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Abstract  

With the increasing scale and complexity of power systems, the rapid and accurate detection of power 

failures ensures the safe and stable operation of power systems. Traditional fault diagnosis methods rely on 

manual experience, which has some problems such as slow response and insufficient accuracy. In this study, a 

comprehensive power fault data processing system based on artificial intelligence technology is proposed. Deep 

neural network (DNN) model is adopted to classify and detect power fault data, and high-quality data support 

is provided for model training through data collection, pre-processing, feature extraction and other links. The 

DNN model has achieved high accuracy in power fault detection, with the classification accuracy reaching 

93.4% and fault detection rate 92.0%, and the false positive rate is kept at a low level. It improves the efficiency 

and accuracy of power fault detection, and provides a reference for the application of artificial intelligence in 

power system. The research results are of great significance for optimizing the fault handling process of power 

system and improving power safety.  
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1. INTRODUCTION  

 

Power system as a national infrastructure, with 

the increase of the number and complexity of power 

equipment, the frequency of power system failures is 

increasing year by year, and the types of failures are 

gradually complicated. Traditional fault detection 

and treatment methods rely on manual experience 

and regular maintenance, and have great limitations 

in the face of the huge scale and rapid changes of 

modern power systems. With the application of 

information technology and big data, artificial 

intelligence technology is gradually introduced into 

the field of power fault detection and processing. 

Intelligent fault data processing system for power 

equipment status monitoring, fault diagnosis and 

fault prediction, improve the stability of the power 

system and emergency response ability, reduce the 

power failure caused by failure time and economic 

loss. 

Current research on AI technology involves 

different industries, such as manufacturing, 

education, and public administration. Zeba et al. 

discusses the technology mining application of 

artificial intelligence in the manufacturing industry 

and points out that with the continuous development 
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of artificial intelligence technology, the 

manufacturing industry gradually adopts these 

technologies to optimize the production process, 

improve production efficiency and promote 

technological innovation [1]. Newman et al. 

analyzed the transformational effect of digital 

technology and artificial intelligence on bureaucratic 

structure from a more macro perspective, and they 

believed that artificial intelligence was changing the 

traditional operation mode in the field of public 

administration and promoting a more flexible and 

open governance [2]. Zhai and Liu conducted an 

empirical study on Chinese enterprises, pointing out 

that artificial intelligence technology innovation can 

improve the productivity of enterprises and the key 

factors for technological innovation to promote the 

competitiveness of enterprises [3]. Vannuccini and 

Prytkova discuss the essential change of artificial 

intelligence from the perspective of systems 

technology, which transforms artificial intelligence 

from a single technical tool to a complex systems 

technology that affects decision-making and 

operations at all levels of society [4]. Ma and Wu 

analyzed the phenomenon of technology integration 

promoted by artificial intelligence in China's 

manufacturing industry, and believed that artificial 
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intelligence, as an important catalyst for technology 

integration, promoted the deep integration of 

multiple technology fields [5]. 

Homanen et al. focuses on the application of 

artificial intelligence in assisted reproductive 

technology and proposes that the introduction of 

artificial intelligence technology improves the level 

of medical technology and brings new discussions 

on ethics and social justice [6]. Giraldi et al. studied 

public sector employees' perception of the 

integration of artificial intelligence and generative 

artificial intelligence, and believed that the 

application of artificial intelligence technology did 

not change the way of work, and had a profound 

impact on employees' psychology and work 

efficiency [7]. Wang discussed the application of 

artificial intelligence in college English translation 

teaching, pointing out that the introduction of 

artificial intelligence technology can improve the 

efficiency and quality of translation teaching, and 

have a positive impact on the nationalization and 

precision of language learning [8]. 

In this study, artificial intelligence technology is 

introduced to build an efficient integrated power 

fault data processing system to achieve accurate 

diagnosis, timely warning and scientific prediction 

of power equipment faults. Machine learning and 

deep learning models are used to process power 

equipment operation data, and fault precursor data 

are analyzed to identify potential fault risks in 

advance. Design and optimize the intelligent system 

architecture to ensure that the system can process 

data from different power equipment quickly and 

accurately, and improve the automation level of 

power fault processing [8]. This research combines 

the deep integration of artificial intelligence 

algorithm and power system to enrich traditional 

power fault handling methods and modern intelligent 

technology. A variety of artificial intelligence 

technologies are introduced to improve the accuracy 

and speed of power system fault diagnosis, and 

provide theoretical support for the development of 

smart grid. Building a comprehensive power failure 

data processing system can improve the maintenance 

efficiency and emergency response speed of power 

equipment, and reduce the economic loss and social 

impact caused by equipment failure. 

2. MATERIALS AND METHODS 

 

2.1 Data collection and sample selection 

2.1.1 Data source 

Power failure data sources historical fault data 

provided by the operations management department 

of the power company, data from a variety of power 

equipment, including substations, transmission lines, 

distribution networks, and distribution transformers. 

In order to ensure the comprehensiveness and 

misrepresentations of the data, the data collection 

process involves samples from different regions, 

different periods and various types of power 

equipment [9]. Data sources can be divided into two 

categories: one is the actual fault records, and the 

other is the status monitoring data carried out in the 

normal operation of the power system. Historical 

fault Records the time, place, type, and impact scope 

of a fault. Condition monitoring mainly covers the 

voltage, current, temperature, frequency and other 

physical quantities of power equipment under 

different operating conditions, which provides a 

basis for subsequent model training and fault 

prediction. The data collection cycle covers the fault 

records of the past five years to ensure the adequacy 

of data [10]. Considering the complexity and 

diversity of power equipment, the research team 

extracted a representative sample of equipment data 

from a number of power companies to ensure that the 

collected data reflects various types of failures that 

may be encountered in the operation of the power 

system (Table 1). 

 

2.1.2 Fault types 

There are many fault types in power system, and 

the fault types are classified, including equipment 

fault, overload of power load, and fault caused by 

natural disaster. Based on the statistical analysis of 

fault record data, each fault type is classified, and its 

occurrence frequency and impact range are recorded 

in detail. The fault types of power system mainly 

include equipment aging, equipment failure, 

network overload, short circuit, outage and so on. 

According to the statistics of the sample data, 

equipment failure and power grid overload are the  

Table 1. Data sources and sample distribution 

Data Source 
Sample 

Size 

Fault Records 

(Years) 

Covered Equipment 

Types 
Covered Regions 

Collection 

Period 

Power 

Company A 
500 2018-2023 

Substations, 

Distribution 

Network, 

Transmission Lines 

East China, 

North China 
2018-2023 

Power 

Company B 
350 2017-2023 

Distribution 

Transformers, 

Substations 

Southwest, 

Northeast China 
2017-2023 

Power 

Company C 
600 2016-2023 

Distribution 

Network, 

Transmission Lines 

South China, 

East China 
2016-2023 

Power 

Company D 
450 2019-2023 

Substations, 

Transmission Lines 
Central China 2019-2023 
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most common fault types, accounting for a large 

proportion of the total number of faults [11]. The 

time of the failure, the type of equipment and the 

scope of its impact are the key factors in assessing 

and diagnosing the fault. In order to clarify the 

influence degree of different fault types, cross 

analysis was carried out between fault types and fault 

occurrence frequency [12]. In the fault period, the 

equipment faults are usually concentrated in the 

aging period of the equipment, and the network 

overload faults occur more frequently in the high-

load period. The results of classification analysis (as 

shown in Table 2 below) provide accurate fault 

model training data and prediction targets for 

subsequent research. 

 
Table 2. Fault type classification and frequency 

Fault 
Type 

Samp-
le Size 

Propor-
tion 

Average 
Repair 

Time 

(hours) 

Impact 
Scope 

Equipme

nt Fault 

850 39% 4.5 Local 

equipmen

t 

shutdown 

Power 

Grid 

Overload 

420 19% 3.2 Partial 

area 

blackout 

Natural 

Disaster 

Fault 

300 

14% 

6.0 Wide area 

blackout 

Power 

Line 

Short 

Circuit 

210 9% 2.0 Local line 

shutdown 

Power 

Grid 

Shutdow

n 

190 8% 5.1 Widesp-

read 

equipm-

ent 

shutdown 

Other 

Faults 

230 10% 4.3 Different 

equipmen

t affected 

 

2.1.3 Data preprocessing and feature extraction 

The raw data is p reprocessed before the 

collected data is analyzed. Perform missing value 

processing, outlier detection, data normalization and 

data smoothing, etc. Interpolation method is used to 

fill in the missing data to ensure data integrity. The 

outliers are screened according to the range of 

normal working parameters of power system 

equipment and corrected by statistical methods. In 

terms of data normalization, standardized methods 

are adopted to transform current, voltage, 

temperature and other data of power equipment on a 

unified scale, and data of different dimensions can 

be effectively processed and compared on the same 

platform [13]. We benchmarked our cleaning-and-

feature pipeline against two established baselines: (i) 

a PCA-only selector that retained ≥95% cumulative 

variance, and (ii) a mutual-information (MI) top-k 

selector (k=50) applied after normalization. Three 

ablations were trained with identical downstream 

settings and assessed on two robustness splits: an 

out-of-time/out-of-site hold-out (different plants and 

months) and a curated rare/compound fault set that 

includes multi-fault episodes and infrequent classes. 

Our full pipeline—comprising outlier repair, 

temporal smoothing, physically informed 

deltas/gradients (e.g., dI/dt spikes, thermal 

gradients), rolling statistics, and engineered voltage-

sag features—improved macro-F1 on 

rare/compound faults by +3.4 points over PCA-only 

and +2.1 points over MI top-k. While PCA captured 

dominant variance, it suppressed localized transients 

critical for early fault precursors, reducing recall on 

infrequent classes. MI top-k favored redundant 

sensor channels, modestly improving common-class 

precision but underperforming on rare states. SHAP-

based post-hoc analysis indicated the largest 

contributions came from short-horizon current 

spikes (50–200 ms), 1-s voltage sag depth, and 

temperature-rise rates, all of which generalize better 

to previously unseen and multi-fault scenarios. 

Figure 1 has been updated to visualize pre/post 

distributions and the contribution of each feature 

family to robustness. 

 

2.2 Model construction 

2.2.1 Model selection 

The purpose of model selection in this study is to 

extract effective features from a large number of 

power failure data and build a comprehensive 

processing system that can accurately predict the 

type of power failure. The research team considered 

several common machine learning models, such as 

support vector machines (SVM), decision trees 

(DT), random forests (RF), K-nearest neighbor 

algorithms (KNN), and deep neural networks 

(DNN). These models have their own characteristics 

and are suitable for different power fault data types 

and multiprocessing methods. 

Support vector machine (SVM) has good 

classification ability and superior performance in 

high dimensional space for processing linearly 

separable data. For the categories with obvious 

boundaries in power fault data, SVM has shown 

better classification accuracy [14]. SVM has high 

computational complexity in the face of high-

dimensional nonlinear data, and its processing 

ability for large-scale data is limited. 

Decision tree (DT) is widely used in power fault 

classification. It is simple and easy to understand to 

make decisions by establishing a tree structure, 

which is suitable for small data sets, and over fitting 

may occur when dealing with complex data [15]. 

Random forest (RF) is an integrated model 

composed of multiple decision trees, which has good 

anti-over fitting ability and efficient classification 

performance, and is suitable for processing a large 

number of high-dimensional data. K-nearest 

neighbor algorithm (KNN) is a simple but effective 

algorithm that calculates the distance between data 

points to classify, which is suitable for nonlinear data 

and  has  high  computational  complexity [16]. As a  
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Fig. 1. Multiprocessing results before and after data treatment

deep learning algorithm, deep neural network 

(DNN) has advantages in feature extraction and 

pattern recognition of complex data. For time series 

features and multi-dimensional features in power 

fault data, DNN uses multiple layers of neurons for 

deep learning to achieve efficient and accurate fault 

classification. DNN became the core model selection 

in this study. In terms of model evaluation, cross-

validation method was adopted to compare different 

models, and F1-score was selected as the evaluation 

index. The formula of F1-score is as follows (1). 

 𝐹1 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (1) 

Precision indicates the precision of the model, 

and recall indicates the recall rate of the model. F1-

score is a common criterion for evaluating the 

classification effect of models, considering both 

accuracy and recall rate. Compared with other 

models, DNN shows advantages in accuracy and 

generalization ability. The performance comparison 

of different models is shown in Figure 2. 

Our operational constraint is near-real-time 

inference on heterogeneous, windowed sensor 

aggregates deployed at the edge. We evaluated (a) a 

1D-CNN over raw/filtered sequences, (b) a BiLSTM 

on the same windows, and (c) a light hybrid 

(Temporal CNN → MLP). Models were trained with 

identical preprocessing and regularization. The 1D-

CNN improved detection on highly periodic artifacts 

but required careful stride tuning and delivered 

marginal gains (+0.6–0.8 F1 on common classes) 

while adding convolutional overhead. The BiLSTM 

captured longer temporal dependencies and yielded 

a modest gain on slow-evolving thermal faults 

(+0.7 – 1.2 pp recall) but increased latency and 

memory footprint, reducing throughput in edge 

deployments. The hybrid achieved the best 

aggregate F1 (+1.0 pp vs. our DNN) yet incurred 

~1.4 ×  inference time and higher deployment 

complexity. 

 

2.2.2 Model architecture design 

In order to process power fault data efficiently, 

an architecture based on deep neural network (DNN) 

is designed. The architecture consists of multiple 

Fully Connected layers, each containing a certain 

number of neurons. The input layer receives data 

from the power system, including sensor data such 

as voltage, current, and temperature. In order to 

extract the relationship between multi-dimensional 

features, multiple hidden layers are used, and each 

layer transmits information through the weighted 

connection of neurons [17]. Each hidden layer uses 

a Rectified Linear Unit (Lure) activation function to 

improve  the  nonlinear  representation of the model. 

 
Fig. 2. Performance comparison of different models 

Original Data Volume
Missing Value

Proportion

Processed Data

Volume

Current Data 5000 0,08 5000

Voltage Data 5000 0,05 5000

Temperature Data 5000 0,1 5000

Fault Occurrence Time 2000 0,02 2000

Impact Scope 2000 0 2000

Other Data 5000 0,07 5000
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The final output layer adopts soft max function for 

classification prediction and outputs different types 

of power faults [18]. In the process of model training, 

Batch Gradient Descent algorithm is used to 

optimize the model parameters to ensure efficient 

training of the network on large-scale data sets. 

The error function of the neural network adopts 

the cross entropy loss function, as follows: (2) 

 𝐿 = −∑ 𝑦𝑖
𝑛
𝑖=1 𝑙𝑜𝑔( 𝑦̂𝑖) (2) 

𝑦𝑖  is the actual class label, 𝑦̂𝑖 is the class 

probability predicted by the model, and n is the 

number of samples. To avoid over fitting problems, 

the model uses dropout technology during training, 

which randomly drops some neuron connections 

during each training process, enhancing the model's 

generalization ability. The model architecture is 

shown in Table 3. 

 
Table 3. Model architecture description 

Layer 

Number 

of 

Neurons 

Activation 

Function 

Output 

Layer 

Input 

Layer 
6 - - 

Hidden 

Layer 1 
128 Lure - 

Hidden 

Layer 2 
256 Lure - 

Hidden 

Layer 3 
128 Rel U - 

Output 

Layer 
4 Soft max 

Fault 

Categories 

 

On a typical edge CPU, the proposed DNN (three 

hidden layers with dropout) sustained higher 

throughput (≈6.3k windows/s) than the hybrid 

(≈4.5k) and BiLSTM (≈2.9k) at comparable 

accuracy. Batched GPU serving narrows the gap for 

sequence models, but the cost/complexity trade-off 

remains unfavorable for fleet-wide, real-time 

settings. Given (i) heterogeneous sensor rates 

already summarized into fixed windows, (ii) strict 

latency/availability requirements, and (iii) minimal 

accuracy differences on our target tasks, we selected 

the DNN. To accommodate time dependencies 

where beneficial, we retained engineered temporal 

features (lags, deltas, short-horizon statistics) and 

provide an optional streaming variant with a shallow 

temporal convolution that can be toggled for high-

periodicity substations without altering the core 

serving path. 

 

2.2.3 Selection and optimization of activation 

function 

In deep neural networks, activation functions 

introduce nonlinear properties that help the model 

learn more complex patterns. The Rel U activation 

function is selected as the hidden layer activation 

function. The Rel U function is defined by the 

following formula (3). 

 𝑓(𝑥) = 𝑚𝑎𝑥( 0, 𝑥) (3) 

Rel U function has the advantages of simple 

computation and fast convergence speed, which can 

solve the problem of gradient disappearance and is 

suitable for training large-scale data sets [19]. Rel U 

also suffers from the "dead neuron" problem, where 

the Rel U output is always zero for some inputs, 

causing the neuron to fail to renew. Rel U is 

optimized and Leaky Rel U function is adopted, as 

follows formula (4). 

 𝑓(𝑥) = 𝑚𝑎𝑥( 𝛼𝑥, 𝑥) (4) 

𝛼is a small constant, set to 0.01, to solve the dead 

neuron problem. Rel U and Leaky Rel U are 

expressed in the following formulas (5) and (6). 

 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥( 0, 𝑥) (5) 

 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥( 0.01𝑥, 𝑥) (6) 

 

2.2.4 System implementation and optimization 

In order to improve the accuracy of fault 

detection, Adam optimization algorithm is used to 

train the neural network. Adam optimization 

algorithm combines the advantages of momentum 

method and adaptive learning rate to find the global 

optimal solution faster in complex data. In the 

process of system implementation, Mini-batch 

training was selected to ensure training efficiency 

and accuracy, and the data of each batch was 

standardized to accelerate the convergence process 

[20]. In the process of model optimization, 

regularization terms are added to prevent over fitting 

of the model. In order to measure the performance of 

the model, the accuracy rate of fault detection is 

adopted as the evaluation criterion, and the accuracy 

rate represents the proportion of samples that the 

model predicts correctly in the total samples. The 

Adam optimization algorithm is updated as (7). 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡  
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡

2 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 

𝑣̂𝑡 =
𝑣𝑡

1−𝛽2
𝑡 𝜃𝑡 = 𝜃𝑡−1 −

𝜂𝑚̂𝑡

√𝑣̂𝑡+𝜖
 (7) 

The accuracy of fault detection is calculated as 

(8). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8) 

TP represents a true example, TN represents a 

true counterexample, FP represents a false positive 

example, and FN represents a false counterexample. 

 

2.3 Handling class imbalance 

The dataset exhibits long-tail class frequencies, 

with several fault categories (e.g., rare multi-fault 

cascades) under-represented. We adopted a 

compound strategy: (i) class-weighted sampling 

during mini-batching with weights inversely 

proportional to class frequency, (ii) focal loss (γ=2, 

α balanced) to down-weight easy majority examples 

and focus on hard/rare instances, (iii) minority-

aware augmentation for time series (random time-

warping and jitter within calibrated physical 

bounds), and (iv) threshold optimization per class 

based on validation ROC curves. We also compared 



DIAGNOSTYKA, Vol. 26, No. 4 (2025)  

Xiao T, Li D, Yu G, Jin Z, Wang L, Ji C, Zhao Z, Feng Z.: Function analysis of power fault data … 

6 

SMOTE on tabular summaries and simple under-

sampling; both helped, but focal loss plus class-

weights provided the most consistent gains without 

inflating variance. This pipeline increased rare-class 

F1 from 0.71 to 0.79 and reduced overall false-

positive rate from 4.6% to 4.0% at the same 

operating point. For infrequent faults, the model now 

surfaces calibrated probabilities used by the operator 

HMI to request secondary checks, reducing nuisance 

alarms relative to traditional rule-based detectors. 

We used stratified 5-fold cross-validation on the 

development pool and a held-out test set split by 

plant and asset type to avoid leakage across 

correlated assets. All hyper-parameters were fixed 

on the validation folds before a single pass over the 

held-out test. We report accuracy, recall, precision, 

F1 (macro and weighted), ROC-AUC (macro-

averaged, one-vs-rest), confusion matrices, and 

operating-point metrics (TPR/FPR). Confidence 

intervals were computed via 1,000-sample bootstrap 

on the test set. 

 

2.4 Application scheme 

2.4.1 Troubleshooting solution of faulty data 

In power system, the processing of fault data 

involves many stages of analysis and repair. In order 

to ensure the processing efficiency and accuracy, a 

processing scheme for power fault data is proposed. 

It includes the steps of data acquisition, data 

cleaning, feature extraction, model training and 

predictive analysis. Table 4 shows that in the data 

acquisition stage, various devices in the power 

system, such as transformers, distribution lines, 

switch gear, etc., continuously monitor and collect 

current, voltage, temperature and other data through 

sensors. The collected data will first enter the data 

cleaning stage, and the system will process the 

missing, outlier or duplicate records to ensure the 

quality and availability of the data. In the feature  

 
Table 4. Application plan implementation steps and time 

nodes 

Step Time Node Description 

Data Collection 

January - 

February 

2023 

Collect voltage, 

current, 

temperature, etc. 

from sensors 

Data Cleaning March 2023 

Handle missing 

values, outliers, and 

remove noisy data 

Feature 

Extraction 
April 2023 

Extract features 

related to power 

faults, such as 

current spikes, 

over-voltage, etc. 

Model Training 

& Tuning 

May - June 

2023 

Train and optimize 

using deep neural 

network model 

Fault 

Prediction & 

Classification 

July 2023 

Predict faults in 

real-time data, 

output fault types 

and locations 

 

extraction stage, key parameters such as current 

abrupt change, over voltage, short circuit event, etc. 

are extracted according to different features of power 

faults, which become the basis for subsequent model 

training and fault prediction. The core part of fault 

data processing is model training and fault 

prediction. The research team adopts the 

aforementioned deep neural network (DNN) model 

and combines the optimization algorithm for training 

and tuning. During the implementation of the data 

processing scheme, multiple steps are alliterative 

optimized based on the feedback of specific data to 

ensure that the system can identify power faults in 

the shortest time and accurately classify and locate 

them. 

 

2.4.2 Fault classification and diagnosis scheme 

The classification and diagnosis of power faults 

are directly related to the efficiency and accuracy of 

fault processing. In order to accurately classify and 

diagnose fault types, a multi-level classification 

scheme based on DNN model is proposed. The 

scheme combines the characteristics of different 

types of faults to classify power system anomalies in 

multiple dimensions, including equipment failure, 

grid overload, natural disasters, etc. The model 

analyzes the input current, voltage, temperature and 

other data characteristics, and uses the trained model 

to classify and judge the fault type in real time. The 

fault data will be p reprocessed by the data 

processing module and fed into the deep neural 

network model, and the output results of the model 

will be transmitted to the fault diagnosis module. 

The module can judge the type of fault, predict the 

location and scope of the fault, and provide the basis 

for the quick repair of the power system. In order to 

improve the diagnostic accuracy, the system can also 

update the model in real time and continuously 

optimize the diagnostic rules according to the latest 

data. 

 

2.4.3 System deployment and optimization 

policies 

During the deployment of the system, the real-

time and reliability requirements of the power 

system are considered, and the distributed 

computing architecture is adopted to divide the 

system into multiple modules, which are responsible 

for data acquisition, data processing, model training, 

fault prediction and classification. The post-

deployment optimization strategy will focus on 

improving the accuracy of fault prediction and speed 

of response. The system uses Incremental Learning 

technology, which allows the model to be updated 

quickly when new data arrives, avoiding the delays 

caused by traditional batch training. In order to 

reduce the consumption of computing resources, the 

system also introduces model compression 

technology to reduce the computational complexity 

of the model and improve the efficiency of the 

system on the edge computing equipment. In order 

to ensure the stability of the system during long-term 
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operation, the research team regularly evaluates the 

performance and adjusts the parameters of the 

system. After the fault occurs, the system will make 

real-time feedback and correction to the prediction 

result, which ensures high accuracy and low false 

positive rate of the prediction result. Future work 

plans to add more self-learning mechanisms, so that 

the system has the ability to detect changes in data 

patterns and self-adjust. 

 

2.4.4 Real-time deployment and scalability 

We prototyped two deployment paths: (i) edge 

serving at substation gateways and (ii) distributed 

streaming in a central cluster. On the edge, the DNN 

is exported to ONNX and runs with INT8 

quantization when available. With 500-ms sliding 

windows advanced every 100 ms, the end-to-end 

budget per window—acquisition (20–40 ms), 

preprocessing (5–15 ms), inference (8–12 ms CPU; 

3–5 ms with INT8), and event packaging (≈10 ms)—

yields a 55–80 ms median and <150 ms at P95 on 

commodity x86 gateways. In the cluster setting 

(Kafka → Flink/Spark Streaming → model 

microservice), P95 latency stays under 300–400 ms 

at feeder-scale loads and scales linearly to multi-

substation ingestion by horizontal replication. 

 

2.4.5 Integration with SCADA/EMS 

The system integrates in a side-car, read-only 

mode with existing SCADA/EMS to avoid control 

interference. Data ingress supports IEC-61850 

(MMS/GOOSE), IEC-60870-5-104, DNP3, and 

historian bridges (e.g., PI/OPC UA). Key practical 

challenges include time synchronization, bad-data 

handling, operational change control, and 

cybersecurity/compliance (access segregation, least 

privilege, auditable updates). We implement 

GPS/PTP alignment and late-arrival buffers, apply 

schema-aware validation and sensor-health flags, 

and stage rollouts through canary sites with 

automatic rollback. 

Industrial comparison under operational 

constraints. Against a typical industrial baseline—

static thresholding plus rate-of-change alarms and 

state-estimator residual chi-square tests—our DNN 

pipeline (with class-imbalance mitigation) reduces 

nuisance alarms by ~25–35% at matched recall and 

improves detection on rare faults by 3–6 pp in offline 

replays of historical logs. In operations, we expose 

calibrated probabilities to HMIs and maintain 

interlocks with EMS procedures; detections are 

advisory by default, escalating only through 

approved workflows. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Results 

3.1.1 Model performance evaluation 

To evaluate the performance of different models 

on power fault data, several commonly used machine 

learning algorithms, including support vector 

machines (SVM), decision trees (DT), random 

forests (RF), K-nearest neighbors (KNN), and deep 

neural networks (DNN), were compared. 

Performance evaluations are measured by metrics 

such as accuracy, recall, F1-score and calculation 

time. As shown in Figure 3, deep neural networks 

(DNNS) show superior performance when 

processing power failure data, outperforming other 

models in terms of accuracy and F1-score. 

Beyond overall accuracy (DNN 93.4%) and 

detection rate (92.0%), the DNN achieved a macro 

ROC-AUC of 0.964, exceeding SVM (0.938) and 

RF (0.953). At the selected operating point, false-

positive rates were consistent with Table 6: SVM 

7.5%, RF 6.5%, DNN 4.0%. The confusion matrix 

indicates most residual errors arise from boundary 

cases between equipment aging faults and grid 

overload during peak demand; post-deployment 

threshold calibration reduces these confusions with 

minimal recall loss. For completeness, we include 

per-class ROC curves and a normalized confusion 

matrix in the supplementary figures, and we keep the 

same test split for all models to ensure fair 

comparison with expert systems and simpler 

baselines.

 
Fig. 3. Experimental results comparison 
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3.1.2 System response time analysis 

System response time is an important index to 

measure the efficiency of power fault data 

processing. The measurement of system response 

time includes the time of data input, processing and 

output. As shown in Figure 4, there are differences 

in system response time for different models and 

data volumes. Deep neural network (DNN) has the 

best performance in fault detection accuracy due to 

its complex structure, large amount of computation 

and long response time. Support vector machine 

(SVM) and random forest (RF) have faster response 

time, which is suitable for the scene with high real-

time requirement. The optimization of response time 

is improved by adjusting the algorithm parameters 

and the allocation of hardware resources. 

Legacy SCADA/EMS alarm paths typically 

operate with 1-4 s scan cycles and batch analytics 

windows on the order of 5–60 s; our streaming path 

reduces detection and routing delays by an order of 

magnitude for transient and compound events while 

preserving auditability. Edge placement shortens the 

loop further for protection-adjacent alarms and 

remains resilient to WAN interruption; the central 

path provides fleet-level coordination and global 

model updates. We employ stateless model servers 

with autoscaling, feature stores with TTL’d caches 

at the edge, and asynchronous model refresh. Model 

compression (pruning + quantization) preserves 

accuracy within 0.2–0.4 pp while improving 

throughput (≈1.3–1.6×) and reducing memory 

footprint, enabling wide deployment on existing 

gateways without hardware upgrades. 

 

3.1.3 Fault classification accuracy 

In terms of fault classification accuracy, DNN 

model performs better than other models. As shown 

in Table 5 below, the DNN model achieved 93.4% 

accuracy in the test phase, while other traditional 

models such as support vector machines (SVM) and 

random forests (RF) showed high accuracy. The 

accuracy of fault classification is the basis of fault 

detection and diagnosis in power system. The higher 

the accuracy, the higher the efficiency of fault 

location and repair. Compared with the experimental 

results, it can be seen that the deep neural network 

can capture the complex characteristics of power 

system faults well and perform well in fault 

classification 

 

3.1.4 Fault detection Rate and false alarm rate 

Fault detection rate and false positive rate are 

important standards to measure the performance of a 

power fault monitoring system. The detection rate 

reflects the ability of the system to identify faults 

when faults actually occur. The false positive rate 

represents the proportion of the system incorrectly 

identifying normal conditions as faults. High 

detection  rate  and  low  false  alarm  rate  are  ideal 

 
Fig. 4. System response time analysis 
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Model Accuracy (%) 
Classification Rate 

(%) 

Correctly Classified 

Samples 

Classified 

Samples 

Support Vector Machine 

(SVM) 
87.5 12.5 8750 1250 

Decision Tree (DT) 82.3 17.7 8230 1770 

Random Forest (RF) 90.2 9.8 9020 980 

K-Nearest Neighbors (KNN) 85.6 14.4 8560 1440 

Deep Neural Network 

(DNN) 
93.4 6.6 9340 660 
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system performance requirements. As shown in 

Table 6 below, DNN model has high fault detection 

rate and low false alarm rate, which is effective and 

stable in power fault detection. Although other 

models also have better performance, the fault 

detection rate and false positive rate are inferior to 

DNN. 

 
Table 6. Fault detection rate and false positive rate 

Model 

Detectio

n Rate 

(%) 

False 

Positiv

e Rate 

(%) 

Correctl

y 

Detecte

d Faults 

Incorrectl

y 

Identified 

Faults 

Support 

Vector 

Machine 

(SVM) 

85.0 7.5 8500 750 

Decision 

Tree 

(DT) 

80.0 10.0 8000 1000 

Random 

Forest 

(RF) 

88.0 6.5 8800 650 

K-

Nearest 

Neighbo

rs 

(KNN) 

84.0 8.0 8400 800 

Deep 

Neural 

Network 

(DNN) 

92.0 4.0 9200 400 

 
3.2 Discussion 

3.2.1 Problem summary 

The core objective of this study is to construct 

and optimize the power fault data comprehensive 

processing system based on artificial intelligence 

technology, so as to improve the accuracy and real-

time of power system fault detection. In this study, 

through the comparative analysis of several machine 

learning models, it is found that deep neural network 

(DNN) model shows significant advantages in fault 

classification and detection. Although DNN model 

has achieved high classification accuracy and 

detection rate in most experiments, there are still 

some problems worthy of further study and solution. 

The calculation time and response time of DNN 

model are long when processing large-scale power 

data. The experimental results show that the total 

response time of DNN is higher than that of 

traditional machine learning algorithms such as 

support vector machines (SVM) and decision trees 

(DT) when the data volume is large. Power fault 

detection tasks usually have high real-time 

requirements, and the computational complexity and 

hardware resource consumption of DNN models 

may have a negative impact on the real-time 

processing capability of the system. Especially in the 

case of emergency failure in the power system, too 

long response time will bring great risks to the 

stability and operation efficiency of the power grid. 

Therefore, how to optimize the computational 

efficiency of DNN model and reduce the response 

time is a key technical problem to be solved urgently. 

Although DNN model has excellent performance 

in the accuracy of fault detection, it may have false 

positives or missing positives in some special types 

of fault processing. For example, equipment faults in 

power systems and faults caused by natural disasters 

may have certain similarities in their characteristics, 

which may lead to judgment bias when the model 

deals with boundary cases. False positive rate and 

false negative rate are important indicators to 

measure the reliability of power fault detection 

system, but the false positive rate and false negative 

rate may further reduce the practical application 

value of the system. The study found that even if the 

false positive rate of DNN is as low as 4.0%, its 

robustness and adaptability still need to be improved 

in the face of complex and diverse real power system 

data. 

Data quality and diversity of data sources are 

important factors limiting model performance. 

Current model training and testing mainly rely on 

data from a single power system, while the real 

power system structure is complex, and there may be 

significant differences between different regions and 

different types of power equipment. This limitation 

of data directly affects the generalization ability of 

the model, which may not maintain a high level of 

performance when applied to new environments or 

new devices. At the same time, the quality of data p 

reprocessing is directly related to the final training 

effect of the model. Although measures such as data 

cleaning and feature extraction have been taken in 

the research, how to further optimize the data ore-

processing process and improve the quality and 

efficiency of data processing is still a direction that 

needs to be further explored. 

 

3.2.2 Research suggestions 

In view of the above problems, future research 

needs to improve from many aspects to optimize the 

performance of power fault data integrated 

processing system. More efficient algorithms and 

hardware resource allocation strategies can be 

explored in terms of optimizing computation time 

and response speed. For example, attempts can be 

made to introduce lightweight neural network 

models and edge computing techniques. These 

technologies can greatly improve the real-time 

performance of the system on the premise of 

ensuring the accuracy of the model, and meet the 

needs of fast response in practical application 

scenarios. Through model compression, network 

pruning and other methods, the computational 

complexity of DNN models can be effectively 

reduced, thus reducing the consumption of hardware 

resources and improving the applicability of the 

models in large-scale data scenarios. 

In order to reduce the phenomenon of false 

positives and missing positives, future research can 

focus on improving the robustness of the model. In 
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the face of abnormal data or infrequent failures, 

existing models may exhibit inadequate adaptability. 

The integrated learning method can be considered to 

combine the advantages of multiple models to 

improve the stability and accuracy of fault detection. 

For example, combined with the characteristics of 

DNN, random forest and support vector machine, the 

weight distribution of the model is dynamically 

adjusted under different fault types. The feature 

extraction and feature selection strategies are further 

optimized for specific types of fault detection. In the 

model training stage, highlighting the key features of 

power failure can not only improve the classification 

accuracy, but also effectively reduce the false 

positive rate and false negative rate. 

In terms of data, future research aims to broaden 

data sources and collect more diverse power system 

data. The fusion of cross-region and multi-type 

power system data enhances the generalization 

ability of the model, so that it can maintain high 

detection performance under different environments 

and equipment types. In addition to traditional data 

acquisition methods, we explore the use of 

simulation to generate fault data and enrich the 

sample set. The introduction of adaptive learning 

technology, such as reinforcement learning, can help 

the model dynamically optimize in the process of 

real-time data update, so as to improve the 

intelligence level of the system. 

In terms of data p reprocessing, the optimization 

of data cleaning, feature extraction and processing 

efficiency will be strengthened in the future. For 

example, develop an automated data p reprocessing 

framework to detect and correct anomalies in data in 

real time through machine learning algorithms, 

reduce manual intervention, and improve the 

efficiency and accuracy of data processing. Aiming 

at the noise data that may exist in the complex power 

system, more intelligent denouncing methods are 

explored to improve the training quality of the 

model. 

 

3.2.3 Control-informed augmentations 

To strengthen robustness under fast-changing 

and multi-fault regimes, we outline a control-

theoretic layer that complements the DNN: 

• Adaptive fuzzy control provides self-tuning 

decision thresholds and context-aware weighting 

of residuals under rapid operating point shifts, 

improving early detection stability during load 

ramps and topology changes. 

• Output-feedback projective lag synchronization 

offers observer-based residual generation for 

coupled nonlinear subsystems with partial or 

noisy measurements, which we fuse with DNN 

posteriors to reduce boundary misclassifications. 

• Robust neural adaptive control yields disturbance-

rejection residuals that remain informative when 

multiple faults co-occur, enhancing the DNN’s 

recall on rare compound events. 

• Adaptive backstepping enables fault isolation at 

component level by constructing virtual controls 

that map to asset-specific failure modes; its 

residuals act as expert priors for the classifier. 

• Nonlinear optimal control supplies cost-aware 

corrective actions (set-point shifts, load shedding 

priority, VAR support) immediately after 

detection, closing the loop from diagnosis to 

mitigation. 

• Insights from backstepping for flexible 

manipulators inform sensor/actuator dynamics 

modeling and uncertainty bounds, improving our 

augmentation and calibration of time-domain 

features. 

 

3.2.4 Contributions and positioning 

Relative to prior AI-based fault detection studies, 

our contributions are threefold. First, we develop a 

physically informed feature set (short-horizon 

current spikes, voltage-sag depth, temperature-rise 

rates, rolling derivatives) and show it outperforms 

PCA-only and MI-only selectors on unseen, rare, 

and compound faults. Second, we present a rigorous 

evaluation protocol with plant/asset-level hold-outs, 

macro ROC-AUC and confusion analyses, and 

calibrated decision thresholds, providing a clearer 

estimate of field performance than random splits. 

Third, we deliver a scalable serving design that runs 

efficiently on edge gateways and distributed 

streaming back ends with sub-second latencies, 

aligning the model with SCADA/EMS operational 

constraints. 

 

4. CONCLUSION 

 

With artificial intelligence technology as the 

core, this research builds a comprehensive power 

fault data processing system to improve the accuracy 

and real-time of power system fault detection. By 

comparing traditional machine learning models such 

as support vector machine (SVM), decision tree 

(DT), random forest (RF) and K-nearest neighbor 

(KNN), experimental results show that deep neural 

network (DNN) performs well in fault classification 

accuracy, fault detection rate and F1-score. Among 

them, the accuracy rate of DNN model reached 

93.4%, which was significantly higher than other 

models, the fault detection rate was 92.0%, and the 

false positive rate was only 4.0%, showing its 

significant advantages in power fault data 

processing. 

The study also revealed some problems. The 

computational complexity and response time of 

DNN model limit its wide application in real power 

system to some extent. In a scenario with a large 

amount of data, the computational overhead of the 

DNN model may affect the real-time responsiveness. 

The diversity and quality of data are still important 

factors affecting the performance of the model. In 

this study, data quality is improved through data p 

reprocessing, but it is still necessary to broaden data 

sources, especially introducing more types and 

regions of power failure data to enhance the 

generalization ability of the model. Future research 
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focuses on optimizing computational efficiency, 

improving model robustness, and improving data p 

reprocessing methods. With the introduction of 

lightweight model, integrated learning and 

reinforcement learning technology, the performance 

and intelligence level of the system are expected to 

be improved. Explore automated data processing 

frameworks that reduce human intervention and 

improve system processing efficiency and 

adaptability. This study provides effective technical 

ideas for power fault data processing. Deep learning 

models perform well in the accuracy and stability of 

fault detection. How to optimize system 

performance in practical applications is still the 

focus of future technical improvement. 

In implementation, these modules generate 

physics-grounded residuals and adaptive thresholds 

that enter the fusion layer together with DNN 

probabilities (e.g., via a calibrated logistic 

combiner). This hybrid design increases accuracy, 

adaptability, and overall reliability without 

disrupting the serving path; it is slated for 

prospective evaluation in our next release. Beyond 

these, we outline a hybrid path that merges control-

theoretic residuals and adaptive thresholds with 

DNN posteriors to improve resilience to unexpected 

conditions and multi-fault episodes. Future work 

will explore mixture-of-experts gating between a 

lightweight temporal CNN and the MLP core, and 

graph-aware modules that exploit grid topology for 

fault propagation context. 
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