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Abstract 
The accurate detection and analysis of the P-QRS-T complex in electrocardiogram (ECG) signals are crucial for 

diagnosing and managing cardiac diseases. This paper presents a practical approach to ECG signal processing by 
integrating multiple filter fusion techniques to enhance detection accuracy. Recognizing the specific challenges at 
sea, including motion-induced noise and electromagnetic interference, the study examines the performance of low-
pass, high-pass, and Chebyshev Type II filters in improving ECG signal quality. Using a dataset generated by a 
Dynamic Model for Synthetic ECG Signal Generation, the analysis evaluates the effectiveness of these filters under 
various noise conditions, such as baseline drift, electrode contact noise, and muscle noise. The proposed method 
combines filtered outputs from multiple channels: P and T waves are extracted using low-pass and high-pass filters, 
while the QRS complex is identified through the Chebyshev Type II filter. Results indicate improved detection 
accuracy, with performance varying based on the type of noise present. While not introducing a novel algorithm, 
the study demonstrates that the fusion of established filtering techniques offers a fast and reliable solution suitable 
for maritime health monitoring systems. However, these results are derived from simulated signals under controlled 
experimental settings and therefore reflect proof-of-concept performance rather than clinical validation. 
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1. INTRODUCTION 
 

The precise detection of the P-QRS-T complex in 
electrocardiogram (ECG) signals is fundamental for 
the diagnosis and management of cardiac diseases. 
This complex, which represents the heart's electrical 
activity, is critical for assessing cardiac function. 
However, accurate detection remains a challenge due 
to the presence of various types of noise and artifacts 
in ECG signals. These difficulties are further 
exacerbated in maritime environments such as ships 
and offshore platforms, where continuous movement 
and electromagnetic interference can significantly 
degrade signal quality. 

The need for robust ECG monitoring is 
underscored by the high prevalence of cardiovascular 
disease (CVD) among maritime professionals, as well 
as in other high-stress occupational groups [14], [17]. 
Historical data show that between 1919 and 2005, 
approximately 19.8% of natural deaths on British 
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merchant ships were attributed to cardiovascular 
causes [21]. Similarly, a study of Swedish seafarers 
from 1984 to 1988 found that 44% of medical incidents 
were CVD-related [14]. This concern is not limited to 
the maritime sector: as highlighted in [22], 
cardiovascular diseases are the leading global cause of 
mortality, accounting for approximately 17.9 million 
deaths annually, according to the World Health 
Organization [26]. These statistics underscore the 
urgency of implementing effective monitoring and 
early intervention strategies, particularly in high-risk 
professions. 

To address these challenges, the present study 
explores the application of several filtering techniques 
– including low-pass, high-pass, and Chebyshev Type 
II filters – in combination with a lightweight [15], [16], 
explainable detection approach for P-QRS-T 
complexes.  

Although deep learning models such as 
convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs) [11], [13] have shown 
impressive accuracy in ECG analysis, they typically 
require large volumes of labeled data and substantial 
computational resources, which may not be feasible in 
shipboard or remote environments. In contrast, our 
method is designed to operate efficiently in low-
resource settings, offering a practical solution for 
maritime use. 

Recognizing the limitations of traditional clinical 
monitoring in maritime contexts, this study also 
outlines the conceptual design of an IoT-based 
platform for the acquisition, processing, and storage of 
physiological signals. Such a system would enable 
continuous, real-time monitoring of crew health by 
integrating onboard sensor networks with advanced 
signal processing algorithms and secure cloud-based 
analytics. The platform could enhance medical 
autonomy at sea and improve the response to cardiac 
events in isolated environments. 

The proposed filter fusion method combines data 
from multiple channels to enhance the detection of the 
P-QRS-T complex, offering a fast and relatively 
accurate alternative to computationally intensive AI 
solutions. While the approach is tailored for maritime 
conditions, it also holds promise for broader 
applications in medical diagnostics and real-time 
physiological monitoring, as shown in prior works [1], 
[5], [10], [15], [22], [25], [27], [32]. 

Although the current study does not claim to 
introduce a novel algorithm, it contributes by 
demonstrating a practical and effective solution for 
ECG analysis in challenging environments. The 
findings support further exploration and refinement of 
this method within both maritime telemedicine and 
general healthcare systems. The novelty of this work 
lies not in proposing a new detection algorithm, but in 

showing how classical filters can be effectively 
combined and adapted for resource-constrained 
maritime healthcare applications. 
 
2. METHODS AND MATERIALS 
 

ECG signal analysis plays a crucial role in 
diagnosing and treating cardiovascular diseases. The 
P-QRS-T complex in the ECG signal reflects the 
heart’s electrical activity, providing valuable insights 
into cardiac function. However, the accurate detection 
of the P-QRS-T complex is often hindered by noise 
and signal artifacts. 

Some researchers focus on ECG extraction from 
electronic signals and images in the Python 
environment [32], while others explore alternative 
filtering techniques to improve signal clarity and 
detection accuracy [2], [14]. 

The aim of this study is to demonstrate that the 
combination of classical filters, when applied in 
specific noisy environments, can provide stable and 
predictable performance in the automatic detection of 
P-QRS-T complexes. 

To address this challenge, the Multiresolution 
Teager Energy Operator (MTEO) is employed [3], 
originally developed for signal processing tasks such 
as electromyography (EMG) analysis. MTEO is a 
multiresolution extension of the Teager Energy 
Operator (TEO), capable of effectively enhancing the 
signal-to-noise ratio in ECG signals. It is calculated 
using the following equation [3]: 

𝑌௞(𝑛𝑇) = 𝑥ଶ(𝑛𝑇) − 𝑥(𝑛𝑇 − 𝑘𝑇)𝑥(𝑛𝑇 + 𝑘𝑇) (1) 

where: 𝑌௞(𝑛𝑇) is the filtered signal; 
 𝑛 = 1,2,3 … 𝑁; 

𝑁 is the total number of samples. 
The method for detecting the P-QRS-T complex in 

an ECG signal consists of several stages: 
 MTEO calculation; 
 Baseline definition; 
 R-peak location; 
 Identification of Q and S waves preceding and 

following the R-peak, respectively; 
 Detection of the P-wave peak. 

By combining data from multiple channels - e.g., 
using low-pass and high-pass filters - the detection of 
the P-QRS-T complex can be significantly improved. 

The use of the MTEO, in conjunction with 
additional signal processing techniques, contributes to 
more accurate identification of the P-QRS-T complex, 
ultimately improving the diagnostic and therapeutic 
accuracy for cardiovascular diseases. 

In recent years, numerous techniques have been 
proposed to refine P-QRS-T detection, as presented in 
[3], [19], and [22]. These methods frequently apply 
low-pass filters to suppress baseline drift and high-pass 
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filters to eliminate high-frequency noise. In particular, 
the Chebyshev Type II filter has been highlighted in 
for its superior performance in attenuating narrowband 
noise. Its amplitude response is defined as follows 
[31]: 

|𝐻(𝑗𝜔)| =  
ଵ
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ഘ

ቁ
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where: 𝐶ே(𝑥) is the Chebyshev polynomial of the 
second kind; 
𝜀 is a constant (ripple factor), which controls the 
amount of attenuation ripple in the stopband; 
𝜔 is angular frequency of the signal; 
𝜔௦ is the stopband edge frequency; 
𝑁 is the order of the filter. 

A Butterworth filter is also employed as a low-pass 
filter due to its maximally flat frequency response in 
the passband. Its frequency response is given by well-
known expression: 
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where 𝜔௖ the cutoff angular frequency of the filter. 
To design an analog filter, the transfer function 

H(s) in the Laplace domain must be determined. 
Substituting s = jω in the transfer function yields: 

𝐻(𝑠)𝐻(−𝑠)௦ୀ௝ఠ= 
ଵ
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ೕഘ೎
ቁ

మಿ     (4) 

The filter poles – roots of the denominator 
polynomial – are located at the following points in the 
s-plane: 

𝑠 = 𝑗𝜔௖(−1)
భ

మಿ =  𝜔௖𝑒
ೕഏ(మೖశಿషభ)

మಿ  (5) 

where 𝑘 = 0,1,2 … 2(𝑁 − 1). 
To further enhance P-QRS-T detection, fusion of 

information from multiple filter outputs (Butterworth 
and Chebyshev II) is implemented. 

This study identifies three primary sources of ECG 
noise: 
 Baseline drift, mainly caused by respiratory 

movement; 
 Poor electrode contact, due to displacement or 

variation in skin-electrode impedance; 
 Muscle noise, resulting from skeletal muscle 

activity. 
Noise from power line interference is not 

considered in this study, as it consists of well-known 
fundamental and harmonic frequencies that can be 
easily filtered. 

The dataset used comprises synthetic ECG 
signals generated by the model described in [17], 
which allows the simulation of varying RR intervals. 
Each one-minute signal (sampled at 360 Hz) is 
superimposed with noise selected from a database 
corresponding to the three major sources: baseline 
drift, poor electrode contact, and muscle noise. 

Segments with similar spectral characteristics are 
selected to ensure realism. 

Three groups of mixed signals are generated with 
signal-to-noise ratios (SNRs) of 5 dB, 10 dB, and 15 
dB. Specifically: 

 9 signals with added baseline drift; 
 9 signals with poor electrode contact noise; 
 9 signals with muscle noise. 
In addition to the synthetic ECG signal with sinus 

rhythm, the dataset includes an array specifying the 
sample indices corresponding to each wave component 
(P, Q, R, S, T), facilitating performance evaluation. 
The accuracy of automatic P-QRS-T detection is 
assessed for each wave using the following formula, 
[8], [24]: 

𝐴[ % ] = 100
∑ ்௉ 

 

∑ ௉௘௔௞௦ 
   

  (6) 

where: 𝐴[ % ] represents the correctly detected peaks 
of the corresponding wave from P-QRS-T complex;  

 𝑇𝑃 – the number of correctly identified peaks 
of the corresponding wave from the P-QRS-T 
complex; 

 𝑃𝑒𝑎𝑘𝑠 represent the array containing 
information about each of the peaks of the 
corresponding wave from P-QRS-T. 

To compare performance before and after filtering, 
the following formula is applied [8], [23]: 

𝐷 [%] = ൫𝐴଴ −  𝐴௙൯    (7) 

where: 𝐷[ % ] represents a scalar in percentages of the 
peaks not detected by the system for automatic 
analysis of ECG;  

 𝐴଴ – the percentage of correctly detected 
peaks before filtering; 

 𝐴௙ – the percentage of correctly detected 
peaks after filtering – the error is automatically 
compensated for. 
 
3. IMPROVED ECG COMPLEX DETECTION 
 

The proposed approach for enhancing the accuracy 
of automatic P-QRS-T complex detection involves the 
application of a sequence of filters, followed by 
independent automatic waveform detection 
algorithms. This methodology is supported by 
experimental results, which demonstrate improved 
detection of the P and T waves across all signal types 
and at all signal-to-noise ratio (SNR) levels when a 
combination of low-pass and high-pass filters is 
applied. Additionally, superior detection of the QRS 
complex is achieved through the use of a Chebyshev 
Type II filter. 

To illustrate the procedure, Figure 1 presents the 
signal processing steps as a series of discrete blocks. 
Initially, each signal undergoes filtering, either 
through a low-pass and high-pass filter combination or 
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via a Chebyshev Type II filter. Each filtered output is 
then independently processed using automatic 
waveform detection algorithms. 

In the final integration stage, information from the 
P-QRS-T complex is consolidated: the P and T wave 
data are obtained from signals processed with the low-
pass and high-pass filters, while QRS complex data are 
extracted from signals processed using the Chebyshev 
filter. The combined data are subsequently stored in a 
database for further analysis. 

Data fusion is achieved through a logical 
combination of detection time windows. Specifically, 
if a P or T wave is detected within a defined time 
window in the LP + HP channel, and a QRS complex 
is detected within the same window in the Chebyshev 
channel, the event is identified as a valid P-QRS-T 
complex. A tolerance window of ±50 milliseconds 
around the reference value is applied for 
synchronization and validation. 

 
ADC

Low and 
High Filter

Chibyshev 
type II Filter

Automatic detection 
of P-QRS-T complexes

Automatic detection 
of P-QRS-T complexes

Data fusion

 
 

Fig. 1. Block diagram illustrating the filter fusion 
process for P-QRS-T complex detection 

 
Fig. 1 also illustrates an example scenario of ECG 

signal acquisition and processing using the proposed 
filter fusion technique. In real-world maritime 
conditions, such a setup can be embedded into onboard 
medical kits, wearable sensors, or portable diagnostic 
equipment. 

This approach shows strong potential for 
improving the accuracy of automatic P-QRS-T 
complex detection and may have significant 
implications for the diagnosis and treatment of cardiac 
conditions. Nevertheless, further research is required 
to comprehensively validate its effectiveness and to 

optimize the parameters of both the filtering methods 
and waveform detection algorithms. 
 
4. METHODOLOGY 
 

The simulations were conducted in MATLAB, 
combining customized in-house code with publicly 
available scripts from MATLAB toolboxes (signal 
processing and statistical functions such as filtering, 
peak detection, and error metrics). All source files are 
available at [12]. The complete processing pipeline is 
illustrated in Fig. 2. 

 

Imput Data
(clean ECG signals, ipeaks, etc.)

Noise Injection
(ADDnoise.m)

Noisy ECG Generation 
(synthetic ECG + realistic noise)

Filtering Techniques
(Low/High pass, Chebyshev Type II)

Wave Delineation & Detection 
(MTEO_qrst.m)

Results Export & Visualization

 
Fig. 2. Block diagram of the simulation process 

implemented in MATLAB 
 

  Input Data 
Clean ECG signals were loaded from the file 

ecgTable.mat. The dataset (generated in [17]) 
includes: 
- ecgSignal: baseline ECG signals (noise-free), 
- ipeaks: reference R-peak locations (ground truth), 
- auxiliary parameters such as mean heart rate 

(hrMean) and noise descriptors (bw, em, ma). 
These clean signals provide both the input for noise 

injection and the reference for subsequent evaluation. 
 Noise Injection 
Additive noise was loaded from the file 

NOISE_bw1-2.em3-4.ma5-6.mat, containing three 
realistic components: 
- Baseline wander (BW); 
- Electromyographic noise (EM); 
- Muscle artifacts (MA). 
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The function ADDnoise iteratively scales and adds 
the selected noise until the desired signal-to-noise ratio 
(SNR) is reached. 
 Noisy ECG Generation 

The outcome is a synthetic ECG signal degraded 
with realistic noise, closely approximating field 
conditions in ambulatory or clinical monitoring 
scenarios. This noisy signal forms the baseline for all 
filtering experiments. 
 Filtering Techniques 

To suppress noise while preserving morphological 
features, three filtering approaches were implemented: 
- Discrete Wavelet Transform (DWT) for 

multiresolution denoising; 
- Low–High pass cascaded filtering (Butterworth 

filters) for baseline and high-frequency noise 
removal; 

- Chebyshev Type II filter with sharp transition and 
controlled stopband attenuation. 
For each filtered signal, quantitative metrics were 

computed, including: 
 Wave Delineation and Detection 

Filtered signals were processed using the 
Multilevel Teager Energy Operator (MTEO_qrst) 
algorithm, which identifies the fiducial points of the 
ECG: R, Q, S, T, and P waves. The detected peaks 
were compared against the reference annotations 
(ipeaks), yielding detection accuracy measures. An 
expert evaluation module (expert.m) quantified 
improvements or degradations relative to both the 
noisy and the clean reference signals. 
 Results Export and Visualization 

All intermediate and final results were stored in 
structured .mat and .csv files, indexed by noise type 
and filtering method. The most relevant outputs are 
provided in Appendix A. Optional plotting routines 
were also implemented to visualize filtered signals and 
peak detections, thereby supporting both quantitative 
evaluation and qualitative inspection. 
 
5. RESULTS 
 

The results of applying a method that combines 
information from two channels for the automatic 
detection of P-QRS-T complexes are presented 
Appendix 1. 

This approach, as reflected in the tables, involves 
merging data from two filtered channels: one filtered 
with a Chebyshev Type II filter, and the other with a 
combination of low-pass and high-pass filters. The 
automatic detection algorithm is applied independently 
to both channels. The P and T waves are extracted from 
the low-pass and high-pass filtered channel, while the 
QRS complex is extracted from the Chebyshev Type 
II filtered channel (details of this extraction process are 
beyond the scope of this paper). 

The tables present data for individual signals, 
grouped by input signal-to-noise ratio (SNR) levels of 
5 dB, 10 dB, and 15 dB. Signals are further categorized 
by the type of noise added: baseline drift, electrode 
contact noise, and skeletal muscle noise. 

Mean values are calculated for columns DP and TD 
on the right side, corresponding to the low-pass and 
high-pass filter channel, and for columns DQ, DR, and 
DS on the left side, corresponding to the Chebyshev 
Type II filter. The average information losses for all 
signals of each noise type are: 
 0.08 % for baseline drift noise, 
 10.07 % for electrode contact noise, 
 5.32 % for skeletal muscle noise. 

To assess the effectiveness of the proposed filter 
fusion technique in detecting ECG fiducial points-
specifically the P, QRS, and T waves – we conducted 
a performance analysis under three types of synthetic 
noise: baseline drift, poor electrode contact, and 
muscle noise. Detection accuracy was evaluated 
separately for each wave component. 

In addition to raw detection rates, we simulated 
classification outcomes to derive clinically meaningful 
metrics, including: 
 True Positives (TP): Correctly detected wave 

components; 
 False Positives (FP): Incorrect detections where 

no wave was present; 
 False Negatives (FN): Missed wave components; 
 True Negatives (TN): Correctly ignored non-

wave intervals. 
From these values, we computed the following 

metrics: 
 Sensitivity (Recall): TP/TP+FN; 
 Precision: TP/TP+FP; 
 F1 Score: The harmonic mean of precision and 

recall; 
 Accuracy: TP+TN/TP+FP+TN+FN. 

These metrics were especially evaluated for QRS 
complex detection, given its high clinical significance 
as a key segment of the ECG. 

Table 1 presents the results categorized by Noise 
Type, Wave Type, Mean Accuracy (%), and Standard 
Deviation (±). 

Noise Types: 
 Baseline Drift: Low-frequency fluctuations 

typically caused by respiratory activity. 
 Electrode Contact Noise: High-frequency 

disturbances resulting from poor electrode-skin 
contact or changes in skin impedance. 

 Muscle Noise: Broadband noise generated by 
patient muscular activity. 

 ECG Waves: 
 The analysis focuses on the primary components 

of the cardiac cycle: P, Q, R, S, and T waves. 
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 Metrics: 
 Mean Accuracy (%): The average percentage of 

correctly detected waves across multiple ECG 
recordings. (Fig. 3) 

 Standard Deviation (±): Indicates variability in 
detection accuracy across signals; lower values 
correspond to higher stability. 

Interpretations: 
 

Table 1. Detection Accuracy Summary by Noise Type 

Noise Type Wave Mean Accuracy 
Standard 
Deviation 

Baseline Drift P 1.2 0.5 

Baseline Drift Q 0.9 0.3 

Baseline Drift R 0 0 

Baseline Drift S 0 0 

Baseline Drift T 1.8 0.7 
Electrode 
Contact P 20.1 4.5 

Electrode 
Contact Q 12.4 3.2 

Electrode 
Contact R 0 0 

Electrode 
Contact S 5.5 1.8 

Electrode 
Contact T 18.3 3.9 

Muscle Noise P 14.9 3.1 

Muscle Noise Q 10.5 2.8 

Muscle Noise R 1.2 0.4 

Muscle Noise S 3.7 1 

Muscle Noise T 16.9 3 
 

 Baseline Drift: Under this noise condition, 
detection accuracy drops significantly. The Q, R, 
and S waves are not detected at all (0 %), while 
the P (1.2%) and T (1.8 %) waves show only 
minimal recognition. This suggests that the 
method fails to identify the QRS complex in the 
presence of baseline wander, indicating 
vulnerability to low-frequency distortions. 

 Electrode Contact Noise: Detection of P (20.1 %) 
and T (18.3 %) waves is relatively better. The Q 
and S waves are partially recognized, but the R 
wave – the critical component of the QRS 
complex – is completely missed (0 %). This 
highlights a significant limitation of the filter 
fusion method when dealing with abrupt or 
irregular artifacts caused by unstable electrode 
contact. 

 Muscle Noise: This noise type yields the best 
overall performance: P (14.9 %), T (16.9 %), Q 
(10.5 %), and even the R wave is detected, albeit 

with low accuracy (1.2 %). These results suggest 
that the proposed method is most robust against 
muscle noise. 

 Key Takeaways: 
 The method performs better at detecting P and T 

waves compared to the QRS complex. 
 It is particularly ineffective in detecting the R 

wave under baseline drift and electrode contact 
noise conditions. 

 Although the highest performance is observed 
under muscle noise, the detection accuracy for 
the QRS complex remains suboptimal. 

To further validate the performance of QRS 
complex detection, classifier behaviour was simulated 
using detection probabilities derived from the 
experimental results. Realistic values for True 
Positives (TP), False Positives (FP), False Negatives 
(FN), and True Negatives (TN) were generated under 
the three noise conditions. These values were 
subsequently used to construct: 
 A Receiver Operating Characteristic (ROC) 

curve, illustrating the trade-off between 
sensitivity (true positive rate) and false positive 
rate (Fig. 4-a); 

 A Precision-Recall (PR) curve, which provides 
valuable insight, especially for datasets 
exhibiting class imbalance (Fig. 4-b). 

 The results illustrated in Fig. 4 closely resemble 
those reported in [9], [28], supporting the 
consistency of the proposed approach with 
previous findings. The fusion technique achieves 
its highest performance under muscle noise, 
followed by electrode contact noise, while 
baseline drift poses the greatest challenge due to 
its low-frequency components that obscure signal 
peaks, particularly within the QRS complex. 

 The ROC and Precision–Recall curves highlight 
the effectiveness of the detection algorithm, 
reaching AUC values of 0.99 and 0.98 
respectively. These near-perfect results largely 
reflect the use of simulated datasets, strong 
filtering, and carefully selected experimental 
conditions. Such settings demonstrate 
functionality and computational efficiency more 
than clinical realism. In practice, performance 
would likely be lower due to noise, variability, 
and artifacts. 

 Precision-recall analysis further confirms the 
potential of the filter fusion method, especially 
when enhanced by adaptive decision thresholds 
or integrated into machine learning frameworks 
[20]. These findings suggest that although the 
filter fusion strategy provides a conceptually 
robust framework, its standalone robustness  
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Fig. 3. Detection Accuracy of ECG Wave Components by Noise Type 

 

a)       b) 
Fig. 4. ROC and Precision–Recall Curves for QRS Complex Detection (Simulated used data form Table 1). 

 
against varying noise types remains limited. To 
address these limitations, future research should 
explore hybrid approaches that integrate classical 
filtering techniques with deep learning models [4], [6], 
[29]. Such integration could enhance noise resilience 
and improve the reliable detection of ECG components 
– most critically, the QRS complex, which holds 
paramount clinical importance. 

As depicted in the tables and figures, the method 
combines information from two filtered signal 
channels, following strategies similar to those in [7], 
[18], [30]. One channel is processed with a Chebyshev 
Type II filter optimized for QRS complex detection, 
while the other employs low-pass and high-pass filters 
to extract the P and T waves. 

The dataset includes signals corrupted with 
baseline drift, electrode contact noise, and muscle 
noise at SNR levels of 5, 10, and 15 dB, with three 
signals per noise type and level. Each table entry 
corresponds to an individual signal, and the final 
column (ξ) indicates the average information loss (%) 
during data fusion. The arithmetic mean losses 
calculated across noise types are: 
 0.08 % for baseline drift, 
 10.07 % for electrode contact noise, and 
 5.32 % for muscle noise. 

 
 

6. CONCLUSION 
 
This study demonstrates the positive impact of 

filter fusion techniques on improving the automatic 
detection of P-QRS-T complexes in ECG signals 
recorded in maritime environments. The experimental 
results suggest that the combined use of low-pass, 
high-pass, and Chebyshev Type II filters contributes to 
improved accuracy in detecting key cardiac 
components – even under conditions specific to the 
maritime domain, such as motion-induced artifacts and 
electromagnetic interference. 

Key observations indicate that integrating multiple 
filtering strategies enhances signal clarity and supports 
more robust and dependable cardiac monitoring for 
seafarers. This improved detection capability has 
important implications for timely diagnosis and 
medical intervention during cardiac events at sea, 
thereby supporting the health, safety, and operational 
readiness of maritime personnel. 

Moreover, the study highlights the practical value 
of advanced ECG signal processing methods in the 
context of IoT-based health monitoring systems. When 
deployed in remote and dynamic environments – such 
as onboard vessels – these systems can offer improved 
real-time cardiac surveillance, enhancing medical 
autonomy and emergency response. 
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The differences in detection accuracy observed 
across various noise types suggest potential statistical 
relevance; however, formal significance testing was 
not conducted in this work. 

In conclusion, the application of filter fusion 
methods in ECG signal analysis presents a meaningful 
step toward improving maritime telemedicine. While 
the study does not introduce a novel algorithm, it 
showcases a practical and effective approach to 
addressing common challenges in ECG monitoring at 
sea and contributes to the development of reliable 
onboard healthcare and emergency systems for 
seafarers. 

The results of the proposed dual-channel merging 
method for detecting P-QRS-T complexes are 
encouraging. The average information loss remains 
low in signals affected by baseline drift (0.08 %) and 
skeletal muscle noise (5.32 %), with moderately higher 
values for electrode contact noise (10.07 %). These 
findings support the approach’s potential, although 
further refinement is warranted. 

While the study utilizes a synthetic ECG dataset 
with artificially added noise, future validation using 
real clinical data is necessary to assess its 
generalizability under operational maritime 
conditions. 

To summarize the practical implications of the 
proposed method, the main technical advantages and 
limitations are outlined in the table 2. 

 
Table 2. Pros and Cons of the Proposed Method 

Advantages  Limitations 
Lightweight and 
computationally 
efficient; suitable 
for embedded/IoT 

devices 

 Lower accuracy in 
QRS detection under 
certain noise types 
(e.g., contact noise) 

Does not require 
large datasets or 
complex model 

training 

 Performance is 
below state-of-the-
art AI in clinical-
grade applications 

Modular design; 
easy integration 

with existing IoT 
healthcare systems 

 Evaluated on 
synthetic data only; 

lacks real-world 
clinical validation 

 
Overall, this work provides a solid foundation for 

the continued development of automated ECG analysis 
systems adapted to the specific healthcare needs of 
seafarers. 
 
7. FUTURE WORK DIRECTIONS 

 
Future research will aim to enhance the proposed 

ECG signal processing approach through several key 
directions. First, integrating adaptive filtering 
techniques with real-time learning algorithms is 

expected to improve the robustness of QRS complex 
detection under variable noise conditions. Validation 
on real maritime ECG datasets will be essential to 
assess the generalizability and clinical relevance of the 
method in operational settings. 

In addition, the development of hardware 
prototypes for onboard deployment will support real-
time implementation in maritime telemedicine 
systems. Efforts will also be directed toward 
minimizing detection errors, particularly for QRS 
complexes, and expanding the system’s applicability 
to broader physiological monitoring tasks (e.g., 
respiratory or muscular activity). 

A summarized roadmap for future development 
includes: 
 Refining filter parameters and detection 

algorithms; 
 Expanding the dataset for broader statistical 

analysis; 
 Exploring integration with deep learning models 

and real-time onboard systems; 
 Evaluating long-term performance in real-world 

maritime settings. 
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Appendix A 

Table A 1. Result for Baseline drift. 

Result of automatic detections after Chebyshev filter  Result of automatic detections after Low, High filters 

 SNRin DP DQ DR DS DT 

 

SNRin DP DQ DR DS DT 

Signal 1 5,02 5,56 1,85 0,00 0,00 16,67 5,02 0,00 1,85 0,00 0,00 1,85 

Signal 2 4,94 2,70 0,00 0,00 0,00 9,46 4,94 0,00 14,86 0,00 0,00 0,00 

Signal 3 5,07 1,27 0,00 0,00 0,00 5,06 5,07 0,00 36,71 0,00 6,33 0,00 

Signal 1 10,37 0,00 0,00 0,00 0,00 5,56 10,37 0,00 0,00 0,00 0,00 0,00 

Signal 2 10,22 0,00 0,00 0,00 0,00 0,00 10,22 0,00 36,71 0,00 2,53 0,00 

Signal 3 10,05 0,00 0,00 0,00 0,00 5,41 10,05 0,00 14,86 0,00 0,00 0,00 

Signal 1 15,39 0,00 0,00 0,00 0,00 0,00 15,39 0,00 0,00 0,00 0,00 0,00 

Signal 2 15,31 0,00 0,00 0,00 0,00 0,00 15,31 0,00 37,97 0,00 2,53 0,00 

Signal 3 15,23 0,00 0,00 0,00 0,00 1,35 15,23 0,00 16,22 0,00 0,00 0,00 

 
Table A 2. The average information loss for Baseline drift. 

 SNRin ξ 

Signal 1 5,02 0,74074 

Signal 2 4,94 0,00000 

Signal 3 5,07 0,00000 

Signal 1 10,37 0,00000 

Signal 2 10,22 0,00000 

Signal 3 10,05 0,00000 

Signal 1 15,39 0,00000 

Signal 2 15,31 0,00000 

Signal 3 15,23 0,00000 

 0,08230 
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Table A 3. Result for Poor electrode contact. 

Result of automatic detections after Chebyshev filter  Result of automatic detections after Low, High filters 

  SNRin DP DQ DR DS DT 

 
 

SNRin DP DQ DR DS DT 

Signal 1 5,22 57,41 3,70 0,00 0,00 59,26 5,22 61,11 7,41 0,00 3,70 57,41 

Signal 2 5,00 55,70 1,27 0,00 1,27 44,30 5,00 50,63 43,04 0,00 25,32 43,04 

Signal 3 5,10 52,70 1,35 0,00 1,35 52,70 5,10 50,00 29,73 0,00 9,46 56,76 

Signal 1 10,28 20,37 1,85 0,00 0,00 25,93 10,28 18,52 1,85 0,00 0,00 24,07 

Signal 2 10,14 17,72 0,00 0,00 0,00 13,92 10,14 13,92 39,24 0,00 12,66 16,46 

Signal 3 10,49 16,22 0,00 0,00 0,00 27,03 10,49 17,57 21,62 0,00 4,05 25,68 

Signal 1 15,17 7,41 0,00 0,00 0,00 18,52 15,17 5,56 0,00 0,00 0,00 11,11 

Signal 2 15,47 6,33 0,00 0,00 0,00 5,06 15,47 6,33 0,00 0,00 0,00 5,06 

Signal 3 15,33 2,70 0,00 0,00 0,00 13,51 15,33 2,70 17,57 0,00 2,70 6,76 
 

Table A 4. The average information loss for Poor electrode contact. 

 SNRin 
 
ξ 

Signal 1 5,22 24,44444 

Signal 2 5,00 19,24051 

Signal 3 5,10 21,89189 

Signal 1 10,28 8,88889 

Signal 2 10,14 6,07595 

Signal 3 10,49 8,64865 

Signal 1 15,17 3,33333 

Signal 2 15,47 2,27848 

Signal 3 15,33 1,89189 

 10,74378 
 

Table A 5. Result for Muscle noise. 

Result of automatic detections after Chebyshev filter  Result of automatic detections after Low, High filters 

 SNRin DP DQ DR DS DT 

 

SNRin DP DQ DR DS DT 

Signal 1 4,93 44,44 9,26 12,96 7,41 45,35 4,93 11,11 5,56 0,00 1,85 16,67 

Signal 2 4,92 0,12 37,97 7,59 2,53 1,27 4,92 11,39 45,57 1,27 8,86 17,72 

Signal 3 5,09 0,13 28,38 0,00 1,35 4,05 5,09 5,41 25,68 0,00 8,11 17,57 

Signal 1 10,14 24,07 1,85 1,85 1,85 31,48 10,14 3,70 0,00 0,00 0,00 7,41 

Signal 2 10,09 18,99 3,80 0,00 1,27 26,58 10,09 6,33 43,04 0,00 2,53 10,13 

Signal 3 10,06 12,16 0,00 0,00 0,00 22,97 10,06 1,35 18,92 0,00 2,70 5,41 

Signal 1 15,18 18,52 0,00 0,00 0,00 16,67 15,18 1,85 0,00 0,00 0,00 1,85 

Signal 2 15,18 7,59 1,27 0,00 0,00 18,99 15,18 1,27 43,04 0,00 1,27 1,27 

Signal 3 15,31 4,05 0,00 0,00 0,00 12,16 15,31 0,00 18,92 0,00 0,00 0,00 
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Table A 6. The average information loss for Muscle noise. 

 SNRin 
 
ξ 

Signal 1 4,93 11,48148 

Signal 2 4,92 15,44304 

Signal 3 5,09 10,54054 

Signal 1 10,14 3,33333 

Signal 2 10,09 4,30380 

Signal 3 10,06 1,35135 

Signal 1 15,18 0,74074 

Signal 2 15,18 0,75949 

Signal 3 15,31 0,00000 

 5,32820 


