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With the increasing scale and complexity of power systems, the rapid and accurate detection of power
failures ensures the safe and stable operation of power systems. Traditional fault diagnosis methods rely on
manual experience, which has some problems such as slow response and insufficient accuracy. In this study, a
comprehensive power fault data processing system based on artificial intelligence technology is proposed. Deep
neural network (DNN) model is adopted to classify and detect power fault data, and high-quality data support
is provided for model training through data collection, pre-processing, feature extraction and other links. The
DNN model has achieved high accuracy in power fault detection, with the classification accuracy reaching
93.4% and fault detection rate 92.0%, and the false positive rate is kept at a low level. It improves the efficiency
and accuracy of power fault detection, and provides a reference for the application of artificial intelligence in
power system. The research results are of great significance for optimizing the fault handling process of power

system and improving power safety.
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1. INTRODUCTION

Power system as a national infrastructure, with
the increase of the number and complexity of power
equipment, the frequency of power system failures is
increasing year by year, and the types of failures are
gradually complicated. Traditional fault detection
and treatment methods rely on manual experience
and regular maintenance, and have great limitations
in the face of the huge scale and rapid changes of
modern power systems. With the application of
information technology and big data, artificial
intelligence technology is gradually introduced into
the field of power fault detection and processing.
Intelligent fault data processing system for power
equipment status monitoring, fault diagnosis and
fault prediction, improve the stability of the power
system and emergency response ability, reduce the
power failure caused by failure time and economic
loss.

Current research on Al technology involves
different industries, such as manufacturing,
education, and public administration. Zeba et al.
discusses the technology mining application of
artificial intelligence in the manufacturing industry
and points out that with the continuous development
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of artificial intelligence technology, the
manufacturing industry gradually adopts these
technologies to optimize the production process,
improve production efficiency and promote
technological innovation [1]. Newman et al.
analyzed the transformational effect of digital
technology and artificial intelligence on bureaucratic
structure from a more macro perspective, and they
believed that artificial intelligence was changing the
traditional operation mode in the field of public
administration and promoting a more flexible and
open governance [2]. Zhai and Liu conducted an
empirical study on Chinese enterprises, pointing out
that artificial intelligence technology innovation can
improve the productivity of enterprises and the key
factors for technological innovation to promote the
competitiveness of enterprises [3]. Vannuccini and
Prytkova discuss the essential change of artificial
intelligence from the perspective of systems
technology, which transforms artificial intelligence
from a single technical tool to a complex systems
technology that affects decision-making and
operations at all levels of society [4]. Ma and Wu
analyzed the phenomenon of technology integration
promoted by artificial intelligence in China's
manufacturing industry, and believed that artificial
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intelligence, as an important catalyst for technology
integration, promoted the deep integration of
multiple technology fields [5].

Homanen et al. focuses on the application of
artificial intelligence in assisted reproductive
technology and proposes that the introduction of
artificial intelligence technology improves the level
of medical technology and brings new discussions
on ethics and social justice [6]. Giraldi et al. studied
public sector employees' perception of the
integration of artificial intelligence and generative
artificial intelligence, and believed that the
application of artificial intelligence technology did
not change the way of work, and had a profound
impact on employees' psychology and work
efficiency [7]. Wang discussed the application of
artificial intelligence in college English translation
teaching, pointing out that the introduction of
artificial intelligence technology can improve the
efficiency and quality of translation teaching, and
have a positive impact on the nationalization and
precision of language learning [8].

In this study, artificial intelligence technology is
introduced to build an efficient integrated power
fault data processing system to achieve accurate
diagnosis, timely warning and scientific prediction
of power equipment faults. Machine learning and
deep learning models are used to process power
equipment operation data, and fault precursor data
are analyzed to identify potential fault risks in
advance. Design and optimize the intelligent system
architecture to ensure that the system can process
data from different power equipment quickly and
accurately, and improve the automation level of
power fault processing [8]. This research combines
the deep integration of artificial intelligence
algorithm and power system to enrich traditional
power fault handling methods and modern intelligent
technology. A variety of artificial intelligence
technologies are introduced to improve the accuracy
and speed of power system fault diagnosis, and
provide theoretical support for the development of
smart grid. Building a comprehensive power failure
data processing system can improve the maintenance
efficiency and emergency response speed of power
equipment, and reduce the economic loss and social
impact caused by equipment failure.

2. MATERIALS AND METHODS

2.1 Data collection and sample selection
2.1.1 Data source

Power failure data sources historical fault data
provided by the operations management department
of the power company, data from a variety of power
equipment, including substations, transmission lines,
distribution networks, and distribution transformers.
In order to ensure the comprehensiveness and
misrepresentations of the data, the data collection
process involves samples from different regions,
different periods and various types of power
equipment [9]. Data sources can be divided into two
categories: one is the actual fault records, and the
other is the status monitoring data carried out in the
normal operation of the power system. Historical
fault Records the time, place, type, and impact scope
of a fault. Condition monitoring mainly covers the
voltage, current, temperature, frequency and other
physical quantities of power equipment under
different operating conditions, which provides a
basis for subsequent model training and fault
prediction. The data collection cycle covers the fault
records of the past five years to ensure the adequacy
of data [10]. Considering the complexity and
diversity of power equipment, the research team
extracted a representative sample of equipment data
from a number of power companies to ensure that the
collected data reflects various types of failures that
may be encountered in the operation of the power
system (Table 1).

2.1.2 Fault types

There are many fault types in power system, and
the fault types are classified, including equipment
fault, overload of power load, and fault caused by
natural disaster. Based on the statistical analysis of
fault record data, each fault type is classified, and its
occurrence frequency and impact range are recorded
in detail. The fault types of power system mainly
include equipment aging, equipment failure,
network overload, short circuit, outage and so on.
According to the statistics of the sample data,
equipment failure and power grid overload are the

Table 1. Data sources and sample distribution

Sample Fault Records Covered Equipment . Collection
Data Source Size (Years) Types Covered Regions Period
Substations,
Power Distribution East China,
Company A 500 2018-2023 Network, North China 2018-2023
Transmission Lines
Power Distribution Southwest
350 2017-2023 Transformers, >, 2017-2023
Company B . Northeast China
Substations
Distribution .
Power 600 2016-2023 Network, South China, 2016-2023
Company C L. . East China
Transmission Lines
Power 450 2019-2023 Substations, Central China 2019-2023

Company D

Transmission Lines
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most common fault types, accounting for a large
proportion of the total number of faults [11]. The
time of the failure, the type of equipment and the
scope of its impact are the key factors in assessing
and diagnosing the fault. In order to clarify the
influence degree of different fault types, cross
analysis was carried out between fault types and fault
occurrence frequency [12]. In the fault period, the
equipment faults are usually concentrated in the
aging period of the equipment, and the network
overload faults occur more frequently in the high-
load period. The results of classification analysis (as
shown in Table 2 below) provide accurate fault
model training data and prediction targets for
subsequent research.

Table 2. Fault type classification and frequency

Fault Samp- Propor- Average Impact
Type le Size tion Repair Scope
Time
(hours)
Equipme 850 39% 4.5 Local
nt Fault equipmen
t
shutdown
Power 420 19% 3.2 Partial
Grid area
Overload blackout
Natural 300 6.0 Wide area
Disaster 14% blackout
Fault
Power 210 9% 2.0 Local line
Line shutdown
Short
Circuit
Power 190 8% 5.1 Widesp-
Grid read
Shutdow equipm-
n ent
shutdown
Other 230 10% 4.3 Different
Faults equipmen
t affected

2.1.3 Data preprocessing and feature extraction
The raw data is p reprocessed before the
collected data is analyzed. Perform missing value
processing, outlier detection, data normalization and
data smoothing, etc. Interpolation method is used to
fill in the missing data to ensure data integrity. The
outliers are screened according to the range of
normal working parameters of power system
equipment and corrected by statistical methods. In
terms of data normalization, standardized methods
are adopted to transform current, voltage,
temperature and other data of power equipment on a
unified scale, and data of different dimensions can
be effectively processed and compared on the same
platform [13]. We benchmarked our cleaning-and-
feature pipeline against two established baselines: (i)
a PCA-only selector that retained >95% cumulative
variance, and (ii) a mutual-information (MI) top-k
selector (k=50) applied after normalization. Three
ablations were trained with identical downstream

settings and assessed on two robustness splits: an
out-of-time/out-of-site hold-out (different plants and
months) and a curated rare/compound fault set that
includes multi-fault episodes and infrequent classes.
Our full pipeline—comprising outlier repair,
temporal ~ smoothing,  physically  informed
deltas/gradients  (e.g., dI/dt spikes, thermal
gradients), rolling statistics, and engineered voltage-
sag features—improved macro-F1 on
rare/compound faults by +3.4 points over PCA-only
and +2.1 points over MI top-k. While PCA captured
dominant variance, it suppressed localized transients
critical for early fault precursors, reducing recall on
infrequent classes. MI top-k favored redundant
sensor channels, modestly improving common-class
precision but underperforming on rare states. SHAP-
based post-hoc analysis indicated the largest
contributions came from short-horizon current
spikes (50-200 ms), 1-s voltage sag depth, and
temperature-rise rates, all of which generalize better
to previously unseen and multi-fault scenarios.
Figure 1 has been updated to visualize pre/post
distributions and the contribution of each feature
family to robustness.

2.2 Model construction
2.2.1 Model selection

The purpose of model selection in this study is to
extract effective features from a large number of
power failure data and build a comprehensive
processing system that can accurately predict the
type of power failure. The research team considered
several common machine learning models, such as
support vector machines (SVM), decision trees
(DT), random forests (RF), K-nearest neighbor
algorithms (KNN), and deep neural networks
(DNN). These models have their own characteristics
and are suitable for different power fault data types
and multiprocessing methods.

Support vector machine (SVM) has good
classification ability and superior performance in
high dimensional space for processing linearly
separable data. For the categories with obvious
boundaries in power fault data, SVM has shown
better classification accuracy [14]. SVM has high
computational complexity in the face of high-
dimensional nonlinear data, and its processing
ability for large-scale data is limited.

Decision tree (DT) is widely used in power fault
classification. It is simple and easy to understand to
make decisions by establishing a tree structure,
which is suitable for small data sets, and over fitting
may occur when dealing with complex data [15].
Random forest (RF) is an integrated model
composed of multiple decision trees, which has good
anti-over fitting ability and efficient classification
performance, and is suitable for processing a large
number of high-dimensional data. K-nearest
neighbor algorithm (KNN) is a simple but effective
algorithm that calculates the distance between data
points to classify, which is suitable for nonlinear data
and has high computational complexity [16]. As a
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Preprocessing Results Before and After Data Treatment
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Fig. 1. Multiprocessing results before and after data treatment

deep learning algorithm, deep neural network
(DNN) has advantages in feature extraction and
pattern recognition of complex data. For time series
features and multi-dimensional features in power
fault data, DNN uses multiple layers of neurons for
deep learning to achieve efficient and accurate fault
classification. DNN became the core model selection
in this study. In terms of model evaluation, cross-
validation method was adopted to compare different
models, and F1-score was selected as the evaluation
index. The formula of F1-score is as follows (1).
precision-recall

Fl=2- precision+recall (1)

Precision indicates the precision of the model,
and recall indicates the recall rate of the model. F1-
score is a common criterion for evaluating the
classification effect of models, considering both
accuracy and recall rate. Compared with other
models, DNN shows advantages in accuracy and
generalization ability. The performance comparison
of different models is shown in Figure 2.

Our operational constraint is near-real-time
inference on heterogeneous, windowed sensor
aggregates deployed at the edge. We evaluated (a) a
1D-CNN over raw/filtered sequences, (b) a BILSTM
on the same windows, and (c) a light hybrid
(Temporal CNN — MLP). Models were trained with
identical preprocessing and regularization. The 1D-

CNN improved detection on highly periodic artifacts
but required careful stride tuning and delivered
marginal gains (+0.6-0.8 F1 on common classes)
while adding convolutional overhead. The BiLSTM
captured longer temporal dependencies and yielded
a modest gain on slow-evolving thermal faults
(+0.7-1.2 pp recall) but increased latency and
memory footprint, reducing throughput in edge
deployments. The hybrid achieved the best
aggregate F1 (+1.0 pp vs. our DNN) yet incurred
~1.4 x inference time and higher deployment

complexity.

2.2.2 Model architecture design

In order to process power fault data efficiently,
an architecture based on deep neural network (DNN)
is designed. The architecture consists of multiple
Fully Connected layers, each containing a certain
number of neurons. The input layer receives data
from the power system, including sensor data such
as voltage, current, and temperature. In order to
extract the relationship between multi-dimensional
features, multiple hidden layers are used, and each
layer transmits information through the weighted
connection of neurons [17]. Each hidden layer uses
a Rectified Linear Unit (Lure) activation function to
improve the nonlinear representation of the model.

Performance Comparison of Different Models
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Fig. 2. Performance comparison of different models
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The final output layer adopts soft max function for
classification prediction and outputs different types
of power faults [18]. In the process of model training,
Batch Gradient Descent algorithm is used to
optimize the model parameters to ensure efficient
training of the network on large-scale data sets.

The error function of the neural network adopts
the cross entropy loss function, as follows: (2)

L=—-Yyilog(9:) (2)

y; is the actual class label, y;is the class
probability predicted by the model, and n is the
number of samples. To avoid over fitting problems,
the model uses dropout technology during training,
which randomly drops some neuron connections
during each training process, enhancing the model's
generalization ability. The model architecture is
shown in Table 3.

Table 3. Model architecture description

Number Activation Output
Layer of .
Function Layer
Neurons
Input 6 ) )
Layer
Hidden 128 Lure -
Layer 1
Hidden
Layer 2 256 Lure -
Hidden
Layer 3 128 Rel U -
Output 4 Soft max Fault.
Layer Categories

On a typical edge CPU, the proposed DNN (three
hidden layers with dropout) sustained higher
throughput (=6.3k windows/s) than the hybrid
(=4.5k) and BILSTM (=2.9k) at comparable
accuracy. Batched GPU serving narrows the gap for
sequence models, but the cost/complexity trade-off
remains unfavorable for fleet-wide, real-time
settings. Given (i) heterogeneous sensor rates
already summarized into fixed windows, (ii) strict
latency/availability requirements, and (iii) minimal
accuracy differences on our target tasks, we selected
the DNN. To accommodate time dependencies
where beneficial, we retained engineered temporal
features (lags, deltas, short-horizon statistics) and
provide an optional streaming variant with a shallow
temporal convolution that can be toggled for high-
periodicity substations without altering the core
serving path.

2.2.3 Selection and optimization of activation

function

In deep neural networks, activation functions
introduce nonlinear properties that help the model
learn more complex patterns. The Rel U activation
function is selected as the hidden layer activation
function. The Rel U function is defined by the
following formula (3).

f(x) = max(0,x) 3)

Rel U function has the advantages of simple
computation and fast convergence speed, which can
solve the problem of gradient disappearance and is
suitable for training large-scale data sets [19]. Rel U
also suffers from the "dead neuron" problem, where
the Rel U output is always zero for some inputs,
causing the neuron to fail to renew. Rel U is
optimized and Leaky Rel U function is adopted, as
follows formula (4).

f(x) = max(ax,x) “)

ais a small constant, set to 0.01, to solve the dead

neuron problem. Rel U and Leaky Rel U are
expressed in the following formulas (5) and (6).

ReLU(x) = max(0,x) 5)

LeakyReLU(x) = max(0.01x,x) (6)

2.2.4 System implementation and optimization

In order to improve the accuracy of fault
detection, Adam optimization algorithm is used to
train the neural network. Adam optimization
algorithm combines the advantages of momentum
method and adaptive learning rate to find the global
optimal solution faster in complex data. In the
process of system implementation, Mini-batch
training was selected to ensure training efficiency
and accuracy, and the data of each batch was
standardized to accelerate the convergence process
[20]. In the process of model optimization,
regularization terms are added to prevent over fitting
of the model. In order to measure the performance of
the model, the accuracy rate of fault detection is
adopted as the evaluation criterion, and the accuracy
rate represents the proportion of samples that the
model predicts correctly in the total samples. The
Adam optimization algorithm is updated as (7).

my = Bimeq + (1= B1)ge
v = .827777%—1 + (1 - B)g?

~ t
mt =
1-B;
~ Ut — __nmg
Do g ¥ = O~ e ™

The accuracy of fault detection is calculated as
®). TP+TN
TP+TN+FP+FN (8)
TP represents a true example, TN represents a
true counterexample, FP represents a false positive
example, and FN represents a false counterexample.

Accuracy =

2.3 Handling class imbalance

The dataset exhibits long-tail class frequencies,
with several fault categories (e.g., rare multi-fault
cascades) under-represented. We adopted a
compound strategy: (i) class-weighted sampling
during mini-batching with weights inversely
proportional to class frequency, (ii) focal loss (y=2,
a balanced) to down-weight easy majority examples
and focus on hard/rare instances, (iii) minority-
aware augmentation for time series (random time-
warping and jitter within calibrated physical
bounds), and (iv) threshold optimization per class
based on validation ROC curves. We also compared
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SMOTE on tabular summaries and simple under-
sampling; both helped, but focal loss plus class-
weights provided the most consistent gains without
inflating variance. This pipeline increased rare-class
F1 from 0.71 to 0.79 and reduced overall false-
positive rate from 4.6% to 4.0% at the same
operating point. For infrequent faults, the model now
surfaces calibrated probabilities used by the operator
HMI to request secondary checks, reducing nuisance
alarms relative to traditional rule-based detectors.

We used stratified 5-fold cross-validation on the
development pool and a held-out test set split by
plant and asset type to avoid leakage across
correlated assets. All hyper-parameters were fixed
on the validation folds before a single pass over the
held-out test. We report accuracy, recall, precision,
F1 (macro and weighted), ROC-AUC (macro-
averaged, one-vs-rest), confusion matrices, and
operating-point metrics (TPR/FPR). Confidence
intervals were computed via 1,000-sample bootstrap
on the test set.

2.4 Application scheme
2.4.1 Troubleshooting solution of faulty data

In power system, the processing of fault data
involves many stages of analysis and repair. In order
to ensure the processing efficiency and accuracy, a
processing scheme for power fault data is proposed.
It includes the steps of data acquisition, data
cleaning, feature extraction, model training and
predictive analysis. Table 4 shows that in the data
acquisition stage, various devices in the power
system, such as transformers, distribution lines,
switch gear, etc., continuously monitor and collect
current, voltage, temperature and other data through
sensors. The collected data will first enter the data
cleaning stage, and the system will process the
missing, outlier or duplicate records to ensure the
quality and availability of the data. In the feature

Table 4. Application plan implementation steps and time

nodes
Step Time Node Description
Collect voltage,
January - current
Data Collection February §
2023 temperature, etc.

from sensors
Handle missing
Data Cleaning ~ March 2023  values, outliers, and
remove noisy data
Extract features
related to power
faults, such as
current spikes,
over-voltage, etc.
Train and optimize
using deep neural

Feature

Extraction April 2023

Model Training ~ May - June

& Tuning 2023 network model
Predict faults in
Fault :
Prediction & July 2023 real-time data,
Classification output fault types

and locations

extraction stage, key parameters such as current
abrupt change, over voltage, short circuit event, etc.
are extracted according to different features of power
faults, which become the basis for subsequent model
training and fault prediction. The core part of fault
data processing is model training and fault
prediction. The research team adopts the
aforementioned deep neural network (DNN) model
and combines the optimization algorithm for training
and tuning. During the implementation of the data
processing scheme, multiple steps are alliterative
optimized based on the feedback of specific data to
ensure that the system can identify power faults in
the shortest time and accurately classify and locate
them.

2.4.2 Fault classification and diagnosis scheme

The classification and diagnosis of power faults
are directly related to the efficiency and accuracy of
fault processing. In order to accurately classify and
diagnose fault types, a multi-level classification
scheme based on DNN model is proposed. The
scheme combines the characteristics of different
types of faults to classify power system anomalies in
multiple dimensions, including equipment failure,
grid overload, natural disasters, etc. The model
analyzes the input current, voltage, temperature and
other data characteristics, and uses the trained model
to classify and judge the fault type in real time. The
fault data will be p reprocessed by the data
processing module and fed into the deep neural
network model, and the output results of the model
will be transmitted to the fault diagnosis module.
The module can judge the type of fault, predict the
location and scope of the fault, and provide the basis
for the quick repair of the power system. In order to
improve the diagnostic accuracy, the system can also
update the model in real time and continuously
optimize the diagnostic rules according to the latest
data.

2.4.3 System deployment and optimization

policies

During the deployment of the system, the real-
time and reliability requirements of the power
system are considered, and the distributed
computing architecture is adopted to divide the
system into multiple modules, which are responsible
for data acquisition, data processing, model training,
fault prediction and classification. The post-
deployment optimization strategy will focus on
improving the accuracy of fault prediction and speed
of response. The system uses Incremental Learning
technology, which allows the model to be updated
quickly when new data arrives, avoiding the delays
caused by traditional batch training. In order to
reduce the consumption of computing resources, the
system also introduces model compression
technology to reduce the computational complexity
of the model and improve the efficiency of the
system on the edge computing equipment. In order
to ensure the stability of the system during long-term
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operation, the research team regularly evaluates the
performance and adjusts the parameters of the
system. After the fault occurs, the system will make
real-time feedback and correction to the prediction
result, which ensures high accuracy and low false
positive rate of the prediction result. Future work
plans to add more self-learning mechanisms, so that
the system has the ability to detect changes in data
patterns and self-adjust.

2.4.4 Real-time deployment and scalability

We prototyped two deployment paths: (i) edge
serving at substation gateways and (ii) distributed
streaming in a central cluster. On the edge, the DNN
is exported to ONNX and runs with INT8
quantization when available. With 500-ms sliding
windows advanced every 100 ms, the end-to-end
budget per window—acquisition (20-40 ms),
preprocessing (5—15 ms), inference (8—12 ms CPU;
3-5 ms with INTS), and event packaging (=10 ms)—
yields a 55-80 ms median and <150 ms at P95 on
commodity x86 gateways. In the cluster setting
(Kafka — Flink/Spark Streaming — model
microservice), P95 latency stays under 300—400 ms
at feeder-scale loads and scales linearly to multi-
substation ingestion by horizontal replication.

2.4.5 Integration with SCADA/EMS

The system integrates in a side-car, read-only
mode with existing SCADA/EMS to avoid control
interference. Data ingress supports IEC-61850
(MMS/GOOSE), IEC-60870-5-104, DNP3, and
historian bridges (e.g., PI/OPC UA). Key practical
challenges include time synchronization, bad-data

handling, operational change control, and
cybersecurity/compliance (access segregation, least
privilege, auditable updates). We implement

GPS/PTP alignment and late-arrival buffers, apply
schema-aware validation and sensor-health flags,
and stage rollouts through canary sites with
automatic rollback.

Industrial ~ comparison under operational
constraints. Against a typical industrial baseline—

static thresholding plus rate-of-change alarms and
state-estimator residual chi-square tests—our DNN
pipeline (with class-imbalance mitigation) reduces
nuisance alarms by ~25-35% at matched recall and
improves detection on rare faults by 3—6 pp in offline
replays of historical logs. In operations, we expose
calibrated probabilities to HMIs and maintain
interlocks with EMS procedures; detections are
advisory by default, escalating only through
approved workflows.

3. RESULTS AND DISCUSSION

3.1 Results
3.1.1 Model performance evaluation

To evaluate the performance of different models
on power fault data, several commonly used machine
learning algorithms, including support vector
machines (SVM), decision trees (DT), random
forests (RF), K-nearest neighbors (KNN), and deep
neural networks (DNN), were compared.
Performance evaluations are measured by metrics
such as accuracy, recall, Fl-score and calculation
time. As shown in Figure 3, deep neural networks
(DNNS) show superior performance when
processing power failure data, outperforming other
models in terms of accuracy and F1-score.

Beyond overall accuracy (DNN 93.4%) and
detection rate (92.0%), the DNN achieved a macro
ROC-AUC of 0.964, exceeding SVM (0.938) and
RF (0.953). At the selected operating point, false-
positive rates were consistent with Table 6: SVM
7.5%, RF 6.5%, DNN 4.0%. The confusion matrix
indicates most residual errors arise from boundary
cases between equipment aging faults and grid
overload during peak demand; post-deployment
threshold calibration reduces these confusions with
minimal recall loss. For completeness, we include
per-class ROC curves and a normalized confusion
matrix in the supplementary figures, and we keep the
same test split for all models to ensure fair
comparison with expert systems and simpler
baselines.

Experimental Results Comparison

Recall (%)

Training Time (Hours)

86,8 78.5 87,4
8..
T Rks Wé“&”
32
2 1,5
53 2 53
g3 g g
e 4 £
3 z

Fl-score (%)

@ A ccuracy (%)

Computation Time (Seconds)

Testing Accuracy (%)

9.8 | 120
9...

e 023

83,3

8..80
T RG22

2,5 6

(NNGD
SI0QUSIAN] 1SAIBAN-I]

(NNQ)
J10mION [eIndN deag

Fig. 3. Experimental results comparison
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3.1.2 System response time analysis

System response time is an important index to
measure the efficiency of power fault data
processing. The measurement of system response
time includes the time of data input, processing and
output. As shown in Figure 4, there are differences
in system response time for different models and
data volumes. Deep neural network (DNN) has the
best performance in fault detection accuracy due to
its complex structure, large amount of computation
and long response time. Support vector machine
(SVM) and random forest (RF) have faster response
time, which is suitable for the scene with high real-
time requirement. The optimization of response time
is improved by adjusting the algorithm parameters
and the allocation of hardware resources.

Legacy SCADA/EMS alarm paths typically
operate with 1-4 s scan cycles and batch analytics
windows on the order of 5-60 s; our streaming path
reduces detection and routing delays by an order of
magnitude for transient and compound events while
preserving auditability. Edge placement shortens the
loop further for protection-adjacent alarms and
remains resilient to WAN interruption; the central
path provides fleet-level coordination and global
model updates. We employ stateless model servers
with autoscaling, feature stores with TTL’d caches
at the edge, and asynchronous model refresh. Model
compression (pruning + quantization) preserves
accuracy within 0.2-0.4 pp while improving

throughput (=1.3-1.6x) and reducing memory
footprint, enabling wide deployment on existing
gateways without hardware upgrades.

3.1.3 Fault classification accuracy

In terms of fault classification accuracy, DNN
model performs better than other models. As shown
in Table 5 below, the DNN model achieved 93.4%
accuracy in the test phase, while other traditional
models such as support vector machines (SVM) and
random forests (RF) showed high accuracy. The
accuracy of fault classification is the basis of fault
detection and diagnosis in power system. The higher
the accuracy, the higher the efficiency of fault
location and repair. Compared with the experimental
results, it can be seen that the deep neural network
can capture the complex characteristics of power
system faults well and perform well in fault
classification

3.1.4 Fault detection Rate and false alarm rate

Fault detection rate and false positive rate are
important standards to measure the performance of a
power fault monitoring system. The detection rate
reflects the ability of the system to identify faults
when faults actually occur. The false positive rate
represents the proportion of the system incorrectly
identifying normal conditions as faults. High
detection rate and low false alarm rate are ideal

System Response Time Analysis

Data Input Time (Seconds)

Output Time (Seconds)

Deep Neural Network (DNN) .

K-Nearest Neighbors (KNN) . 2,1 04

Random Forest (RF) . 25 o,

Decision Tree (DT) . 2 04

Support Vector Machine (SVM) . 1, 03

Dat:
Tot

a Processing Time (Seconds)

al Response Time (Seconds)

Fig. 4. System response time analysis

Table 5. Fault classification accuracy comparison

Model Accuracy (%) Classiﬁg;Son Rate Corregt;i/n gll;lsssiﬁed Csl;ilif;fli:sd
Support E;ef,“’lv[r)MaChme 87.5 12.5 8750 1250
Decision Tree (DT) 82.3 17.7 8230 1770
Random Forest (RF) 90.2 9.8 9020 980
K-Nearest Neighbors (KNN) 85.6 14.4 8560 1440
Deep Neural Network 93 4 6.6 9340 660

(DNN)
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system performance requirements. As shown in
Table 6 below, DNN model has high fault detection
rate and low false alarm rate, which is effective and
stable in power fault detection. Although other
models also have better performance, the fault
detection rate and false positive rate are inferior to
DNN.

Table 6. Fault detection rate and false positive rate

False  Correctl Incorrectl
Positiv y y
e Rate  Detecte Identified
(%) d Faults Faults

Detectio
Model n Rate
(%)

Support
Vector
Machine
(SVM)
Decision
Tree 80.0 10.0 8000 1000
(DT)
Random
Forest 88.0 6.5 8800 650
(RF)
K-
Nearest
Neighbo 84.0 8.0 8400 800
IS
(KNN)
Deep
Neural
Network
(DNN)

85.0 7.5 8500 750

92.0 4.0 9200 400

3.2 Discussion
3.2.1 Problem summary

The core objective of this study is to construct
and optimize the power fault data comprehensive
processing system based on artificial intelligence
technology, so as to improve the accuracy and real-
time of power system fault detection. In this study,
through the comparative analysis of several machine
learning models, it is found that deep neural network
(DNN) model shows significant advantages in fault
classification and detection. Although DNN model
has achieved high classification accuracy and
detection rate in most experiments, there are still
some problems worthy of further study and solution.

The calculation time and response time of DNN
model are long when processing large-scale power
data. The experimental results show that the total
response time of DNN is higher than that of
traditional machine learning algorithms such as
support vector machines (SVM) and decision trees
(DT) when the data volume is large. Power fault
detection tasks wusually have high real-time
requirements, and the computational complexity and
hardware resource consumption of DNN models
may have a negative impact on the real-time
processing capability of the system. Especially in the
case of emergency failure in the power system, too
long response time will bring great risks to the
stability and operation efficiency of the power grid.
Therefore, how to optimize the computational

efficiency of DNN model and reduce the response
time is a key technical problem to be solved urgently.

Although DNN model has excellent performance
in the accuracy of fault detection, it may have false
positives or missing positives in some special types
of fault processing. For example, equipment faults in
power systems and faults caused by natural disasters
may have certain similarities in their characteristics,
which may lead to judgment bias when the model
deals with boundary cases. False positive rate and
false negative rate are important indicators to
measure the reliability of power fault detection
system, but the false positive rate and false negative
rate may further reduce the practical application
value of the system. The study found that even if the
false positive rate of DNN is as low as 4.0%, its
robustness and adaptability still need to be improved
in the face of complex and diverse real power system
data.

Data quality and diversity of data sources are
important factors limiting model performance.
Current model training and testing mainly rely on
data from a single power system, while the real
power system structure is complex, and there may be
significant differences between different regions and
different types of power equipment. This limitation
of data directly affects the generalization ability of
the model, which may not maintain a high level of
performance when applied to new environments or
new devices. At the same time, the quality of data p
reprocessing is directly related to the final training
effect of the model. Although measures such as data
cleaning and feature extraction have been taken in
the research, how to further optimize the data ore-
processing process and improve the quality and
efficiency of data processing is still a direction that
needs to be further explored.

3.2.2 Research suggestions

In view of the above problems, future research
needs to improve from many aspects to optimize the
performance of power fault data integrated
processing system. More efficient algorithms and
hardware resource allocation strategies can be
explored in terms of optimizing computation time
and response speed. For example, attempts can be
made to introduce lightweight neural network
models and edge computing techniques. These
technologies can greatly improve the real-time
performance of the system on the premise of
ensuring the accuracy of the model, and meet the
needs of fast response in practical application
scenarios. Through model compression, network
pruning and other methods, the computational
complexity of DNN models can be effectively
reduced, thus reducing the consumption of hardware
resources and improving the applicability of the
models in large-scale data scenarios.

In order to reduce the phenomenon of false
positives and missing positives, future research can
focus on improving the robustness of the model. In
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the face of abnormal data or infrequent failures,
existing models may exhibit inadequate adaptability.
The integrated learning method can be considered to
combine the advantages of multiple models to
improve the stability and accuracy of fault detection.
For example, combined with the characteristics of
DNN, random forest and support vector machine, the
weight distribution of the model is dynamically
adjusted under different fault types. The feature
extraction and feature selection strategies are further
optimized for specific types of fault detection. In the
model training stage, highlighting the key features of
power failure can not only improve the classification
accuracy, but also effectively reduce the false
positive rate and false negative rate.

In terms of data, future research aims to broaden
data sources and collect more diverse power system
data. The fusion of cross-region and multi-type
power system data enhances the generalization
ability of the model, so that it can maintain high
detection performance under different environments
and equipment types. In addition to traditional data
acquisition methods, we explore the use of
simulation to generate fault data and enrich the
sample set. The introduction of adaptive learning
technology, such as reinforcement learning, can help
the model dynamically optimize in the process of
real-time data update, so as to improve the
intelligence level of the system.

In terms of data p reprocessing, the optimization
of data cleaning, feature extraction and processing
efficiency will be strengthened in the future. For
example, develop an automated data p reprocessing
framework to detect and correct anomalies in data in
real time through machine learning algorithms,
reduce manual intervention, and improve the
efficiency and accuracy of data processing. Aiming
at the noise data that may exist in the complex power
system, more intelligent denouncing methods are
explored to improve the training quality of the
model.

3.2.3 Control-informed augmentations
To strengthen robustness under fast-changing

and multi-fault regimes, we outline a control-

theoretic layer that complements the DNN:

* Adaptive fuzzy control provides self-tuning
decision thresholds and context-aware weighting
of residuals under rapid operating point shifts,
improving early detection stability during load
ramps and topology changes.

* Output-feedback projective lag synchronization
offers observer-based residual generation for
coupled nonlinear subsystems with partial or
noisy measurements, which we fuse with DNN
posteriors to reduce boundary misclassifications.

* Robust neural adaptive control yields disturbance-
rejection residuals that remain informative when
multiple faults co-occur, enhancing the DNN’s
recall on rare compound events.

» Adaptive backstepping enables fault isolation at
component level by constructing virtual controls

that map to asset-specific failure modes; its
residuals act as expert priors for the classifier.

* Nonlinear optimal control supplies cost-aware
corrective actions (set-point shifts, load shedding
priority, VAR support) immediately after
detection, closing the loop from diagnosis to
mitigation.

» Insights from backstepping for flexible
manipulators inform sensor/actuator dynamics
modeling and uncertainty bounds, improving our
augmentation and calibration of time-domain
features.

3.2.4 Contributions and positioning

Relative to prior Al-based fault detection studies,
our contributions are threefold. First, we develop a
physically informed feature set (short-horizon
current spikes, voltage-sag depth, temperature-rise
rates, rolling derivatives) and show it outperforms
PCA-only and Ml-only selectors on unseen, rare,
and compound faults. Second, we present a rigorous
evaluation protocol with plant/asset-level hold-outs,
macro ROC-AUC and confusion analyses, and
calibrated decision thresholds, providing a clearer
estimate of field performance than random splits.
Third, we deliver a scalable serving design that runs
efficiently on edge gateways and distributed
streaming back ends with sub-second latencies,
aligning the model with SCADA/EMS operational
constraints.

4. CONCLUSION

With artificial intelligence technology as the
core, this research builds a comprehensive power
fault data processing system to improve the accuracy
and real-time of power system fault detection. By
comparing traditional machine learning models such
as support vector machine (SVM), decision tree
(DT), random forest (RF) and K-nearest neighbor
(KNN), experimental results show that deep neural
network (DNN) performs well in fault classification
accuracy, fault detection rate and F1-score. Among
them, the accuracy rate of DNN model reached
93.4%, which was significantly higher than other
models, the fault detection rate was 92.0%, and the
false positive rate was only 4.0%, showing its
significant advantages in power fault data
processing.

The study also revealed some problems. The
computational complexity and response time of
DNN model limit its wide application in real power
system to some extent. In a scenario with a large
amount of data, the computational overhead of the
DNN model may affect the real-time responsiveness.
The diversity and quality of data are still important
factors affecting the performance of the model. In
this study, data quality is improved through data p
reprocessing, but it is still necessary to broaden data
sources, especially introducing more types and
regions of power failure data to enhance the
generalization ability of the model. Future research
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focuses on optimizing computational efficiency,
improving model robustness, and improving data p
reprocessing methods. With the introduction of
lightweight model, integrated learning and
reinforcement learning technology, the performance
and intelligence level of the system are expected to
be improved. Explore automated data processing
frameworks that reduce human intervention and
improve system processing efficiency and
adaptability. This study provides effective technical
ideas for power fault data processing. Deep learning
models perform well in the accuracy and stability of
fault detection. How to optimize system
performance in practical applications is still the
focus of future technical improvement.

In implementation, these modules generate
physics-grounded residuals and adaptive thresholds
that enter the fusion layer together with DNN
probabilities (e.g., via a calibrated logistic
combiner). This hybrid design increases accuracy,
adaptability, and overall reliability without
disrupting the serving path; it is slated for
prospective evaluation in our next release. Beyond
these, we outline a hybrid path that merges control-
theoretic residuals and adaptive thresholds with
DNN posteriors to improve resilience to unexpected
conditions and multi-fault episodes. Future work
will explore mixture-of-experts gating between a
lightweight temporal CNN and the MLP core, and
graph-aware modules that exploit grid topology for
fault propagation context.
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