than 99%, but CNN-LSTM 

still maintains a weak advantage with an accuracy of 

99.67%. It is worth noting that the accuracy of 

98.15% of CNN-LSTM is significantly better than 

that of 97.52% of CNN-Transformer in such medium 

difficult faults as actuator hydraulic leakage, which 

shows its special advantages in dealing with 

complex fault modes. These results fully prove that 

the CNN-LSTM architecture has the best robustness 

and reliability in fault diagnosis of real flight control 

systems. 

The results of the CNN-LSTM model 

architecture ablation experiment are shown in Table 

4. As can be seen from the table, when the CNN or 

LSTM modules are removed respectively, the model 

performance drops significantly, with the accuracy 

rates decreasing by 2.61% and 1.97% respectively. 

Secondly, replacing the double-layer LSTM 

structure with a single-layer LSTM led to a 1.28% 

decrease in accuracy, verifying the necessity of 

deeper temporal modeling for capturing complex 

fault dynamics. Furthermore, reducing the number of 

convolutional kernels in the CNN or removing the 

Dropout layer both led to varying degrees of 

performance degradation (by 0.54% and 0.73% 

respectively), indicating that the model capacity and 

regularization strategy we selected are effective and 

moderate. 

To ensure that the proposed fault diagnosis 

model has the potential to be deployed on the 

embedded flight control computer, the study 

analyzed its computational complexity and real-time 

performance. Flight control systems typically 

require the completion of a control cycle within a 

few milliseconds to tens of milliseconds, so the 

reasoning time of the fault diagnosis algorithm must 

be much shorter than this period. The research 

transformed the model into the TensorFlow Lite 

format and deployed it on an embedded development 

board with an ARM Cortex-A53 CPU (simulating 

the computing power level of a typical flight control 

computer) for inference speed tests. The test results 

are shown in Table 5. The test results show that the 

CNN-LSTM model proposed in the study only 

requires approximately 8.7ms in one forward 

inference. Considering that the main cycle period of 

a typical flight control system is usually between 20 

and 50ms, this reasoning time fully meets the real-

time requirements, leaving sufficient time margin for 

online fault diagnosis.  

 

3.2. Performance analysis of prediction based on 

MTL-LSTM 

A significant advantage of multitasking mode is 

the ability to perform iterative prediction. This  

method is commonly used for processing time series 

data, where each data point depends on the value of 

the previous data point or points. The core of 

iterative prediction lies in using historical data to 

predict future data points, continuously updating the

 

Table 4. Results of the ablation experiment for the CNN-LSTM model architecture 

Model variant 
Overall accuracy 

rate (%) 

Overall F1-

Score (%) 

Gap with full model 

accuracy 

Complete CNN-LSTM model (benchmark) 99.49 99.48 - 

Remove the CNN module (use only LSTM) 97.52 97.48 -1.97 

Remove the LSTM module (use only CNN) 96.88 96.82 -2.61 

Replace the double-layer LSTM with a single-layer 

LSTM (128 units) 
98.21 98.17 -1.28 

Reduce the number of CNN convolution kernels 

(32→16) 
98.95 98.93 -0.54 

Remove all Dropout layers 98.76 98.74 -0.73 

Replace LSTM units with GRU units 99.02 99 -0.47 
 

 

 

Table 5. Inference performance of the model on the embedded platform (Based on single inference, 

input sequence length T=50) 

Performance indicators 
CNN-

LSTM 

CNN-

Transformer 
CNN-GRU LSTM 

Parameter quantity 185220 210580 168500 154300 

Model file size 0.74 MB 0.84 MB 0.68 MB 0.62 MB 

Single inference FLOPs 12.5 M 15.1 M 10.8 M 9.5 M 

Reasoning time (mean 8.7 ms 11.2 ms 7.5 ms 6.8 ms 

Peak memory usage (at runtime) ~2.1 MB ~2.5 MB ~1.8 MB ~1.6 MB 
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Fig. 9. Iteration prediction results of MTL-LSTM pitch 

angle 

 

model with predicted values as new inputs to achieve 

dynamic data prediction. Compared with fixed step 

prediction, iterative method has stronger adaptability 

and does not require training for each step. Figure 9 

shows the results of iterative prediction of tilt angle 

using MTL-LSTM model. The error of iterative 

method is relatively large, because when the 

prediction step size increases, the prediction error of 

the last step will be carried over to the next step, 

resulting in the accumulation of errors. As the 

forecast step size increases, the forecast error will 

also increase. However, iterative prediction only 

requires training one model, thus having greater 

flexibility, and at a certain level of accuracy, iterative 

prediction is more realistic. 

In the case of a single operating condition and 

single failure mode, the average attention weight of 

the model in the time dimension is shown in Figure 

10. The model pays more attention to the data at the 

end of the sequence, and the weights of each time 

step have been increased compared to the FD001 

data, with relatively reduced temporal differences. 
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In MTL, the importance of each task varies. In 

the multi-variable state prediction of FCS, the role of 

system key parameters is much greater than that of 

non key parameters. Therefore, it becomes very 

important to apply different penalty factors to 

different flight missions. Punishment factors are 

commonly used in optimization problems to adjust 

the weights of different parameters or constraints, 

thereby affecting the final optimization results. To 

test the influence of penalty factors on forecast 

accuracy, this study takes pitch angle as the main 

parameter and analyzes other parameters as non 

critical parameters. Assuming that the importance of 

key parameters relative to non key parameters is 

represented by the ratio of the two, the result of the 

change in pitch angle error when the ratio changes is 

shown in Figure 11. As the ratio increases, the 

prediction error of pitch angle becomes smaller, and 

as the weight increases, the decreasing trend also 

becomes smaller and tends to stabilize. 
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The change curves of the LF and learning rate 

on the two sets for the FD001 single working state 

in the case of a single machine failure are shown in 

Figure 12 (a). An engine is randomly selected from 

the FD001 test set for complete testing, and the 

results are shown in Figure 12 (b). On the 24 



DIAGNOSTYKA, Vol. 26, No. 4 (2025)  

He D, Fan L, Xu L. Data mining and analysis of flight control system based on temporal features and… 

11 

engines in the FD001 dataset, the predicted values 

are mostly smaller than the actual values, which can 

provide early warning in the late stage of engine 

operation and prevent accidents from occurring. 

0

0.005

0.010

0.015

0.020

1 3 5 7 9 11 13

0

20

40

60

80

0 20 40 60 80 100

100

120

120 140 160

Learning rate

Val_loss

Loss

Predicted value

True value

Iteration Cycle

L
o

ss
 a

n
d
 L

ea
rn

in
g

 r
at

e

R
U

L
(a) Change curve of loss and learning 

rate of MTL-LSTM model

(b) Prediction results of MTPL-LSTM 

model 
 

0

0.005

0.010

0.015

0.020

1 3 5 7 9 11 13

0

20

40

60

80

0 20 40 60 80 100

100

120

120 140 160

Learning rate

Val_loss

Loss

Predicted value

True value

Iteration Cycle

L
o

ss
 a

n
d 

L
ea

rn
in

g
 r

at
e

R
U

L

(a) Change curve of loss and learning 

rate of MTL-LSTM model

(b) Prediction results of MTPL-LSTM 

model

Fig. 12. Comparison of prediction of MTL-LSTM 

model 

 

4. DISCUSSION AND CONCLUSION 

 

In response to the problem of traditional 

intelligent diagnostic methods relying on signal 

processing and fault diagnosis experience to extract 

fault features and poor model generalization ability, 

this study proposed to combine CNN algorithm with 

LSTM based on DL theory. Aiming at the problem 

of imbalanced dataset, model optimization 

techniques like weighted LF, regularization, and 

batch normalization were introduced to build an 

MTL-LSTM model suitable for FCS fault diagnosis. 

The model learned layer by layer from the state 

parameters of real FCS to achieve feature extraction 

and target classification. The results showed that the 

proposed CNN-LSTM method had high accuracy in 

four modes, with improvements of 1.80% and 0.99% 

compared to CNN and LSTM. This method has been 

used for fault diagnosis of FCS, with an accuracy 

rate of 99.49%. It could accurately identify various 

types of faults and had good application prospects. 

The CNN-LSTM method yielded a large number of 

feature expression clusters and could effectively 

identify class surfaces, demonstrating strong feature 

expression ability. Compared with FD001, the MTL-

LSTM model focused more on the data at the end of 

the sequence, and the weights of each time step were 

increased, while the time difference was 

correspondingly reduced. The forecast results of this 

model were mostly smaller than the measured 

values, which could provide timely warnings in the 

late stage of engine operation to prevent accidents 

from occurring. The research model relies on 

massive labeled data and lacks effective collection 

and storage of FCS fault data, resulting in 

insufficient research on FCS fault analysis. In the 

future, it is necessary to further build a 

comprehensive FCS fault database and conduct in-

depth research on failure mechanisms. 
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