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Abstract 

Current work aims at the development and evaluation of Neural Network (NN) model for diagnosing 

faults due to unbalanced mass and structural looseness in an induction motor setup. These experiments were 

conducted with and without structural looseness. This data is processed in MATLAB software and is then 

used to train NN model to detect the unbalance, and structural looseness faults in the setup. The performance 

of the model trained is evaluated by model performance metrics, which showed the model predicts the 

presence of above faults with high accuracy. The, Kruskal Willis algorithm is used in MATLAB software to 

get the feature importance scores, so that, the number of predictors/features can be reduced. It is found that 

two mutually perpendicular radial accelerations of the setup have significant importance, and hence, a new 

NN model is trained with the reduced number of predictors/features. It was found that there is a slight reduction 

in the model’s performance, therefore, to increase the performance, another model is trained with the two 

mutually perpendicular radial accelerations, and their resultants. This increased the performance of the model 

considerably, hence making it suitable to deploy for the detection of unbalance, and structural looseness faults. 
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1. INTRODUCTION  

 

Rotating machinery are extensively used in 

various engineering fields viz. oil and gas industry, 

aviation industry, mining industry, etc. Adverse 

operating conditions of these machines causes 

performance deterioration and eventually failure. 

The sudden failure of the machines can be 

catastrophic and also leads to machine downtime 

thereby exerting economic losses. The three main 

maintenance techniques prevalent in preventing 

machinery failure are corrective maintenance, 

preventive maintenance and predictive maintenance. 

In corrective maintenance, the machine / component 

is replaced only after its failure, which is suitable 

only when the failure is not catastrophic whereas in 

preventive maintenance, the machine/component is 

replaced after fixed interval of time irrespective of 

the actual condition of the machine/component, 

hence there is no utilization of its Remaining Useful 

Life (RUL)[1]. On the other hand, in predictive 

maintenance technique, the machine/component is 

continuously monitored and is replaced only if the 

model developed predicts an impending failure[2]. 

For implementing the predictive maintenance 

framework, it is required to measure the vibrations 

using suitable accelerometer sensors. These 
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measurements can be divided into high and low 

frequency categories. High frequency vibrations are 

related to the natural frequency of the machine, and 

have a frequency range of 500-16000 Hz. 

Acceleration measurement of machine is more 

sensitive to high frequency vibrations and the 

vibrations are associated with bearing faults and gear 

faults. Low frequency vibrations are related to the 

machine speed, and have a frequency range of 10-

1000 Hz. Velocity measurement of machine is more 

sensitive to low frequency vibrations and the 

vibrations are related to unbalanced mass, 

misalignment, and structural looseness, which when 

unchecked, will eventually lead to failure of the 

machines. Of the total machine failures, electrical 

faults constitute 36%[3] and mechanical faults, such 

as unbalanced mass, shaft misalignment, structural 

looseness, etc. are the reason for the remaining 

majority of the failures. 

Many successful attempts were made in the 

previous years to analyze the vibration data of 

rotating machine. Rahman et.al.[4] used analysis of 

vibrations for condition monitoring, detection of 

vibration faults, vibration control in rotating 

systems. Extensive works on the condition 

monitoring of gears[5], planetary gear boxes[6] and 

gear surface wear monitoring[7] have been carried 
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out. Multiple parameters were found to be useful by 

modeling the preventive maintenance system. Mey, 

O. et.al.[8] used combined vibration and acoustic 

data to develop damage classification model. Chirag 

Mongia et.al.[9] used vibration, temperature, and 

acoustic signal for machinery condition monitoring. 

Horiashchenko et.al.[10] used spectrogram, 

scalogram, and bispectrum analysis for the 

evaluation of vibrations of wind turbine. 

Virtual instrumentation and vibration severity 

chart based preventive maintenance model was 

developed by [11]. Many condition monitoring 

models have been developed by modifying the raw 

data from the accelerometer sensors by using 

techniques such as empirical mode 

decomposition[12], wavelet packet transform 

theory[13], spectrum analysis[14], etc. With the 

availability of economical options to remotely 

monitor the vibrations, many wireless condition 

monitoring systems were developed, such as the 

work of[15]. Micro-electro-mechanical-systems 

(MEMS) based triaxial accelerometer sensors are 

extensively used for the measurement of vibration of 

machines[16]. Zhao, Hongfa et.al.[17] used 

vibration sensor based triboelectric nanogenerator 

(VS TENG) for the condition monitoring of 

machines. W. Wang and Y. Shao[18] used computer 

vision based condition monitoring using digital 

optical camera. Vapnik developed the SVM in the 

year 1960[19]. With the availability of affordable 

computers with good computing power, several 

scientists and engineers have developed standalone 

SVM models, and SVM models in combination with 

other machine learning and analytical models. 

Banerjee TP, Das S[20] developed a method which 

combines data from the sensor with the SVM model. 

Multiple machine learning models viz. SVM, 

Multilayer NN, Convolution NN, etc. have been 

developed for fault diagnosis by [21]. B. 

Brusamarello, J. C. [22] used SVM and Fiber Brass 

Grating for fault detection of outer bearing raceways 

of the induction motor.  

Many comparative studies of SVM and Artificial 

NN have been carried[23]. Studies show that multi-

SVM is very good in predicting all mechanical faults 

in the induction motor by using only feature of 

vibration signal[24]. Studies to detect minor faults in 

induction motor by using sound signals with SVM 

and KNN models showed to have high accuracy[25], 

similarly, [26] used multiple machine learning 

models to detect the vibration faults in variable 

frequency drive-fed induction motors. Multi Layer 

Perceptron (MLP) based ANN is extensively used to 

detect faults in induction motor[27]. Work by [28] 

showed the use of short-time Fourier transform for 

training the NN model to detect vibration faults. [29] 

used Morlet function and continuous wavelet 

transform to obtain the scalogram images from the 

vibration data, and these images were fed to 

convolution attention NN to detect different 

categories of vibration faults. A novel method, 

developed by [30] combines multiple time-domain 

and frequency-domain features with multiple 

classifiers, which are then combined by making use 

of genetic algorithm for diagnosing vibration faults. 

Nguyen et.al.[31] used empirical mode 

decomposition for obtaining characteristic of 

vibration signals, which form the input to the deep 

learning network to detect bearing faults. One of the 

major problems in the diagnostics of rotating 

machinery, such as an induction motor, is the 

difficulty in determining the cause of abnormal 

vibrations. The time and frequency plots in this case 

usually do not give sufficient information about the 

faults in the machines. 

Though various studies have applied many types 

of machine learning models to study the vibrations 

of the rotating machinery, but there is a lack of 

research in the studies in which the reduction in the 

number of predictors required to classify the faults in 

vibrations. To address this literature gap, the current 

work has been carried out, the purpose of which is to 

develop an experimental setup to obtain vibration 

accelerometer and use it to train NN model that can 

predict the cause of abnormal vibrations and to 

evaluate model performance. Then a Kruskal Willis 

algorithm is used in MATLAB to reduce the number 

of predictors/features and, a new model is trained 

with these features and the performance of the model 

is evaluated. 

The experiments are conducted by varying 

magnitudes of unbalanced masses, location of mass 

from the central axis of motor, and the speed of the 

motor. All these experiments are conducted with and 

without structural looseness in the setup. 

 

2. FAULT DIAGNOSTIC SETUP 

 

The fault diagnostic setup/rig used in the current 

work has a single-phase induction motor with 

voltage controller to vary/adjust the speed of the 

motor. This motor is coupled with a rotor system 

with a feature to attach unbalanced masses at various 

radial distances from the center of the motor/shaft. 

Figure 1 shows the fault block diagram of the 

diagnostic setup, showing the outline of the process. 

The accelerometer data is acquired from an 

accelerometer interfaced with NI6009 DAQ and 

mounted on the motor. This data is used to train the 

NN model, after which, model performance is 

evaluated. The fault detection framework consists of 

the following stages: vibration data acquisition, 

processing of vibration data, training the NN model 

to predict the type of fault, and testing the models. 

Artificial Intelligence (AI) models often act as 

black-boxes. Signal processing not only improves 

diagnostic accuracy and robustness of the model, but 

also bridges the gap between data-driven and 

knowledge-driven diagnostics.  
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Fig. 1. Block diagram of fault diagnostic setup 

 

The added complexity in using signal processing 

techniques and artificial intelligence is a deliberate 

trade-off for better interpretability of the model, 

which is essential especially in safety-critical 

systems. 

Although methods such as stochastic resonance 

array (SRA) can use the noise in the signal for the 

enhancement of weak useful information, but it 

needs lot of tuning parameters as discussed in [32]. 

STFT is computationally efficient and easy to 

implement but SRA requires optimization and 

increases complexity of the system. Other methods 

such as Empirical Mode Decomposition (EMD) is 

less stable under noisy condition and more complex 

than STFT. Similarly, Variational Mode 

Decomposition (VMD), which decomposes a signal 

into various modes, requires high computational cost 

than STFT. Therefore, as STFT does not require 

tuning of parameters, and is computationally 

efficient, it is better suited, especially in real-time 

scenarios. 

 

2.1. Data acquisition 

For acquiring vibration data, a 3-axis 

accelerometer is attached to the motor-frame and the 

vibration data is collected for 30 seconds at a 

sampling frequency of 100 hertz, thereby making the 

total 30,000 readings collected for each experiment. 

The data is collected using NI6009 data acquisition 

(DAQ) system and is sent to MATLAB software for 

further processing. 

 

2.2. Design of experiments 

The varying combinations of the distance of the 

position of the unbalanced mass from the center of 

the motor (p), the unbalanced mass (m), and the 

motor speed (N) is used, and the variation of these 

parameters is given hereunder: 

The position value (p) is varied from an initial value 

of p1= 95 mm to a final value of p3 = 145 mm with 

one intermittent value of p2 = 120 mm. The 

unbalanced mass is varied from an initial value of 

m1 = 12.65 gram to a final value of m3 = 16.95 gram 

with one intermittent value of m2 = 14.8 gram. The 

motor speed is varied from an initial value of N1 = 

540 rpm to a final value of N7 = 1380 rpm with five 

intermittent values viz. N2 = 840 rpm, N3 = 1020 

rpm, N4 = 1140 rpm, N5 = 1260 rpm, and N6 = 1320 

rpm. There are a total of 70 combinations of 

experiments conducted by varying aforementioned 

parameters. The experiments with structural 

looseness faults are conducted by loosening the bolts 

of the motor that attach it to the frame. 

 

2.3. Machine Learning Models 

Though many AI-based fault diagnostics 

methods have been developed such as Neural 

Network (NN), Support Vector Machines (SVM), 

Decision Trees (DT), k-Nearest Neighbors (kNN), 

Naïve Bayes (NB), the performance of some models 

such as DT, kNN, and NB, is poor, mainly while 

dealing with nonlinearities in the system. SVM is 

more sensitive to noise than NN. In multi-class 

classification, such as the current work, the NN 

performs better, especially when the faults have 

overlapping features of looseness fault and 

unbalance. Therefore, NN is selected for developing 

an AI-based model. 

The 3-dimensional accelerometer data recorded 

by the triaxial accelerometer is processed in 

MATLAB. The vibration data so recorded is 

classified as No-Fault, Unbalancing, and Looseness 

faults. This data is used for training the NN models. 

Precision, recall, specificity, validation accuracy, 

and test accuracy were used as performance metrics 

for evaluating the performance of these models. Of 

the total data, 10% is used for validation and 5% for 

testing the models. 

 

3. RESULTS AND DISCUSSION 

 

Figure 2(a)[top plot] shows the time plot when 

there is no fault in the rotating machinery setup. The 

frequency spectrum, figure 2(a)[middle plot], has a 

moderate 1 x frequency peak and weak 2 x frequency 

peak at about 0.3 & 0.6 normalized frequencies 

respectively. The scalogram as shown in figure 

2(a)[bottom plot] has a single bright horizontal band 

at 1 x frequency. 

The time plot shown in Figure 2(b)[top plot] 

contains fairly steady oscillations without any 

notable spikes, which is in contrast with the time plot 

as given in Figure 2(c)[top plot], wherein multiple 

spikes can be seen, indicating the that the looseness 
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fault may have been present in the system. 

Frequency spectrum, that gives an insight on 

frequencies present in the signal, is shown in Figure 

2(b)[middle plot] that has a single dominant peak at 

1 x frequency along with smaller peaks at higher 

harmonics, indicating that the spectral energy is 

concentrated, which is the case when there is an 

unbalancing fault. The frequency spectrum given in 

Figure 2(c)[middle plot] has one dominant peak and 

strong harmonics showing distribution of energy 

which is due the presence of structural looseness 

faults in the system. 

 

 
Fig. 2(a). Time series, Frequency Spectrum, and Scalogram of the vibration accelerometer data when there is No Fault 

 

 
Fig. 2(b). Time series, Frequency Spectrum, and Scalogram of the vibration accelerometer data with only Unbalancing Fault 

 

 
Fig. 2(c). Time series, Frequency Spectrum, and Scalogram of the vibration accelerometer data with  

Structural Looseness Fault 
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The spectrogram, as shown in Figure 

2(b)[bottom plot], shows a bright band showing 

dominant 1x frequency with a fainter band at 2 x 

frequency, whereas the spectrogram given in Figure 

2(c)[bottom plot] shows a strong 1x frequency along 

with intermittent energy bursts, a more scattered 

high frequency energy, a characteristic of structural  

looseness fault in the system. The Fast Fourier 

Transform (FFT) plot of resultant accelerometer data 

is shown in figure 3(a), when there is no fault in the 

system, wherein the peak is at about 16Hz which 

corresponds to the speed of the induction motor, 960 

rpm. 

There is an enhancement in the amplitude of the 

signal in FFT plot, as shown in figure 3(b), with a 1 

x frequency peak and 2 x frequency minor peak, 

when there is an unbalance fault in the system. 

Figure 3(c) shows multiple minor peaks along with 

peak at 1 x frequency, which is the case when there 

is a structural looseness in the system. As shown in 

figure 4(a), the spectrogram shows evenly 

distributed energy given as a single band, showing 

no fault in the system. Figure 4(b) shows the 

spectrogram when there is just unbalance fault in the 

system, wherein the energy is evenly distributed 

across a wide range of frequencies. Multiple 

harmonics are visible around many normalized 

frequency components which is due to unbalancing 

fault. Figure 4(c) shows the spectrogram when there  

is looseness fault in the system. Here, there is a more 

distinct energy distribution indicating the looseness 

fault in the system. 

The Short-Term Fourier Transform (STFT), 

shown in figure 5(a) contains one narrow and steady 

band at 1 x frequency without any higher harmonics, 

indicating no fault in the system. The STFT when 

there is an unbalance fault, as shown in figure 5(b), 

has a strong 1 x frequency along with clear higher 

harmonics. The STFT of looseness fault as shown in 

figure 5(c) has multiple scattered bands, with 

broader spectrum throughout the time-frequency 

space i.e. the vibrational energy is spread across time 

and frequency. Though the harmonics are present but 

they are distorted and less dominant, indicating the 

presence of structural looseness fault in the system. 

 

 
Fig. 3(a). FFT Plot – No Fault 

 

 
Fig. 3(b). FFT Plot – Unbalance 

 
Fig. 3(c). FFT Plot – Looseness 

 
Fig. 4(a). Spectrogram – No Fault 

 

 
Fig. 4(b). Spectrogram – Unbalance 

 
Fig. 4(c). Spectrogram – Looseness 

 
Fig. 5(a). STFT – No Fault 

 
Fig. 5(b). STFT – Unbalance 

 
Fig. 5(c). STFT – Looseness 
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3.1. Machine Learning–Neural Network (NN) 

Models 

The accelerometer data is divided into three 

classes viz. (i) No Fault, (ii) Unbalance, and (iii) 

Looseness. This data is used to train the NN Model 

in MATLAB software. The multi-class confusion 

matrix for this trained model is given in figure 6. 

The performance metrics considered for the 

evaluation of machine learning models are Precision, 

Recall, Specificity, F1-score, and Accuracy, which 

is given in table 1. 

 
Fig. 6. Multi-class Confusion Matrix of the trained NN 

(with three features/predictors) 

 

The validation accuracy of the trained model is 

found to be 93.1%, and test accuracy, 93.5%. The 

Receiver Operating Characteristic (ROC) curve, as 

shown in figure 7, has all Area Under Curve (AUC) 

values closer to 1.0, indicating that the classification 

is highly effective across all classes. The feature 

importance scores of the three features/predictors are 

then determined in order to reduce the number of 

 
Fig. 7. ROC Curve (three features/predictors) 

 

features/predictors, by using Kruskal Wallis 

algorithm in MATLAB software as shown in figure 

8. 

 
Fig. 8. Feature importance score determined by Kruskal 

Wallis algorithm 

 

The performance metrics of this model (with two 

features/predictors) is given in table 2. The 

validation accuracy of the trained model is found to 

be 90.4%, and test accuracy, 89.9%. The Receiver 

Operating Characteristic (ROC) curve, as shown in 

figure 10, has all Area Under Curve (AUC) values 

closer to 1.0, indicating that this model’s 

classification is effective across all classes. 

But, as the seen from table 2 and figure 9, this 

model’s performance is not as good as the previous 

model, therefore, another model is trained by 

considering the two features/predictors, i.e. 

accelerometer data in x & y direction, along with 

their resultants. The model is then trained again, the 

confusion matrix of which is given in figure 11, 

which clearly shows that this model performance 

better than the previous one. 

Dev1_ai5 and Dev1_ai7 correspond to 

accelerometer data in local y & x directions 

respectively, which represent radial vibrations. As 

seen from the figure, accelerometer data in local x & 

y directions have significant importance scores, 

whereas the importance score in local z-direction, 

i.e. shaft longitudinal direction is low, and is 

represented by Dev1_4i. Therefore, the NN model is 

trained again, by using only two features/predictors 

whose confidence score is high, the confusion matrix 

of which is given in figure 9. 

 

 

Table 1. Model Performance Comparison (with three features/predictors) 

Sl.No. Class Precision Recall Specificity F1-score 

1 Looseness 0.8875 0.9522 0.9396 0.9188 

2 No_Fault 0.9162 0.8949 0.9591 0.9054 

3 Unbalancing 0.9964 0.9467 0.9983 0.9710 

  
Table 2. Model Performance Comparison (with two features/predictors) 

Sl.No. Class Precision Recall Specificity F1-score 

1 Looseness 0.8403 0.9281 0.912 0.882 

2 No_Fault 0.8843 0.8415 0.9449 0.8623 

3 Unbalancing 0.9973 0.9415 0.9986 0.9686 
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Fig. 9. Multi-class Confusion Matrix of the trained NN 

(with two features/predictors) 

 
Fig. 10. ROC Curve (two features/predictors) 

 
Fig. 11. Multi-class Confusion Matrix of the trained NN 

(with two features/predictors and their resultants) 

 

The performance metrics of this model is given 

in table 3, that shows a significant improvement in 

the model’s performance compared to the previous 

model. The validation accuracy of the trained model 

is found to be 93.2%, and test accuracy, 92.4%. The 

Receiver Operating Characteristic (ROC) curve, as 

shown in figure 12, has all Area Under Curve (AUC) 

values closer to 1.0, indicating that this model’s 

classification is highly effective across all classes. 

 
 

Fig. 12. ROC Curve (with two features/predictors and 

their resultants) 

 

4. CONCLUSION 

 

An experimental setup was developed to evaluate 

the vibration in a rotating machinery setup for the 

diagnostics of unbalance and looseness faults. The 

unbalance is created by varying three parameters viz. 

the unbalanced mass, the position of unbalanced 

mass with respect to the motor center, and the motor 

speed, whereas the looseness is introduced in the 

system by loosening the fasteners that attach the 

motor to the frame. The vibration data, acquired by 

accelerometer, is visualized by frequency spectrum, 

scalogram, FFT plots, spectrogram, and STFT plots. 

The frequency spectra indicate the presence of 

unbalance fault with a single dominant peak with 

weak higher harmonics, and it shows dominant peak 

with strong harmonics for looseness fault. The 

unbalance fault spectrogram has a single bright band 

at 1 x frequency and faint band at 2 x frequency, 

whereas there are intermittent energy bursts in along 

with a 1 x frequency peak for looseness fault. The 

STFT plots also indicate the evenly distributed 

energy when there is no faults in the system, and 

energy is spread across a wide range of frequencies 

with multiple harmonics when there is an unbalance 

fault. There is even more uneven distribution of 

energy in case of looseness fault in the system. 

Similar conclusion can be drawn from STFT plots, 

wherein there is a narrow, steady band at 1 x 

frequency when there is no fault in the system. The 

STFT of unbalance fault is given by a strong 1 x 

frequency with clear higher harmonics, and multiple 

scattered bands are present when there is a looseness 

faults in the system. 

 
Table 3. Model Performance Comparison (with two features/predictors and their resultants) 

 

Sl  Class  Precision Recall Specificity F1-score 

1 Looseness 0.8890 0.9506 0.9407 0.9187 

2 No_Fault 0.9166 0.8983 0.9592 0.9074 

3 Unbalancing 0.9970 0.9480 0.9986 0.9718 
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After processing, the accelerometer data that 

contains accelerometer values in three mutually 

perpendicular cartesian coordinates, is used to train 

the NN model. The performance metrics were 

evaluated for this model. The multi-class confusion 

matrix show that the model can successfully detect 

the fault in the system, and the performance metrics 

of Precision, Recall, Specificity, F1-score, 

Validation Accuracy and Test Accuracy were all 

higher than 90%. The ROC curve shows that the 

AUC for all classes is closer to 1.0, indicating that 

the model predicts well across all the classes.  

The feature importance scores of the three 

features/predictors are then determined in order to 

reduce the number of features/predictors, by using 

Kruskal Wallis algorithm in MATLAB software, 

and then, a new NN model is trained with only two 

features / predictors that have high importance score. 

The performance of this model is found to be not as 

good as the previous model, hence another NN 

model is trained with two features, i.e. two 

accelerometer readings along with their resultants. 

The accuracy of this model is found to be better. 

Thus, the trained NN model can be used in 

identifying the fault condition (no-

fault/unbalancing/looseness) present in the system, 

and can be deployed for detecting these faults in the 

rotating machinery setup. 
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