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Abstract 

Electric motors are the core equipment of industrial production, and rolling bearings are the key parts that 

are most prone to failure during the operation of electric motors. In order to accurately diagnose bearing faults 

and improve equipment reliability, this study extracts features from motor vibration signals through ensemble 

empirical mode decomposition, and classifies signal features using support vector machines. In addition, an 

optimized GWO is introduced to improve the hyperparameter settings of the support vector machine model, 

enhancing the fault classification ability, and ultimately constructing a new diagnosis model. The new model 

had the highest fault classification accuracy of 96.6%, the highest precision of 94.58%, the highest F1 score of 

95.18%, and the shortest running time of 8.07 seconds. In addition, its MSE, RMSE, and MAE for outer ring 

fault detection were the lowest, at 0.072, 0.268, and 0.189, respectively, with a diagnosis time of 7.33 seconds, 

significantly better than comparison models. From this, the model can enhance the diagnosis accuracy and 

efficiency, and also provide an effective solution for motor bearing fault diagnosis in industrial applications. 
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1. INTRODUCTION 

 

The bearing components in an electric motor can 

directly affect the rotational efficiency and service 

life of the motor. However, during long-term and 

high load operation, bearings are prone to 

malfunctions such as raceway wear, pitting 

corrosion, and fracture due to factors such as friction, 

wear, poor lubrication, and external environment [1-

2]. These issues reduce the efficiency of the electric 

motor, but may also lead to system shutdown or even 

serious safety accidents. Therefore, many 

researchers at home and abroad have successively 

explored methods for diagnosing motor bearing 

faults. Dong et al. believed that existing Bearing 

Fault Diagnosis (BFD) methods were based on 

processing data from a single source and did not have 

universality. Therefore, a method on the basis of 

multi-source data and 1D lightweight Convolutional 

Neural Network (CNN) was proposed. This method 

had stronger accuracy and robustness compared to 

other advanced methods [3]. Zhukovskiy et al. built 

a novel diagnostic method for electric motor faults 

on the basis of parameter analysis, which combined 

singular value decomposition and hierarchical 

clustering to improve the efficiency. The motor fault 

diagnosis time and accuracy were significantly 

improved compared to before the improvement [4]. 
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Xu et al. found that due to parameter settings and 

adjustments, the effectiveness and accuracy of Petri 

networks for BFD were poor. Therefore, a 

comprehensive fuzzy Petri network was designed for 

motor BFD. The network achieved better 

performance in fault localization [5]. Wang et al. 

found that the noise interference and signal 

measurement errors of motor bearings to some 

extent interfered with the accuracy of later data 

processing. Therefore, an industrial motor BFD 

model was proposed. This method solved the height 

conflicts in the data fusion process and improved the 

diagnostic accuracy [6]. 

Artificial intelligence technology has provided 

new research ideas for BFD. Among them, Support 

Vector Machine (SVM), as a classic machine 

learning method, has high classification accuracy 

and generalization ability under small sample 

conditions, and has been largely used in fault 

diagnosis [7]. Brusamarello et al. found that there 

were still certain deficiencies in the detection of 

motor shaft faults based on fiber Bragg grating 

analysis. To this end, a fault grating signal 

classification and recognition model that combined 

SVM was proposed. The signal classification 

accuracy was 92.73%, indicating high effectiveness 

[8]. Zhou et al. built a rolling BFD model on the basis 

of the Whale Grey Wolf Optimization (GWO)-
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Variational Mode Decomposition-SVM (VMD-

SVM) to deal with unclear fault characteristics. The 

highest accuracy of this method after multiple 

repeated tests was 95.73%, which was superior to 

other existing methods [9]. Yang et al. built a 

coupled vibration data classification strategy on the 

basis of triple embedding and SVM to classify small 

sample datasets. Compared with traditional features 

and autoencoders, this method had better data 

classification performance and stronger stability 

[10]. Wang et al. fused CNN and SVM to achieve 

rolling BFD. Compared with other methods, this 

algorithm significantly improved the accuracy, with 

an accuracy rate of up to 93.01% [11]. 

In summary, significant progress has been made 

in improving the accuracy and efficiency of BFD 

through existing research. However, these methods 

still have problems such as strong dependence on 

specific scenarios, insufficient ability to adapt to 

complex non-stationary signals, and limited 

efficiency in parameter optimization. To this end, a 

novel BFD model for motor rolling bearings on the 

basis of improved GWO and SVM is built. This 

method improves the hyperparameter optimization 

efficiency of SVM models by introducing dynamic 

adaptive guidance factors and backup location 

strategies to optimize the global search and local 

development capabilities of GWO. The innovation 

lies in the proposed improved algorithm, which 

effectively avoids the model falling into local 

optima, and optimizes the ability to classify complex 

nonlinear signal features. At the same time, its strong 

adaptability and promotability make it widely 

applicable in multiple fields such as electricity, 

manufacturing, and transportation, effectively 

improving the reliability and safety of equipment 

operation and promoting the transformation of 

traditional industries towards intelligence and 

digitization. Provided key technical support for 

building safe and efficient industrial systems, and 

contributed to energy conservation, emission 

reduction, resource optimization, and sustainable 

social development. 

 

 

2. METHODS AND MATERIALS 

 

2.1. Feature extraction of vibration signals of 

motor rolling bearings based on SVM 

To improve the accuracy and efficiency of fault 

diagnosis of motor rolling bearings, a new type of 

motor rolling bearing fault diagnosis model is 

proposed by combining improved GWO and SVM. 

The process is shown in Figure 1. 

 

In Figure 1, the new model mainly involves five 

key steps. Firstly, the vibration signals of the motor 

rolling bearings are obtained through a fault 

simulation platform and subjected to data 

preprocessing such as standardization and denoising 

to ensure the quality and consistency of the signals. 

Secondly, EEMD decomposes the pre-processed 

signal and extracts key feature vectors in both time- 

and frequency-domain. Then, SVM classifier 

classifies different types of fault signals. In this 

process, the improved GWO is introduced to 

optimize SVM hyperparameters. Specifically, the 

improved GWO enhances the global search 

capability and local development efficiency through 

dynamic adaptive guidance factors and backup 

position strategies, effectively avoiding falling into 

local optima. Finally, the diagnosis performance of 

the method is validated through model training and 

testing. As a key component of an electric motor, 

rolling bearings support the rotor through rolling 

elements and reduce friction. They are mainly 

composed of an inner ring, an outer ring, rolling 

elements, and a cage, which are used to bear the 

radial and axial loads of the motor, ensuring the 

stable rotation and efficient operation of the rotor 

[12-13]. Rolling bearings can replace sliding contact 

with rolling contact, significantly reduce friction 

coefficient, improve transmission efficiency, and 

have compact structure, strong durability, and 

smooth operation. According to the different rolling 

elements, rolling bearings can be divided into 

various types such as deep groove ball bearings, 

cylindrical roller bearings, and angular contact ball 

bearings  to  meet  various  working conditions. The  

 

 

 Fig. 1. New motor rolling bearing fault diagnosis model flow 
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physical and structural diagrams of the motor rolling 

bearing are displayed in Figure 2 [14]. 

 

 

 

Fig. 2. Motor rolling bearing physical 

drawing and structure drawing 

 

Figure 2 (a) shows the physical image of the 

motor rolling bearing, and Figure 2 (b) displays the 

motor rolling bearing. In Figure 2, the motor rolling 

bearing has an outer ring, an inner ring, a retainer 

frame, and a rolling element. Among them, the outer 

ring is fastened on the equipment casing, and the 

inner ring is linked to the rotating shaft. The outer 

and inner rings respectively serve to fix and support 

the bearing, and the rolling elements perform rolling 

motion between these two rings through the retainer 

frame, thereby achieving a low friction rotational 

effect. In addition, vibration signals are an important 

representation of the operating status, which reflects 

the dynamic characteristics of bearings under normal 

operation or fault conditions [15-16]. The research 

adopts the motor fault simulation platform 

developed by Zongyuan Measurement Company for 

fault data collection [17]. The motor speed is 

1786rpm and the sampling frequency is 12 kHz. 

Time-domain diagrams of bearing signals are 

plotted. The time-domain diagrams of bearings 

under various conditions are displayed in Figure 3. 

Figure 3 (a) displays the bearing signal in four 

faults. According to Figure 3, under normal 

operating conditions, the vibration signal fluctuates 

relatively smoothly without obvious impact 

characteristics. Under the inner ring, outer ring, and  

 

 

 

Fig. 3. Time-domain diagram of bearing fault 

under various working conditions 
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rolling elements, varying degrees of periodic impact 

are observed in the vibration signal, with 

significantly increased amplitude and fluctuation. 

Among them, the signal complexity of rolling 

element faults is the highest, and feature information 

is difficult to extract directly. The experimental 

platform used for simulating faults in rolling 

bearings of electric motors is shown in Figure 4. 

 
Fig. 4. Experimental test platform and sensor 

layout  

 

In Figure 4, the motor is connected to the bearing 

seat through a shaft, and an acceleration sensor is 

installed on the bearing housing to collect vibration 

signals. The Data Acquisition (DAQ) module inputs 

signals into the data processing computer. All key 

components have been marked with arrows. To 

further separate and extract fault features from 

bearing vibration signals, the Ensemble Empirical 

Mode Decomposition (EEMD) method is introduced 

in the study. Compared to other methods, EEMD has 

significant advantages, including the ability to 

handle non-stationary signals and effectively reduce 

pattern aliasing problems. The basic idea is to 

decompose complex signals into several Intrinsic 

Mode Functions (IMFs) by introducing white noise 

perturbations, achieving component extraction of the 

original signal [18]. Firstly, multiple sets of 

independent white noise are applied to the original 

vibration signal to construct multiple sets of 

superimposed signals. The calculation is displayed 

in equation (1). 

 ( ) ( ) ( )i ix t x t w t= +  (1) 

In equation (1), ( )x t  signifies the original signal. 

( )iw t  represents independent white noise. ( )ix t  

represents the signal after the i -th addition of noise. 

Each group of signals undergoes EEMD 

decomposition to obtain several IMFs components, 

as displayed in equation (2). 

 
1

( ) ( ) ( )i

n

ij i

j

IMF t r tx t
=

= +  (2) 

In equation (2), ( )ijIMF t  represents the j -th 

IMF component obtained from the i -th 

decomposition. ( )ir t  represents the remaining 

residuals. After completing the EEMD 

decomposition, to achieve accurate identification 

and classification of bearing fault characteristics, 

SVM is further introduced as a fault classification 

model. SVM can effectively distinguish fault 

features of various categories by constructing the 

optimal classification hyperplane. The classification 

principle diagram of SVM is shown in Figure 5. 

 

Fig. 5. SVM classification principle 

schematic diagram 

 

As shown in Figure 5, the red dots and blue 

squares represent samples of different categories. 

The dashed line H  represents the optimal 

classification hyperplane, and the solid lines 
1H  and 

2H  represent the boundaries of the classification 

interval. The two types of sample points are 

distributed on both sides of the boundary. The 

classification interval is defined as the distance 

between two boundaries 
1H  and 

2H , i.e. 
1 2( )d d+ . 

Among them, the data points closer to the decision 

boundary are support vectors. To define this decision 

boundary, it is generally approximated by 

calculating 
1 2( )d d+ , as shown in equation (3). 

 {( , ) 1,2, , }, , {1, 1}i i i iD x y i n x R y= =   −

 (3) 

In equation (3), D  signifies a complete dataset. 

ix  and 
iy  respectively signify two 2D data points 

on the dataset. The dataset is correctly classified as a 

straight line, as displayed in equation (4). 

 
1

2

1

1

wx b

wx b





+ =

+ = −
 (4) 

In equation (4), w  and b  represent the weights 

and biases of the samples belonging to the given 

dataset, respectively. 
1x  and 

2x  represent the 

support vectors on the positive and negative class 

boundaries, respectively. The distance between 1H  

and 
2H  and the decision boundary is calculated, as 

shown in equation (5). 
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After taking the derivative of equation (5), the 

classification optimization objective of the feature 

vector is represented by the SVM, as displayed in 

equation (6). 

 
2

1

1
min

2

N

total i

i

M w C 
=

= +   (6) 

In equation (6), 
i  signifies the relaxation 

variable of the i -th data point. C  signifies the 

penalty coefficient. 
totalM  represents the final time-

domain signal classification feature of rolling 

bearings. 

 

2.2. Construction of rolling bearing fault 

diagnosis model integrating improved GWO 

After collecting specific motor rolling bearing signal 

data, the signals are decomposed and reconstructed 

using the EEMD method, and relevant features are 

extracted. After combining SVM for data classification 

and diagnosis, although SVM shows good accuracy in 

classification tasks, its performance is still affected to 

some extent by model hyperparameters, such as penalty 

factors, kernel function parameters, and input feature 

selection. If the hyperparameter selection is improper, it 

may lead to a decrease in classification accuracy or 

insufficient model generalization ability [19]. For this 

purpose, GWO is introduced to optimize the 

hyperparameters of SVM models. Compared to 

traditional grid search or particle swarm optimization 

algorithms, GWO has higher efficiency and 

convergence in solving multidimensional parameter 

optimization problems. The gray wolf position update in 

GWO is shown in Figure 6 [20]. 

During the hunting process in Figure 6, individuals in 

the gray wolf population has three levels, namely α, β, 

and δ, representing the best, second, and third solutions 

in the population, respectively, and represented by 

green, yellow, and blue colors. Among them, the 

ordinary wolf, also known as the red individual, 

calculates its new position based on its relative position 

with these three key individuals, which includes 

calculating distances D , D , and D  as well as 

adjusting its direction. Finally, the search for the optimal 

solution is completed by approaching the prey through 

multiple iterations. The operation process of GWO is 

shown in Figure 7. 

 

Fig. 6. GWO location update diagram 

 

 

As shown in Figure 7, firstly, the algorithm 

randomly initializes the position and related 

parameters of the grey wolf population, such as 

population size and control parameters. 

Subsequently, the current positions of individuals in 

the grey wolf population are evaluated using fitness 

functions. The top three individuals with the best 

fitness are taken as α, β, and δ, respectively. In each 

iteration, the position of the regular wolf will be 

dynamically updated on the basis of the guidance 

information of the α, β, and δ. The iterative process 

performs until predetermined termination conditions 

are satisfied, like reaching the maximum iteration or 

convergence of fitness to the optimal value. The 

expression for updating individual positions is 

displayed in equation (7).  

( ) ( ( ) ( ) ( ))
1

1
3

X k X k X k X k  + = + +
 (7) 

In equation (7), ( )1X k +  signifies the position 

vector of the gray wolf in the 1k + -th. ( )X k , 

( )X k  and ( )X k  signify the position vectors of α, 

β, and δ in the k -th iteration. At this point, after 

continuous optimization iterations, the final position 

is updated, as displayed in equation (8). 

 

 
 

Fig. 7. GWO operation flow 
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( ) ( )

( )

1

( )

i p G

G p i

X k X k A d

d E X k X k

+ = − 

=  −



  (8) 

In equation (8), )1(iX k +  signifies the new 

position of the i -th gray wolf in the 1k + -th. 

)(pX k  signifies the position of the leader wolf α, β, 

or δ in the k -th. A  and E  both signify constants. 

a  represents a linearly decreasing regulatory factor. 

Gd  signifies the distance between the grey wolf and 

its prey. However, as the highest ranking level in the 

pack of wolves, α wolves rely too much on the 

current optimal solution and have local optima, 

especially in high-dimensional and non-convex 

problems, which may lead to a decrease in global 

search ability and affect the overall optimization 

effect. To this end, a backup location strategy is 

designed for α wolves. A random perturbation 

mechanism is introduced to generate new 

exploration points near the current location of α 

wolves, improving the search ability of the 

population. The calculation for generating backup 

positions is displayed in equation (9). 

 1,1( ) ( )newX X X X rand    = +  − +  −  (9) 

In equation (9), newX  and X  signify the 

backup position and current iteration position of α 

wolf, respectively. X   and X  respectively signify 

the positions of β wolf and δ wolf in the current 

iteration.   represents the regulatory factor that 

controls the balance between global and local search. 

  represents the disturbance intensity factor. The 

distance correction is shown in equation (10). 

 
new new

preyd X X = −  (10) 

In equation (10), newd  signifies the distance 

between the backup position and the prey. 
preyX  

signifies the prey position. In addition, the study 

introduces dynamic adaptive guidance factors to 

flexibly adjust the impact weights of the three factors 

on population search according to different iteration 

stages. Specifically, increasing the weight of α wolf 

in the early stages realizes global exploration, while 

increasing the weight of β wolf and δ wolf in the later 

stages enables local development. The calculation 

for dynamically guiding factor weight is shown in 

equation (11). 

 

max

max

max

( ) 1

( ) 1

( ) 1

k
k

K

k
k

K

k
k

K











 


= −




= −



= − 
  (11) 

In equation (11), ( )k , ( )k , and ( )k  

respectively represent the guiding factors of α, β, and 

δ at the k -th iteration.   represents the adjustment 

parameter used to control the guiding proportion of 

β wolf and δ wolf. 
maxK  represents the maximum 

number of iterations. At this point, the improved 

position update is shown in equation (12). 

 
( ) ( ) ( ) ( ) ( ) ( )1iX k k kX X k k X k      +  + = +

 (12) 

According to equation (12), the position of gray 

wolf individual X
i

 in the 1k + st generation can be 

obtained. 

 

3. RESULTS 

 

3.1. Performance testing of the new fault 

diagnosis model for motor rolling bearings 

To validate the new motor rolling BFD model, 

the CPU is set to Intel Core i7-10700K, the base 

frequency is 3.8 GHz, the GPU is NVIDIA GeForce 

RTX 3080, the video memory is 10 GB, the memory 

is 32 GB, and the operating system is Windows 10. 

The Case Western Reserve University Bearing Data 

Center Dataset (CWRU) and the Intelligent 

Maintenance Systems Bearing Dataset (IMS) are 

taken as the testing data sources. The CWRU is 

simulated using an electric motor fault simulator, 

collecting vibration signal data including normal 

state, inner ring fault, outer ring fault, and rolling 

element fault. The IMS dataset is collected 

throughout the entire life cycle of bearings, 

containing vibration signals of multiple bearings 

from normal state to failure. The data collection 

environment is close to the real industrial 

environment. The study first conducts 

hyperparameter selection tests on the three guiding 

factors of α, β, and δ, namely ( )t , ( )t , and 

( )t . The test results are shown in Figure 8. 

Figure 8 shows the test results of ( )t , ( )t , 

and ( )t . As shown in Figure 8, when the ( )t  is 

0.5, the convergence speed was the fastest, and the 

final loss value stabilized at around 0.05. In other 

values, the convergence speed was significantly 

slower, especially when the value was 0.1, the Loss 

value remained above 0.15 after 700 iterations. For 

( )t , when the value was 0.4, the final loss value 

of the model dropped to around 0.08, demonstrating 

optimal convergence. When the value was 0.8, the 

convergence was unstable and the final loss value 

remained around 0.2. For ( )t , at 0.7, the model 

exhibited the best convergence speed and stability, 

with a final loss value of approximately 0.07. Other 

values may lead to premature convergence, resulting 

in a final loss value of around 0.12. Based on the 

above analysis, the optimal values of the guidance 

factors for α, β, and δ are selected as 0.5, 0.4, and 

0.7, respectively, to ensure the convergence speed 

and optimal performance. The study continues to 

conduct ablation tests on the final IGWS-SVM 

model, as presented in Figure 9. 
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Fig. 8. Hyperparameter selection test result 

 

Figure 9 (a) displays the results in the CWRU 

dataset, and Figure 9 (b) displays the results in the 

IMS dataset. In Figure 9 (a), the classification 

accuracy of using SVM alone tended to stabilize 

after 200 iterations, ultimately reaching about 

80.1%. The GWO-SVM model combined with 

GWO has improved classification performance 

compared to the SVM model, with an accuracy rate 

of approximately 90.2% after 300 iterations. The 

improved IGWS-SVM model further improved the 

classification performance, with a classification 

accuracy of 97.3% in 180 iterations, demonstrating 

 

 

Fig. 9. Ablation test results 

 

faster convergence speed and higher accuracy. 

According to Figure 9 (b), in the ablation test on the 

IMS dataset, although there was a significant 

improvement in the classification accuracy in SVM 

alone and the GWO-SVM model, there were still 

shortcomings compared to the final IGWS-SVM 

model. Especially in 310 iterations, IGWS-SVM 

achieved a classification accuracy of 96.6%. This 

indicates that improving GWO and combining it 

with SVM can significantly enhance the 

effectiveness of signal detection and classification. 

The study introduces other advanced methods, such 

as Deep Residual CNN (DR-CNN), Multiscale CNN 

(MSCNN), and VMD-SVM, as presented in Table 1, 

taking precision, recall, F1 score, and running time 

as indicators for classification. 

According to Table 1, in the CWRU dataset, the 

improved model achieved a classification precision 

of 95.73%, a recall rate of 94.58%, an F1 score of 

95.18%, and a running time of only 8.33 seconds. 

Compared with VMD-SVM, it improved 
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classification performance by 5.52%, 2.44%, and 

2.15%, respectively, and shortened running time by 

about 2.12 seconds. In the IMS dataset, the improved 

model had classification precision, recall, and F1 of 

95.02%, 93.22%, and 94.14%. Compared to the 

second best performing VMD-SVM, it improved by 

3.45%, 1.94%, and 2.77%, respectively, and reduced 

running time to 8.07 seconds. This indicates that the 

proposed method not only achieves significant 

improvement in classification performance 

indicators, but also demonstrates high computational 

efficiency, verifying its superiority and practical 

application value. 

 
Table 1. Multiple indicator test results 

Data

set 

Algorit

hm 

Precisio

n/% 

Recall

/% 

F1/

% 

Runni

ng 

time/s 

CW

RU 

DR-

CNN 
88.44 85.83 

87.

02 
12.34 

MSCN

N 
89.37 90.19 

90.

73 
14.67 

VMD-

SVM 
90.21 92.14 

93.

03 
10.45 

Our 

model 
95.73 94.58 

95.

18 
8.33 

IMS 

DR-

CNN 
87.44 82.37 

84.

45 
14.21 

MSCN

N 
89.86 87.56 

86.

48 
13.58 

VMD-

SVM 
91.57 91.28 

91.

37 
11.34 

Our 

model 
95.02 93.22 

94.

14 
8.07 

 

3.2. Simulation testing of the fault diagnosis 

model for motor rolling bearings 

The proposed model is tested in practical 

applications using the CWRU dataset as an example. 

The motor test bench uses a motor power of 1521W 

and a sampling frequency of 12 kHz. The motor 

output position uses a pair of torque sensors to 

collect the output data, and the fault implantation 

method adopts single point damage of electric 

discharge machining. Table 2 displays the specific 

experimental motor parameters. 

On the basis of the motor parameters, signal 

classification tests are conducted on four conditions, 

as presented in Figure 10. 

 

Figure 10 shows the signal classification test 

results of DR-CNN, MSCNN, VMD-SVM, and the 

proposed model for four types of operating states. 

From Figure 10, there was partial overlap between 

the signals of normal operation and rolling element 

faults in the classification results of the DR-CNN 

method, resulting in significant misclassification. 

MSCNN has slightly improved classification 

accuracy, but there are still significant confusion 

areas between inner and outer ring faults. In addition, 

the classification performance of VMD-SVM has 

improved compared to the previous two methods, 

especially in distinguishing between inner ring faults 

and rolling element faults. However, the proposed 

model has the clearest classification boundary. The 

signal distribution of the four operating states has 

good clustering effect without obvious overlap, 

indicating that the IGWS-SVM has higher accuracy 

and reliability in fault classification tasks. The 

improved model is more effective in extracting fault 

features and achieving accurate classification. 

Finally, the existing fault diagnosis models are 

compared and tested using Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and 

Mean Absolute Error (MAE) as reference indicators, 

as presented in Table 3. 

 

 
Table 2. Experimental motor parameters 

Collection 

location 
Speed (r/min) Fault type 

Fault depth 

(mm) 

Fault width 

(mm) 

Sampling 

frequency (Hz) 

Driving end 1500,1550,1600 No fault No No 12000 

Driving end 1500 
Outer ring 

pitting 
0.18 0.05 48000 

Driving end 1550 
Outer ring 

spalling 
0.36 0.08 48000 

Driving end 1600 
Outer ring 

pitting 
0.54 0.11 48000 

Driving end 1500 
Inner ring 

pitting 
0.17 0.04 48000 

Driving end 1550 
Inner ring 

spalling 
0.36 0.08 48000 

Driving end 1600 
Inner ring 

pitting 
0.58 0.11 48000 

Driving end 1500 
Rolling element 

pitting 
0.17 0.04 48000 

Driving end 1550 
Rolling element 

spalling 
0.35 0.07 48000 

Driving end 1600 
Rolling element 

pitting 
0.65 0.18 48000 
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Fig. 10. Signal classification test for different fault types 

 

Table 3. Diagnostic error results 

Fault type Method MSE RMSE MAE Mean time to diagnosis/s 

Outer ring pitting 

DR-CNN 0.134 0.366 0.287 12.45 

MSCNN 0.119 0.345 0.268 10.92 

VMD-SVM 0.093 0.304 0.237 9.21 

Our model 0.072 0.268 0.189 7.33 

Inner ring pitting 

DR-CNN 0.147 0.383 0.299 13.02 

MSCNN 0.131 0.362 0.278 11.11 

VMD-SVM 0.101 0.318 0.245 9.83 

Our model 0.082 0.286 0.192 7.58 

Rolling element spalling 

DR-CNN 0.162 0.402 0.312 14.25 

MSCNN 0.148 0.384 0.298 11.89 

VMD-SVM 0.114 0.337 0.261 10.33 

Our model 0.094 0.306 0.215 8.04 

 

According to Table 3, the proposed model 

showed the best performance for outer ring faults, 

with MSE, RMSE, and MAE of 0.072, 0.268, and 

0.189, respectively, all significantly better than other 

comparison models. At the same time, the diagnosis 

time was the shortest, only 7.33s, far lower than the 

12.45s of DR-CNN. This indicates that the improved 

IGWS-SVM model improves accuracy. In the 

testing of rolling element spalling faults, the 

proposed model proposed performed equally well, 

with RMSE and MAE of 0.306 and 0.215, 

respectively, which were reduced by about 9.2% and 

17.6% compared to VMD-SVM. In addition, the 

average diagnosis time was 8.04s, which was 6.21s 

less than the traditional deep learning method DR-

CNN, reflecting the advantage of the model in 

complex fault feature processing. Overall, the 

IGWS-SVM model outperforms other methods in 

various indicators, especially on high accuracy and 

low consumption, verifying the effectiveness and 

robustness for rolling BFD tasks. 

 

4. CONCLUSION 

 

Aiming at the shortcomings of traditional 

methods in extracting non-stationary signal features 

and optimizing hyperparameters for rolling BFD, a 

signal reconstruction and classification method on 

the basis of EEMD and SVM was designed, and an 

improved GWO was introduced for SVM 

optimization. A new type of electric motor rolling 

BFD model was proposed. When the three types of 
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guiding factors of α, β, and δ were 0.5, 0.4, and 0.7, 

the loss function value of the model reached a 

minimum of 0.05, exhibiting better convergence 

speed and stability. Compared to individual SVM, 

GWO, or GWO-SVM, the IGWO-SVM proposed in 

the study achieved a classification accuracy of up to 

96.6%, and its performance was significantly 

improved. At this point, the minimum number of 

iterations was only 180. Compared with other 

advanced diagnostic methods, the model had the best 

precision of 95.73%, the best recall of 94.58%, the 

best F1 of 95.18%, and the shortest running time of 

8.07 seconds. The classification and detection in the 

CWRU dataset showed that the signal distribution 

under the proposed model had good clustering effect 

and no obvious overlap phenomenon was observed. 

Quantitative data showed that the proposed model 

had lower detection errors for three types of faults, 

especially for outer faults. Its MSE, RMSE, and 

MAE were 0.072, 0.268, and 0.189, respectively, 

outperforming other comparison models. Due to its 

modular design, the proposed diagnostic framework 

has a high degree of scalability. If appropriate signal 

features are extracted, IGWO optimization and SVM 

classification can be applied to other fault detection 

tasks, such as gear defects, rotor unbalance, and even 

non mechanical anomalies such as power quality 

disturbances. In summary, the IGWS-SVM rolling 

bearing fault diagnosis model proposed by the 

research institute has outstanding performance in 

accuracy and robustness, and has significant 

advantages. By introducing dynamic guidance 

factors and backup position strategies, the global 

search capability and local convergence efficiency of 

the GWO algorithm have been effectively improved, 

avoiding the model from falling into local optima. 

By combining the structure of EEMD and SVM, 

efficient extraction and classification of non-

stationary vibration signal features have been 

achieved, enhancing the model's adaptability to 

complex working conditions. However, this method 

still has certain limitations, and its diagnostic 

performance largely depends on the quality of 

feature decomposition. Improper EEMD parameter 

settings may affect the stability of the results. In the 

future, we will further explore end-to-end deep 

learning architectures to simplify model processes, 

enhance real-time performance, and deployment 

flexibility. 
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