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Electric motors are the core equipment of industrial production, and rolling bearings are the key parts that
are most prone to failure during the operation of electric motors. In order to accurately diagnose bearing faults
and improve equipment reliability, this study extracts features from motor vibration signals through ensemble
empirical mode decomposition, and classifies signal features using support vector machines. In addition, an
optimized GWO is introduced to improve the hyperparameter settings of the support vector machine model,
enhancing the fault classification ability, and ultimately constructing a new diagnosis model. The new model
had the highest fault classification accuracy of 96.6%, the highest precision of 94.58%, the highest F1 score of
95.18%, and the shortest running time of 8.07 seconds. In addition, its MSE, RMSE, and MAE for outer ring
fault detection were the lowest, at 0.072, 0.268, and 0.189, respectively, with a diagnosis time of 7.33 seconds,
significantly better than comparison models. From this, the model can enhance the diagnosis accuracy and
efficiency, and also provide an effective solution for motor bearing fault diagnosis in industrial applications.
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1. INTRODUCTION

The bearing components in an electric motor can
directly affect the rotational efficiency and service
life of the motor. However, during long-term and
high load operation, bearings are prone to
malfunctions such as raceway wear, pitting
corrosion, and fracture due to factors such as friction,
wear, poor lubrication, and external environment [1-
2]. These issues reduce the efficiency of the electric
motor, but may also lead to system shutdown or even
serious safety accidents. Therefore, many
researchers at home and abroad have successively
explored methods for diagnosing motor bearing
faults. Dong et al. believed that existing Bearing
Fault Diagnosis (BFD) methods were based on
processing data from a single source and did not have
universality. Therefore, a method on the basis of
multi-source data and 1D lightweight Convolutional
Neural Network (CNN) was proposed. This method
had stronger accuracy and robustness compared to
other advanced methods [3]. Zhukovskiy et al. built
a novel diagnostic method for electric motor faults
on the basis of parameter analysis, which combined
singular value decomposition and hierarchical
clustering to improve the efficiency. The motor fault
diagnosis time and accuracy were significantly
improved compared to before the improvement [4].

Received 2025-01-15; Accepted 2025-10-31; Available online 2025-11-06

Xu et al. found that due to parameter settings and
adjustments, the effectiveness and accuracy of Petri
networks for BFD were poor. Therefore, a
comprehensive fuzzy Petri network was designed for
motor BFD. The network achieved better
performance in fault localization [5]. Wang et al.
found that the noise interference and signal
measurement errors of motor bearings to some
extent interfered with the accuracy of later data
processing. Therefore, an industrial motor BFD
model was proposed. This method solved the height
conflicts in the data fusion process and improved the
diagnostic accuracy [6].

Artificial intelligence technology has provided
new research ideas for BFD. Among them, Support
Vector Machine (SVM), as a classic machine
learning method, has high classification accuracy
and generalization ability under small sample
conditions, and has been largely used in fault
diagnosis [7]. Brusamarello et al. found that there
were still certain deficiencies in the detection of
motor shaft faults based on fiber Bragg grating
analysis. To this end, a fault grating signal
classification and recognition model that combined
SVM was proposed. The signal classification
accuracy was 92.73%, indicating high effectiveness
[8]. Zhou et al. built a rolling BFD model on the basis
of the Whale Grey Wolf Optimization (GWO)-
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Variational Mode Decomposition-SVM (VMD-
SVM) to deal with unclear fault characteristics. The
highest accuracy of this method after multiple
repeated tests was 95.73%, which was superior to
other existing methods [9]. Yang et al. built a
coupled vibration data classification strategy on the
basis of triple embedding and SVM to classify small
sample datasets. Compared with traditional features
and autoencoders, this method had better data
classification performance and stronger stability
[10]. Wang et al. fused CNN and SVM to achieve
rolling BFD. Compared with other methods, this
algorithm significantly improved the accuracy, with
an accuracy rate of up to 93.01% [11].

In summary, significant progress has been made
in improving the accuracy and efficiency of BFD
through existing research. However, these methods
still have problems such as strong dependence on
specific scenarios, insufficient ability to adapt to
complex non-stationary signals, and limited
efficiency in parameter optimization. To this end, a
novel BFD model for motor rolling bearings on the
basis of improved GWO and SVM is built. This
method improves the hyperparameter optimization
efficiency of SVM models by introducing dynamic
adaptive guidance factors and backup location
strategies to optimize the global search and local
development capabilities of GWO. The innovation
lies in the proposed improved algorithm, which
effectively avoids the model falling into local
optima, and optimizes the ability to classify complex
nonlinear signal features. At the same time, its strong
adaptability and promotability make it widely
applicable in multiple fields such as electricity,
manufacturing, and transportation, effectively
improving the reliability and safety of equipment
operation and promoting the transformation of
traditional industries towards intelligence and
digitization. Provided key technical support for
building safe and efficient industrial systems, and
contributed to energy conservation, emission
reduction, resource optimization, and sustainable
social development.
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2. METHODS AND MATERIALS

2.1. Feature extraction of vibration signals of
motor rolling bearings based on SVM
To improve the accuracy and efficiency of fault
diagnosis of motor rolling bearings, a new type of
motor rolling bearing fault diagnosis model is
proposed by combining improved GWO and SVM.
The process is shown in Figure 1.

In Figure 1, the new model mainly involves five
key steps. Firstly, the vibration signals of the motor
rolling bearings are obtained through a fault
simulation platform and subjected to data
preprocessing such as standardization and denoising
to ensure the quality and consistency of the signals.
Secondly, EEMD decomposes the pre-processed
signal and extracts key feature vectors in both time-
and frequency-domain. Then, SVM classifier
classifies different types of fault signals. In this
process, the improved GWO is introduced to
optimize SVM hyperparameters. Specifically, the
improved GWO enhances the global search
capability and local development efficiency through
dynamic adaptive guidance factors and backup
position strategies, effectively avoiding falling into
local optima. Finally, the diagnosis performance of
the method is validated through model training and
testing. As a key component of an electric motor,
rolling bearings support the rotor through rolling
elements and reduce friction. They are mainly
composed of an inner ring, an outer ring, rolling
elements, and a cage, which are used to bear the
radial and axial loads of the motor, ensuring the
stable rotation and efficient operation of the rotor
[12-13]. Rolling bearings can replace sliding contact
with rolling contact, significantly reduce friction
coefficient, improve transmission efficiency, and
have compact structure, strong durability, and
smooth operation. According to the different rolling
elements, rolling bearings can be divided into
various types such as deep groove ball bearings,
cylindrical roller bearings, and angular contact ball
bearings to meet various working conditions. The
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Fig. 1. New motor rolling bearing fault diagnosis model flow



DIAGNOSTYKA, Vol. 26, No. 4 (2025) 3
Chang L. Design of motor bearing fault diagnosis method based on IMPROVED GWO-SVM

physical and structural diagrams of the motor rolling
bearing are displayed in Figure 2 [14].
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Figure 2 (a) shows the physical image of the
motor rolling bearing, and Figure 2 (b) displays the
motor rolling bearing. In Figure 2, the motor rolling
bearing has an outer ring, an inner ring, a retainer
frame, and a rolling element. Among them, the outer
ring is fastened on the equipment casing, and the \ \ , \
inner ring is linked to the rotating shaft. The outer I] >
and inner rings respectively serve to fix and support 0.5 1.0 L5 2.0
the bearing, and the rolling elements perform rolling Time/s
motion between these two rings through the retainer (c) Outer ring fault
frame, thereby achieving a low friction rotational
effect. In addition, vibration signals are an important
representation of the operating status, which reflects
the dynamic characteristics of bearings under normal
operation or fault conditions [15-16]. The research
adopts the motor fault simulation platform
developed by Zongyuan Measurement Company for
fault data collection [17]. The motor speed is
1786rpm and the sampling frequency is 12 kHz.
Time-domain diagrams of bearing signals are
plotted. The time-domain diagrams of bearings
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under various conditions are displayed in Figure 3. 0 0.5 1.0 1.5 2.0
Figure 3 (a) displays the bearing signal in four Time/s
faults. According to Figure 3, under normal (d) Rolling element fault

operating conditions, the vibration signal fluctuates
relatively smoothly without obvious impact
characteristics. Under the inner ring, outer ring, and

Fig. 3. Time-domain diagram of bearing fault
under various working conditions
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rolling elements, varying degrees of periodic impact
are observed in the vibration signal, with
significantly increased amplitude and fluctuation.
Among them, the signal complexity of rolling
element faults is the highest, and feature information
is difficult to extract directly. The experimental
platform used for simulating faults in rolling
bearings of electric motors is shown in Figure 4.

m_.: - __.g

Motor DAQ Accelerometer Monitor
Fig. 4. Experimental test platform and sensor
layout

In Figure 4, the motor is connected to the bearing
seat through a shaft, and an acceleration sensor is
installed on the bearing housing to collect vibration
signals. The Data Acquisition (DAQ) module inputs
signals into the data processing computer. All key
components have been marked with arrows. To
further separate and extract fault features from
bearing vibration signals, the Ensemble Empirical
Mode Decomposition (EEMD) method is introduced
in the study. Compared to other methods, EEMD has
significant advantages, including the ability to
handle non-stationary signals and effectively reduce
pattern aliasing problems. The basic idea is to
decompose complex signals into several Intrinsic
Mode Functions (IMFs) by introducing white noise
perturbations, achieving component extraction of the
original signal [18]. Firstly, multiple sets of
independent white noise are applied to the original
vibration signal to construct multiple sets of
superimposed signals. The calculation is displayed
in equation (1).

x(6) = () +w(0) (1)

In equation (1), x(¢) signifies the original signal.
w,(t) represents independent white noise. x,(¢)

represents the signal after the i -th addition of noise.
Each group of signals undergoes EEMD
decomposition to obtain several IMFs components,
as displayed in equation (2).

x(0) = 3 IME,(6)+1,(0) @)

In equation (2), IMF}(¢) represents the j -th

IMF component obtained from the i -th
decomposition. 7,(¢) represents the remaining

residuals.  After  completing the EEMD
decomposition, to achieve accurate identification
and classification of bearing fault characteristics,
SVM is further introduced as a fault classification
model. SVM can effectively distinguish fault
features of various categories by constructing the
optimal classification hyperplane. The classification
principle diagram of SVM is shown in Figure 5.

Fig. 5. SVM classification principle
schematic diagram

As shown in Figure 5, the red dots and blue
squares represent samples of different categories.
The dashed line H represents the optimal
classification hyperplane, and the solid lines A, and

H, represent the boundaries of the classification

interval. The two types of sample points are
distributed on both sides of the boundary. The
classification interval is defined as the distance
between two boundaries H, and H,,i.e. (d,+d,).
Among them, the data points closer to the decision
boundary are support vectors. To define this decision
boundary, it is generally approximated by
calculating (d, +d,), as shown in equation (3).

D:{(xlayz)|l:1329:n}ax, GR,)/,- E{la_l}
A3)

In equation (3), D signifies a complete dataset.
x, and y, respectively signify two 2D data points

on the dataset. The dataset is correctly classified as a

straight line, as displayed in equation (4).
wx,+b=1 @
wx,+b=-1

In equation (4), w and b represent the weights
and biases of the samples belonging to the given
dataset, respectively. X, and X, represent the

support vectors on the positive and negative class
boundaries, respectively. The distance between H,

and /1, and the decision boundary is calculated, as
shown in equation (5).

Cwx b1
o
g |wx2 +b| 1 G
S 11 I 1T
d+d, =2
Il
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After taking the derivative of equation (5), the
classification optimization objective of the feature
vector is represented by the SVM, as displayed in
equation (6).

1 N
M, = nnnzuw"z +CY g, (6)
i=1

In equation (6), ¢, signifies the relaxation

variable of the i -th data point. C signifies the
penalty coefficient. M, represents the final time-

total
domain signal classification feature of rolling
bearings.

2.2. Construction of rolling bearing fault
diagnosis model integrating improved GWO

After collecting specific motor rolling bearing signal
data, the signals are decomposed and reconstructed
using the EEMD method, and relevant features are
extracted. After combining SVM for data classification
and diagnosis, although SVM shows good accuracy in
classification tasks, its performance is still affected to
some extent by model hyperparameters, such as penalty
factors, kernel function parameters, and input feature
selection. If the hyperparameter selection is improper, it
may lead to a decrease in classification accuracy or
insufficient model generalization ability [19]. For this
purpose, GWO is introduced to optimize the
hyperparameters of SVM models. Compared to
traditional grid search or particle swarm optimization
algorithms, GWO has higher efficiency and
convergence in solving multidimensional parameter
optimization problems. The gray wolf position update in
GWO is shown in Figure 6 [20].
During the hunting process in Figure 6, individuals in
the gray wolf population has three levels, namely a, B,
and 9, representing the best, second, and third solutions
in the population, respectively, and represented by
green, yellow, and blue colors. Among them, the
ordinary wolf, also known as the red individual,
calculates its new position based on its relative position
with these three key individuals, which includes
calculating distances D, , D,, and D; as well as

adjusting its direction. Finally, the search for the optimal
solution is completed by approaching the prey through

multiple iterations. The operation process of GWO is
shown in Figure 7.

}/\\ @ o wolf
l O B wolf
@ @ o wolf

- \ & Target wolf

| @ Common wolf

Fig. 6. GWO location update diagram

As shown in Figure 7, firstly, the algorithm
randomly initializes the position and related
parameters of the grey wolf population, such as
population size and control  parameters.
Subsequently, the current positions of individuals in
the grey wolf population are evaluated using fitness
functions. The top three individuals with the best
fitness are taken as a, B, and 9, respectively. In each
iteration, the position of the regular wolf will be
dynamically updated on the basis of the guidance
information of the o, B, and 3. The iterative process
performs until predetermined termination conditions
are satisfied, like reaching the maximum iteration or
convergence of fitness to the optimal value. The
expression for updating individual positions is
displayed in equation (7).

X(k+1)=%(Xa(k)+Xﬂ(k)+X5(k))

(7
In equation (7), X(k+1) signifies the position

vector of the gray wolf in the k+1-th. X (k),
X4(k) and X, (k) signify the position vectors of a,
B, and 3 in the k -th iteration. At this point, after

continuous optimization iterations, the final position
is updated, as displayed in equation (8).
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Fig. 7. GWO operation flow
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X,(k+1)=X,(k)—A-d,

d, =|E- X, (k) - X, (k) ®©
In equation (8), X,(k+1) signifies the new

position of the i -th gray wolf in the k+1 -th.
X, (k) signifies the position of the leader wolf o, B,

or & in the k-th. 4 and E both signify constants.
a represents a linearly decreasing regulatory factor.
d, signifies the distance between the grey wolf and

its prey. However, as the highest ranking level in the
pack of wolves, a wolves rely too much on the
current optimal solution and have local optima,
especially in high-dimensional and non-convex
problems, which may lead to a decrease in global
search ability and affect the overall optimization
effect. To this end, a backup location strategy is
designed for o wolves. A random perturbation
mechanism is introduced to generate new
exploration points near the current location of a
wolves, improving the search ability of the
population. The calculation for generating backup
positions is displayed in equation (9).
X=X, +p-(Xy= X))+ A-rand(=1,1)  (9)
In equation (9), X* and X, signify the
backup position and current iteration position of o
wolf, respectively. X, and X respectively signify
the positions of B wolf and & wolf in the current
iteration. x represents the regulatory factor that
controls the balance between global and local search.

A represents the disturbance intensity factor. The
distance correction is shown in equation (10).

e =[x -x,

prey

(10
In equation (10), d.*" signifies the distance
between the backup position and the prey. X

prey
signifies the prey position. In addition, the study
introduces dynamic adaptive guidance factors to
flexibly adjust the impact weights of the three factors
on population search according to different iteration
stages. Specifically, increasing the weight of o wolf
in the early stages realizes global exploration, while
increasing the weight of B wolfand 6 wolf'in the later
stages enables local development. The calculation
for dynamically guiding factor weight is shown in
equation (11).

k
3 (k)y=1-——
a( ) Kmax
k
G (k)y=1—-——
ﬂ( ) Kmax
k
Qik)=1—z?—“ﬂ

In equation (11), §,(k) , 9,(k) , and G;(k)
respectively represent the guiding factors of a, , and
3 at the k -th iteration. 7 represents the adjustment

parameter used to control the guiding proportion of
B wolf and 6 wolf. K represents the maximum

number of iterations. At this point, the improved
position update is shown in equation (12).
X (k+D) =9, (k) - X, +3,(k)- X, (k) +8(k)- X5 (k)
(12)
According to equation (12), the position of gray
wolf individual X ; in the k +1st generation can be

obtained.
3. RESULTS

3.1. Performance testing of the new fault
diagnosis model for motor rolling bearings
To validate the new motor rolling BFD model,
the CPU is set to Intel Core 17-10700K, the base
frequency is 3.8 GHz, the GPU is NVIDIA GeForce
RTX 3080, the video memory is 10 GB, the memory
is 32 GB, and the operating system is Windows 10.
The Case Western Reserve University Bearing Data
Center Dataset (CWRU) and the Intelligent
Maintenance Systems Bearing Dataset (IMS) are
taken as the testing data sources. The CWRU is
simulated using an electric motor fault simulator,
collecting vibration signal data including normal
state, inner ring fault, outer ring fault, and rolling
element fault. The IMS dataset is collected
throughout the entire life cycle of bearings,
containing vibration signals of multiple bearings
from normal state to failure. The data collection
environment is close to the real industrial
environment.  The  study  first  conducts
hyperparameter selection tests on the three guiding
factors of o, B, and 6, namely 9,(1), & (¢) , and

9s(t) . The test results are shown in Figure 8.
Figure 8 shows the test results of 9, (1), 9,(¢),

and 9;(¢) . As shown in Figure 8, when the 9 () is

0.5, the convergence speed was the fastest, and the
final loss value stabilized at around 0.05. In other
values, the convergence speed was significantly
slower, especially when the value was 0.1, the Loss
value remained above 0.15 after 700 iterations. For
8,(t) , when the value was 0.4, the final loss value

of the model dropped to around 0.08, demonstrating
optimal convergence. When the value was 0.8, the
convergence was unstable and the final loss value
remained around 0.2. For 9;(¢), at 0.7, the model

exhibited the best convergence speed and stability,
with a final loss value of approximately 0.07. Other
values may lead to premature convergence, resulting
in a final loss value of around 0.12. Based on the
above analysis, the optimal values of the guidance
factors for a, B, and d are selected as 0.5, 0.4, and
0.7, respectively, to ensure the convergence speed
and optimal performance. The study continues to
conduct ablation tests on the final IGWS-SVM
model, as presented in Figure 9.
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Fig. 8. Hyperparameter selection test result

Figure 9 (a) displays the results in the CWRU
dataset, and Figure 9 (b) displays the results in the
IMS dataset. In Figure 9 (a), the classification
accuracy of using SVM alone tended to stabilize
after 200 iterations, ultimately reaching about
80.1%. The GWO-SVM model combined with
GWO has improved classification performance
compared to the SVM model, with an accuracy rate
of approximately 90.2% after 300 iterations. The
improved IGWS-SVM model further improved the
classification performance, with a classification
accuracy of 97.3% in 180 iterations, demonstrating
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Fig. 9. Ablation test results

faster convergence speed and higher accuracy.
According to Figure 9 (b), in the ablation test on the
IMS dataset, although there was a significant
improvement in the classification accuracy in SVM
alone and the GWO-SVM model, there were still
shortcomings compared to the final IGWS-SVM
model. Especially in 310 iterations, IGWS-SVM
achieved a classification accuracy of 96.6%. This
indicates that improving GWO and combining it
with  SVM can significantly enhance the
effectiveness of signal detection and classification.
The study introduces other advanced methods, such
as Deep Residual CNN (DR-CNN), Multiscale CNN
(MSCNN), and VMD-SVM, as presented in Table 1,
taking precision, recall, F1 score, and running time
as indicators for classification.

According to Table 1, in the CWRU dataset, the
improved model achieved a classification precision
of 95.73%, a recall rate of 94.58%, an F1 score of
95.18%, and a running time of only 8.33 seconds.
Compared with VMD-SVM, it improved
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classification performance by 5.52%, 2.44%, and
2.15%, respectively, and shortened running time by
about 2.12 seconds. In the IMS dataset, the improved
model had classification precision, recall, and F1 of
95.02%, 93.22%, and 94.14%. Compared to the
second best performing VMD-SVM, it improved by
3.45%, 1.94%, and 2.77%, respectively, and reduced
running time to 8.07 seconds. This indicates that the
proposed method not only achieves significant
improvement in  classification  performance
indicators, but also demonstrates high computational
efficiency, verifying its superiority and practical
application value.

Table 1. Multiple indicator test results

Data  Algorit Precisio  Recall F1/ R?lnm
set hm n/% 1% % e
time/s
DR- 87.
CNN 88.44 85.83 0 12.34
MSCN 90.
cw N 89.37 90.19 73 14.67
RU  VMD- 93.
SVM 90.21 92.14 03 10.45
Our 95.
model 95.73 94.58 13 8.33
DR- 84.
CNN 87.44 82.37 45 14.21
MSCN 89.86 87.56 86. 13.58
IMS N 48
VMD- 91.
SVM 91.57 91.28 37 11.34
Our 94.
model 95.02 93.22 14 8.07

3.2. Simulation testing of the fault diagnosis
model for motor rolling bearings
The proposed model is tested in practical
applications using the CWRU dataset as an example.

The motor test bench uses a motor power of 1521W
and a sampling frequency of 12 kHz. The motor
output position uses a pair of torque sensors to
collect the output data, and the fault implantation
method adopts single point damage of electric
discharge machining. Table 2 displays the specific
experimental motor parameters.

On the basis of the motor parameters, signal
classification tests are conducted on four conditions,
as presented in Figure 10.

Figure 10 shows the signal classification test
results of DR-CNN, MSCNN, VMD-SVM, and the
proposed model for four types of operating states.
From Figure 10, there was partial overlap between
the signals of normal operation and rolling element
faults in the classification results of the DR-CNN
method, resulting in significant misclassification.
MSCNN has slightly improved classification
accuracy, but there are still significant confusion
areas between inner and outer ring faults. In addition,
the classification performance of VMD-SVM has
improved compared to the previous two methods,
especially in distinguishing between inner ring faults
and rolling element faults. However, the proposed
model has the clearest classification boundary. The
signal distribution of the four operating states has
good clustering effect without obvious overlap,
indicating that the IGWS-SVM has higher accuracy
and reliability in fault classification tasks. The
improved model is more effective in extracting fault
features and achieving accurate classification.
Finally, the existing fault diagnosis models are
compared and tested using Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and
Mean Absolute Error (MAE) as reference indicators,
as presented in Table 3.

Table 2. Experimental motor parameters

Collection . Fault depth Fault width Sampling
location Speed (r/min) Fault type (mm) (mm) frequency (Hz)

Driving end 1500,1550,1600 No fault No No 12000

Driving end 1500 Outer ring 0.18 0.05 48000
pitting

Driving end 1550 Outer ring 0.36 0.08 48000
spalling

Driving end 1600 Outer ring 0.54 0.11 48000
pitting

Driving end 1500 Tner ring 0.17 0.04 48000
pitting

Driving end 1550 Tner ring 0.36 0.08 48000
spalling

Driving end 1600 Inner ring 0.58 0.11 48000
pitting

Driving end 1500 Rolling clement 0.17 0.04 48000
pitting

Driving end 1550 Rolling clement 0.35 0.07 48000
spalling

Driving end 1600 Rolling element 0.65 0.18 48000

pitting
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Fig. 10. Signal classification test for different fault types

Table 3. Diagnostic error results

Fault type Method MSE RMSE MAE Mean time to diagnosis/s

DR-CNN 0.134 0.366 0.287 12.45
Outer ring pitting MSCNN 0.119 0.345 0.268 10.92
VMD-SVM 0.093 0.304 0.237 9.21

Our model 0.072 0.268 0.189 7.33
DR-CNN 0.147 0.383 0.299 13.02

Inner ring pitting MSCNN 0.131 0.362 0.278 11.11
VMD-SVM 0.101 0.318 0.245 9.83

Our model 0.082 0.286 0.192 7.58

DR-CNN 0.162 0.402 0.312 14.25
Rolling element spalling MSCNN 0.148 0.384 0.298 11.89
VMD-SVM 0.114 0.337 0.261 10.33

Our model 0.094 0.306 0.215 8.04

According to Table 3, the proposed model
showed the best performance for outer ring faults,
with MSE, RMSE, and MAE of 0.072, 0.268, and
0.189, respectively, all significantly better than other
comparison models. At the same time, the diagnosis
time was the shortest, only 7.33s, far lower than the
12.45s of DR-CNN. This indicates that the improved
IGWS-SVM model improves accuracy. In the
testing of rolling element spalling faults, the
proposed model proposed performed equally well,
with RMSE and MAE of 0.306 and 0.215,
respectively, which were reduced by about 9.2% and
17.6% compared to VMD-SVM. In addition, the
average diagnosis time was 8.04s, which was 6.21s
less than the traditional deep learning method DR-
CNN, reflecting the advantage of the model in

complex fault feature processing. Overall, the
IGWS-SVM model outperforms other methods in
various indicators, especially on high accuracy and
low consumption, verifying the effectiveness and
robustness for rolling BFD tasks.

4. CONCLUSION

Aiming at the shortcomings of traditional
methods in extracting non-stationary signal features
and optimizing hyperparameters for rolling BFD, a
signal reconstruction and classification method on
the basis of EEMD and SVM was designed, and an
improved GWO was introduced for SVM
optimization. A new type of electric motor rolling
BFD model was proposed. When the three types of
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guiding factors of a, B, and & were 0.5, 0.4, and 0.7,
the loss function value of the model reached a
minimum of 0.05, exhibiting better convergence
speed and stability. Compared to individual SVM,
GWO, or GWO-SVM, the IGWO-SVM proposed in
the study achieved a classification accuracy of up to
96.6%, and its performance was significantly
improved. At this point, the minimum number of
iterations was only 180. Compared with other
advanced diagnostic methods, the model had the best
precision of 95.73%, the best recall of 94.58%, the
best F1 of 95.18%, and the shortest running time of
8.07 seconds. The classification and detection in the
CWRU dataset showed that the signal distribution
under the proposed model had good clustering effect
and no obvious overlap phenomenon was observed.
Quantitative data showed that the proposed model
had lower detection errors for three types of faults,
especially for outer faults. Its MSE, RMSE, and
MAE were 0.072, 0.268, and 0.189, respectively,
outperforming other comparison models. Due to its
modular design, the proposed diagnostic framework
has a high degree of scalability. If appropriate signal
features are extracted, IGWO optimization and SVM
classification can be applied to other fault detection
tasks, such as gear defects, rotor unbalance, and even
non mechanical anomalies such as power quality
disturbances. In summary, the IGWS-SVM rolling
bearing fault diagnosis model proposed by the
research institute has outstanding performance in
accuracy and robustness, and has significant
advantages. By introducing dynamic guidance
factors and backup position strategies, the global
search capability and local convergence efficiency of
the GWO algorithm have been effectively improved,
avoiding the model from falling into local optima.
By combining the structure of EEMD and SVM,
efficient extraction and classification of non-
stationary vibration signal features have been
achieved, enhancing the model's adaptability to
complex working conditions. However, this method
still has certain limitations, and its diagnostic
performance largely depends on the quality of
feature decomposition. Improper EEMD parameter
settings may affect the stability of the results. In the
future, we will further explore end-to-end deep
learning architectures to simplify model processes,
enhance real-time performance, and deployment
flexibility.
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