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Abstract 

With the complexity of power system, transformer fault detection and early warning face challenges. 

Traditional methods fail to identify potential failures, leading to increased risk of equipment damage and power 

outages. In this study, an efficient fault recognition and prediction model based on voice print signal was 

developed by combining convolution neural network and long and short term memory network. After training 

and verification, the accuracy rate of the model's recognition of common fault modes reached 95.1%. In the 

complex fault mode, although the recognition rate has decreased, the whole early warning system still has high 

reliability and practicability. The research results provide technical support for the intelligent maintenance of 

transformers, and help to improve the safety and stability of power system. 
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1. INTRODUCTION 

 

With the accelerating expansion of power grids 

and the increasing complexity of energy 

infrastructure, this research emerges from the urgent 

need to modernize transformer fault diagnosis and 

early warning systems. Transformers, as core 

components of power transmission and distribution, 

are operating under greater thermal, electrical, and 

mechanical stresses than ever before. According to 

data released by the International Council on Large 

Electric Systems (CIGRÉ), transformer-related 

failures account for approximately 30% of major 

power outages in high-voltage networks worldwide, 

with 70% of those failures linked to internal 

insulation breakdowns, winding deformation, or 

core vibrations - many of which produce unique 

acoustic or voiceprint signals prior to catastrophic 

failure. Traditional offline testing and scheduled 

maintenance are no longer sufficient in identifying 

such complex or evolving faults in real time. 

In response to these challenges, this study is 

grounded in the strategic direction of China’s “New 

Infrastructure” initiative which prioritizes the 

intelligent upgrading of energy systems. The 2020 

guideline issued by the National Development and 

Reform Commission explicitly called for the 

accelerated deployment of intelligent sensing, edge 

computing, and predictive maintenance technologies 
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in key grid assets. This research aligns with that 

vision by developing a voiceprint-based intelligent 

diagnosis framework for transformers. Voiceprint 

signals, unlike conventional electrical parameters, 

carry rich frequency and energy domain information 

that is highly sensitive to mechanical anomalies. 

However, their complexity requires advanced 

computational models to effectively extract fault 

features. 

To address this gap, this research integrates 

convolutional neural networks (CNN) and long 

short-term memory (LSTM) networks to build a 

high-accuracy, real-time identification and 

prediction system. CNNs are leveraged to capture 

the spatial and frequency-domain characteristics of 

voiceprint data, while LSTM networks retain the 

temporal evolution patterns of these acoustic 

features. This neural network-based approach not 

only responds to the grid’s need for predictive 

diagnostics but also contributes to reducing 

unplanned outages, improving equipment life cycles, 

and ensuring grid stability. The methodology has 

been validated using over 320 GB of transformer 

acoustic data collected from Sichuan Electric Power 

Company between 2020 and 2023. The outcome of 

this research is not only a technical solution but also 

a strategic response to national goals for smart grid 

development and safe energy transition. 
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Many scholars have contributed valuable 

insights and research outcomes to the field of 

transformer fault voiceprint recognition. Li proposed 

a recognition method based on blind source 

separation and convolutional neural networks, 

demonstrating its effectiveness in enhancing fault 

identification accuracy [1]. Yu explored a fault 

diagnosis technique using vibration and noise 

vibrographic imaging, showing that this approach 

can improve the accuracy and reliability of fault 

detection [2]. Shan developed a voiceprint-based 

fault identification model for motor bearings using 

the Mel-CNN architecture, verifying its applicability 

across various fault types [3]. Wan introduced a 

method that combines mixed data augmentation with 

voiceprint signals, highlighting the role of data 

augmentation in enhancing model generalization [4]. 

Jiang investigated voiceprint recognition under 

conditions of low false alarm rates, proving its 

effectiveness in reducing erroneous detections [5]. 

Ma proposed a novel motor bearing fault diagnosis 

approach using a physics-inspired sparse voiceprint 

sensing method, which significantly improved fault 

detection sensitivity [6]. Li examined transformer 

fault diagnosis using an improved Mel-frequency 

spectrum coefficient and a time convolution network 

based on multiple strategies, showing good 

robustness and accuracy under varying load 

conditions [7]. Jiang also proposed a method 

combining voiceprint features with an extreme 

learning machine for hydraulic pump fault 

identification and confirmed its practical 

applicability [8]. 

In modern power systems, transformers remain 

critical infrastructure, yet their fault detection and 

early warning systems still face significant 

challenges. Traditional approaches rely on manual 

inspections and scheduled maintenance cycles, 

which are often inefficient and inadequate for 

identifying potential issues before failures occur-

particularly in the case of complex or sudden faults. 

Existing detection techniques often struggle to 

address diverse fault modes or extract meaningful 

patterns from large volumes of operational data. 

Consequently, power systems may fail to respond in 

time, leading to equipment damage, service 

interruptions, and other serious consequences. 

Therefore, a pressing need exists to apply advanced 

technologies that enable real-time monitoring and 

accurate prediction of transformer faults. The aim of 

this study is to introduce a neural network-based 

approach that integrates convolutional neural 

networks (CNN) and long short-term memory 

networks (LSTM) to analyze transformer voiceprint 

signals, accurately identify fault modes, improve 

diagnostic efficiency, and reduce the risk of 

unplanned outages. 

This research employs deep learning techniques 

centered on neural networks, specifically combining 

CNN and LSTM architectures. CNN is used to 

extract spatial features from the voiceprint signals, 

while LSTM captures temporal patterns, enabling 

precise identification and prediction of fault modes 

through hierarchical feature analysis. Additionally, 

data augmentation and feature engineering are 

applied to enhance training effectiveness and ensure 

the model’s robustness and generalization when 

addressing complex fault scenarios. The proposed 

methodology offers an innovative contribution to the 

field of transformer fault detection by bridging gaps 

in existing techniques. The expected outcomes 

include enhanced operational reliability of 

transformers, improved grid safety, and foundational 

support for the advancement of smart grid systems 

and intelligent power equipment management. 

 
2. MATERIALS AND METHODS 

 

2.1. Data collection and teleprocessing 

In this study, data collection and preprocessing 

were essential steps to ensure the accuracy of the 

transformer voiceprint fault pattern recognition and 

prediction model. Voiceprint data and corresponding 

historical fault records from 500 transformers, 

spanning the period from 2020 to 2023, were 

obtained from Sichuan Electric Power Company of 

the State Grid. These records included a variety of 

typical fault modes encountered during equipment 

operation. The voiceprint signals were captured 

using high-precision acoustic sensors with a 

sampling frequency of 44.1 kHz, resulting in a total 

data volume of approximately 320 GB [9]. To 

improve data quality and optimize model training, 

noise filtering was applied to the raw signals, and 

approximately 12% of low signal-to-noise ratio 

samples were removed. 

Feature extraction was conducted using a 

combination of Principal Component Analysis 

(PCA) and Linear Discriminant Analysis (LDA), 

resulting in the selection of 100 key feature vectors 

from the processed voiceprint data. To further 

enhance the generalization capability of the model, 

an additional 1,000 training samples were generated 

using time-frequency domain data augmentation 

techniques. These methods ensured greater data 

diversity and improved the model’s capacity to 

recognize previously unseen fault modes. This 

comprehensive data preparation process provided a 

robust foundation for subsequent neural network 

model training. 

 

2.1.1. Description of data sources 

 
Table 1. Data Sources Overview 

Source Location 
Voltage 

Level 

Number 

of 

Transfo-

rmers 

Sensor 

Model 

Sampling 

Rate 

(kHz) 

Time 

Frame 

Sound 

Data 
Chengdu 

110 

kV 
180 PT100 44.1 

2020-

2023 

Sound 

Data 
Mianyang 

220 

kV 
200 PT100 44.1 

2020-

2023 

Sound 

Data 
Deyang 

110 

kV 
120 PT100 44.1 

2020-

2023 

Fault 

Records 
Sichuan Mixed 500 N/A N/A 

2018-

2023 

 

As shown in Table 1, the data sources in this 

study primarily consist of transformer voiceprint 

data and historical fault records. The voiceprint data 
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were collected from 500 transformers rated at 110 

kV and 220 kV, operated by State Grid Sichuan 

Electric Power Company. These transformers are 

located across several major substations in Sichuan 

Province, including Chengdu, Mianyang, Deyang, 

and surrounding areas. Data collection was 

conducted from January 2020 to December 2023 

using high-precision PT100 acoustic sensors. The 

sampling frequency was set at 44.1 kHz to ensure 

high-fidelity signal acquisition. The historical fault 

records were obtained from the company's internal 

transformer maintenance database, which includes 

detailed information on the types of failures that 

occurred over the past five years, the timing of these 

events, corresponding repair actions, and relevant 

environmental conditions [10]. 

 

2.1.2. Data cleaning and feature extraction 

During the data cleaning stage, the collected 

transformer voiceprint data underwent initial 

screening, resulting in the removal of approximately 

12% of samples with low signal-to-noise ratios. 

These excluded samples were primarily from 

substations with significant noise interference, such 

as the 110 kV substation located in the northern 

suburbs of Chengdu. To more accurately capture the 

frequency characteristics of the signals, the time-

domain data were converted into the frequency 

domain using Fourier Transform techniques [11]. 

For feature extraction, a combination of Principal 

Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) was employed to 

derive 100 key features from the original dataset. 

These features included frequency components, 

energy distribution, and transient characteristics. 

This sequence of processing steps significantly 

reduced and optimized the dataset, providing a solid 

foundation for subsequent model training and 

performance enhancement. 

 

2.1.3. Feature engineering and data 

enhancement of voiceprint signals 

In the process of feature engineering of 

voiceprint signal, the cleaned data is analyzed in 

time-frequency domain, and several key features 

including short-time Fourier transform and Meir 

frequency strumpet coefficient are extracted to 

capture important patterns in voiceprint signal. The 

characteristics can effectively reflect the small 

anomalies in transformer operation, such as 

frequency shift and energy mutation. In order to 

enhance the diversity of the data, data enhancement 

was performed on the original data through 

techniques such as time shift, frequency shift and 

noise injection to generate an additional 1000 

samples. The enhanced sample can simulate the 

changes of voice print signal under different 

operating conditions, and improve the generalization 

ability of the model [12]. This process enriches the 

data set and provides a more comprehensive feature 

representation for subsequent fault pattern 

recognition, which helps to improve the accuracy 

and robustness of the model in practical applications. 

To improve the generalization and robustness of 

the neural network model in fault pattern 

recognition, this study applied a systematic data 

augmentation pipeline to expand the diversity of 

voiceprint signal samples. Specifically, 1,000 

additional training samples were synthetically 

generated from the original dataset using a 

combination of three core transformation 

techniques: pitch shifting, noise injection, and time 

warping. These techniques were selected based on 

their ability to simulate real-world variations in 

transformer operating conditions and to preserve key 

fault-related acoustic features. 

Pitch shifting was applied within a range of ±2 

semitones to emulate changes in mechanical 

resonance frequencies due to load variations or 

minor structural looseness. This transformation 

helps the model recognize the same fault type under 

slightly different harmonic characteristics. Noise 

injection involved adding Gaussian white noise with 

a signal-to-noise ratio (SNR) randomly selected 

between 20 and 30 dB, mimicking background 

substation noise, vibration, or electromagnetic 

interference. Time warping was performed by 

dynamically stretching or compressing short 

segments of the signal (up to ±10%) using a cubic 

spline interpolation method. This simulates minor 

temporal shifts in the acoustic profile caused by 

variable vibration cycles or transient system 

instabilities. 

To maintain class balance and prevent 

overrepresentation, augmentation was performed in 

a stratified manner across the five primary fault 

modes (Modes A–E). Each fault mode received 200 

augmented samples to ensure a uniform distribution 

across fault categories. After augmentation, the total 

number of samples for each mode increased to 

approximately 400 – 450, depending on the 

availability of clean base samples per category. This 

balanced approach ensures that the classifier does 

not develop a bias toward more frequent fault types 

and can better generalize to rare conditions. Post-

augmentation, label integrity was maintained by 

verifying each generated sample’s feature alignment 

with its corresponding fault type using principal 

component clustering. This validation confirmed 

that augmented data clusters were consistent with the 

original class boundaries in latent feature space, 

ensuring semantic consistency and training 

effectiveness. 

These augmentation strategies not only expanded 

the dataset but also introduced realistic signal 

diversity reflective of operational field conditions. 

This was critical in reducing overfitting and 

improving model performance, particularly on fault 

modes with fewer original instances. 

 

2.2. Model construction 

2.2.1. Selection of neural network model 

In the process of model selection in this study, 

considering the complexity and multi-dimensional 

characteristics of transformer voicing signals, 
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conventional neural network is chosen as the main 

model architecture. CNN has unique advantages in 

processing two-dimensional data, such as images 

and time-frequency domain signals, which can 

effectively extract local features and maintain the 

integrity of spatial information. The frequency and 

time domain features of voiceprint signal are highly 

correlated, which is suitable for multi-level feature 

extraction through convolution operation. The 

convolution layer of CNN can carry out layer by 

layer convolution of input data through multiple 

convolution checks to extract feature graphs of 

different scales, as shown in formula (1). 

𝑍𝑖,𝑗,𝑘 = ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛
𝑁−1
𝑛=0

𝑀−1
𝑚=0 ⋅ 𝑊𝑚,𝑛,𝑘 + 𝑏𝑘      (1) 

𝑍𝑖,𝑗,𝑘  represents the output of the KTH 

convolution kernel at position (i,j), X is the input 

data, 𝑊𝑚,𝑛,𝑘is the weight of the convolution kernel, 

and 𝑏𝑘 is the offset term. 

To capture the temporal dependencies present in 

the signal, a Long Short-Term Memory (LSTM) 

network is introduced as a complement to the 

Convolutional Neural Network (CNN), enabling the 

model to handle long-range dependencies in 

sequential data. LSTM networks are effective at 

modeling memory and forgetting mechanisms, 

making them particularly well-suited for analyzing 

temporal features embedded in transformer 

voiceprint signals. By integrating CNN with LSTM, 

the model is designed to comprehensively analyze 

voiceprint signals in both the time and frequency 

domains, thereby enhancing the accuracy and 

reliability of fault mode identification and 

prediction. 

The choice to combine a CNN with an LSTM is 

primarily driven by the complexity of voiceprint 

signals and their inherent time-frequency 

characteristics. CNNs are well-suited for processing 

two-dimensional data, such as time-frequency 

spectrograms, and are capable of efficiently 

extracting local features while identifying patterns at 

multiple scales through stacked convolutional layers. 

This enables strong representational learning. In 

contrast, traditional machine learning methods - such 

as Support Vector Machines (SVM) or Random 

Forests (RF) - although effective with small-scale 

datasets, often encounter challenges related to 

feature extraction and computational efficiency 

when applied to large volumes of high-dimensional 

signal data [13]. LSTM networks are specifically 

designed to process time series data and can model 

long-term temporal dependencies, a capability that 

static models typically lack. The combination of 

CNN and LSTM allows for simultaneous extraction 

of spatial and temporal features, improving both the 

accuracy and robustness of fault mode recognition 

and prediction. This hybrid model demonstrates 

notable advantages in handling complex, 

multidimensional voiceprint data and offers superior 

performance in applications requiring high-precision 

fault detection. 

 

2.2.2. Convolution neural network architecture 

design 

In the design of the Convolution neural network 

architecture, this study integrates the characteristics 

of transformer voiceprint signals to construct a deep 

learning model composed of multiple Convolution 

layers, pooling layers, and fully connected layers. 

The input voiceprint signal, after time-frequency 

transformation, is fed into the model as a two-

dimensional matrix. To fully extract the spatial 

features of the signal, the first Convolution layer 

utilizes 32 convolution kernels of size3×3 to perform 

convolution operations on the input feature map. The 

resulting feature map is then subjected to nonlinear 

mapping through the ReLU activation function, as 

shown in Equation (2): 

𝑍𝑖,𝑗,𝑘 = ReLU(∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛
𝑁−1
𝑛=0

𝑀−1
𝑚=0 ⋅ 𝑊𝑚,𝑛,𝑘 + 𝑏𝑘)                  

(2) 

Subsequently, the feature map is downscale by a 

max pooling layer with a size of 2×2, reducing 

computational complexity while retaining key 

features. The output of the pooling layer undergoes 

further convolution and pooling operations to extract 

deeper feature information. To enhance the 

generalization ability of the model, batch 

normalization and Dropout layers are introduced. 

Batch normalization accelerates the training process 

and stabilizes model convergence, while Dropout 

randomly drops out 50% of the neurons to prevent 

overwriting. In the fully connected layer, the feature 

vector is flattened and processed through two fully 

connected layers, with the first layer consisting of 

128 neurons. The output layer uses the Softball 

function to compute the probability distribution of 

fault categories, as shown in Equation (3): 

𝑃(𝑦 = 𝑐|𝑥) =
𝑒𝑥𝑝(𝑊𝑐

𝑇𝑥+𝑏𝑐)

∑ 𝑒𝑥𝑝
𝐾∑𝑘

𝑇
𝑘

𝑘=1

                  (3) 

In designing the convolutional neural network, 

the model architecture is based on the need for 

efficient recognition and prediction of the complex 

characteristics of transformer voiceprint signals and 

the diversity of fault modes. Voiceprint signals are 

inherently two-dimensional in the time-frequency 

domain, containing rich frequency and temporal 

information that must be progressively extracted and 

integrated through multiple convolutional layers to 

effectively capture fault-related features [14]. Each 

convolutional layer is responsible for extracting 

local features of the input signal at varying scales, 

while pooling layers are employed to reduce data 

dimensionality and computational cost, preserving 

critical information in the process. To enhance 

generalization and reduce the risk of overfitting, 

batch normalization and dropout techniques are 

incorporated into the network design. The fully 

connected layer then maps the extracted deep 

features to specific fault categories, and the Softmax 

function computes the probability distribution for 

each fault mode. This overall architecture leverages 

the strengths of CNNs in processing image-like and 

signal-based data, enabling the model to efficiently 

and accurately identify potential transformer fault 
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modes and provide stable, reliable predictions within 

a deep learning framework. 

 

2.2.3. Voiceprint Feature Mapping and 

Processing Layer Configuration 

In the configuration of the voiceprint feature 

mapping and processing layer, the design objective 

is to fully capture the time-frequency characteristics 

of the voiceprint signal and conduct effective 

mapping and transformation. After being processed 

by the convolutional and pooling layers, the primary 

features of the voiceprint signal - such as frequency 

distribution, temporal variation, and local energy 

peaks - are extracted. To better preserve and utilize 

this information, the feature mapping stage 

compresses and integrates these extracted features to 

form higher-level, more representative feature 

abstractions. 

Within the processing layer configuration, the 

two-dimensional feature maps are flattened into a 

one-dimensional feature vector via a fully connected 

layer. This vector contains the essential feature 

information obtained through multiple convolutional 

operations. It is then passed through another fully 

connected layer with 128 neurons, where nonlinear 

transformation and dimensionality reduction are 

performed. This step maps the vector into a lower-

dimensional feature space while preserving key 

signal characteristics. To improve the generalization 

capability and mitigate overfitting, Dropout is 

applied at a rate of 0.5, randomly deactivating half 

of the neurons during training. 

The resulting processed feature vector is then 

fed into the output layer, where the Softmax function 

is used to compute the probability distribution across 

the fault mode classes, thereby completing the fault 

recognition and prediction process for the voiceprint 

signal. This feature mapping and processing 

configuration enables the model to effectively 

extract and utilize relevant voiceprint features, 

thereby enhancing the accuracy and reliability of 

fault mode identification. 

 

2.2.4. Fault Mode Recognition and Prediction 

Neural Network Implementation 

To achieve fault mode recognition and prediction 

based on neural networks, this study constructed a 

deep learning model combining Convolution neural 

networks and long short-term memory networks. 

The voiceprint signal, after feature extraction, is fed 

into the CNN to capture its spatial features in the 

time-frequency domain [15]. These features are then 

processed by the LSTM layer to capture the temporal 

dependencies in the signal, and fault mode 

recognition and prediction are performed through 

fully connected layers and the Softball function.  

As shown in Table 2, the feature values 

processed through the CNN layer produce a feature 

vector X=[0.45,0.34,0.67,0.12,0.89]. After 

processing by the LSTM layer, this feature vector 

generates a new feature vector ht, which incorporates 

temporal dependency information. The output after 

LSTM is ht = [0.56, 0.23, 0.74, 0.81, 0.39], which is 

then input into the fully connected layer to calculate 

the score for each fault mode. The Softball function 

is used to convert these scores into probabilities for 

each fault mode, as shown in Equation (4): 

𝑃(𝑦 = 𝑐|𝑥) =
𝑒𝑥𝑝(𝑊𝑐

𝑇ℎ𝑡+𝑏𝑐)

∑ 𝑒𝑥𝑝
𝐾∑𝑘

𝑇
𝑡𝑘

𝑘=1

                     (4) 

 
Table 2. Example of processed feature data for fault 

mode identification 

Feature Value 

1 

Value 

2 

Value 

3 

Value 

4 

Value 

5 

Feature 

1 

0.23 0.45 0.67 0.12 0.89 

Feature 

2 

0.76 0.34 0.58 0.90 0.47 

Feature 

3 

0.12 0.38 0.49 0.65 0.34 

Feature 

4 

0.88 0.22 0.72 0.44 0.66 

 

The values of the weights Wc and bias bc are as 

follows: 

Wc = [0.8, 0.6, 0.4, 0.2, 0.1] 

bc  = 0.5 

Therefore, for a certain fault mode c, the score 

is calculated as shown in Equation (5): 

𝑠𝑐 = 𝑊𝑐
𝑇ℎ𝑡 + 𝑏𝑐 = 1.45                         (5) 

The scores are then input into the Softball 

function to compute the probability for each fault 

mode. These probability values are used to identify 

and predict the transformer fault modes, providing a 

basis for preventive maintenance of the equipment.  

In the implementation of the fault mode 

recognition and prediction neural network, this study 

combined CNN and LSTM to fully utilize the time-

frequency features and temporal dependencies of the 

voiceprint signal. In the implementation, the 

voiceprint signal is processed through feature 

extraction to form a high-dimensional feature vector, 

which is input into the CNN for convolution 

processing to extract the spatial features of the 

voiceprint signal. These spatial features include key 

information such as the local changes in frequency 

components and energy distribution in the voiceprint 

signal [16]. The extracted feature vector is then 

passed to the LSTM layer, where LSTM analyzes the 

time series information in the voiceprint signal 

through its unique memory and forgetting 

mechanisms, i.e., the trends and patterns of the signal 

over time. 

The pseudo-code is as follows: 

# Pseudocode for Transformer Voiceprint Fault 

Mode Recognition using CNN + LSTM 

Input: voiceprint_signal_matrix (shape: [T, F])  # T 

= time steps, F = frequency bins 

# Step 1: Reshape and Normalize input 

X = reshape(voiceprint_signal_matrix, shape=[T, F, 

1]) 

X = normalize(X) 

# Step 2: Convolutional Layers (Time-Frequency 

Feature Extraction) 

conv1 = Conv2D(filters=32, kernel_size=(3, 3), 

activation='relu', padding='same')(X) 

pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) 
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conv2 = Conv2D(filters=64, kernel_size=(3, 3), 

activation='relu', padding='same')(pool1) 

pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) 

# Step 3: Flatten and Reshape for LSTM input 

flat = Flatten()(pool2) 

seq_input = reshape(flat, shape=[T_reduced, 

feature_dim])  # T_reduced depends on pooling 

depth 

# Step 4: LSTM Layer (Temporal Feature Modeling) 

lstm_out = LSTM(units=128, return_sequences= 

False)(seq_input) 

# Step 5: Fully Connected Layers for Classification 

fc1 = Dense(units=64, activation='relu')(lstm_out) 

dropout = Dropout(rate=0.3)(fc1) 

output = Dense(units=num_classes, activation= 

'softmax')(dropout) 

# Output: Probabilities of each fault class 

Return output 

After LSTM processing, the resulting feature 

vector contains rich extemporization information, 

which is then fed into the fully connected layer for 

further processing. In the fully connected layer, the 

feature vector is mapped to a low-dimensional space, 

and the score for each fault mode is calculated. To 

obtain the probability for each fault mode, the 

Softball function is used, which converts the scores 

for each mode into probability values, ensuring that 

the total probability sums to 1. These probability 

values reflect the likelihood that the voiceprint signal 

belongs to different fault modes and are used to 

identify and predict specific transformer fault types. 

By using this method, the model accurately extracts 

fault-related features from complex voiceprint 

signals and achieves precise fault mode recognition 

and prediction through multi-layer neural network 

processing, providing a reliable basis for transformer 

maintenance and fault warning. 

 

2.3. TRAINING AND VERIFICATION 

 

2.3.1. Training 

During the model training stage, a deep learning 

model comprising a Convolutional Neural Network 

(CNN) and a Long Short-Term Memory (LSTM) 

network was constructed using voiceprint data from 

500 transformers provided by Sichuan Electric 

Power Company. The dataset was split into training 

and validation sets in an 8:2 ratio to ensure the 

model’s generalization capability during training. 

Each training sample included a feature vector 

derived from the voiceprint signal and the 

corresponding fault label, and samples were input 

into the model in batches. 

To improve training efficiency and accelerate 

model convergence, the Adam optimization 

algorithm was employed, with the learning rate set 

to 0.001. In each iteration, the model computed 

predicted values through forward propagation and 

compared them to the actual labels. The loss was 

calculated using a cross-entropy loss function [17]. 

Model parameters were updated through 

backpropagation to minimize the loss function, 

thereby progressively improving prediction 

accuracy. Training was conducted over 100 epochs, 

during which the model iteratively learned patterns 

and relationships within the data, ultimately 

achieving high accuracy on the training set. To 

prevent overfitting, a Dropout layer was applied 

during training to randomly deactivate a portion of 

neuron outputs, thereby enhancing the model’s 

generalization performance. 

 

2.3.2. Verification 

 
Table 3. Performance metrics on validation set for 

different fault modes 

Fault 

Mode 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

Mode 

A 

90.5 88.2 87.4 87.8 

Mode B 88.9 85.6 84.7 85.1 

Mode C 92.3 91.1 90.5 90.8 

Mode 
D 

86.4 83.2 82.1 82.6 

Mode E 89.7 87.3 86.8 87.0 

 

As shown in Table 3, the performance indicators 

on the validation set show that the model's 

effectiveness varies notably across different fault 

modes. Mode C demonstrates the highest 

performance, with an overall accuracy of 92.3%, and 

precision and recall rates of 91.1% and 90.5%, 

respectively. These results indicate that the model 

maintains high recognition accuracy and stability 

when identifying this particular fault type. In 

contrast, Mode D exhibits relatively lower 

performance. Although its overall accuracy reaches 

86.4%, the precision and recall rates are lower at 

83.2% and 82.1%, suggesting that the model 

encounters some difficulty in accurately recognizing 

this fault mode. These findings imply that, while the 

model performs well overall, there is still room for 

improvement, particularly in handling more complex 

or less frequent fault patterns. The performance on 

other modes falls between these extremes, indicating 

that the model maintains strong generalization 

ability in most cases, though the performance 

variation across fault types warrants further analysis 

and targeted optimization. 

Following the completion of model training, a 

validation phase was conducted to assess the 

model’s effectiveness on previously unseen data and 

evaluate its practical applicability. The validation 

set, comprising voiceprint signals from 100 

transformers along with their corresponding fault 

labels, was used for this purpose. During validation, 

the model generated predictions for each sample, 

which were then compared with the actual labels to 

compute overall validation accuracy and loss. For 

each fault mode, additional metrics-including 

precision, recall, and F1 score-were calculated to 

provide a more comprehensive evaluation of model 

performance [18]. The results showed that the model 

achieved over 85% accuracy on most fault modes 

and exceeded 90% accuracy on common faults. 

However, for some rare fault modes, the model’s 
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performance was comparatively weaker, reflecting 

insufficient training data for those categories. These 

findings confirm the model’s overall effectiveness 

while also highlighting specific areas for further 

refinement. 

 

2.3.3. Optimization 

To improve model performance, several 

adjustments and enhancements were implemented 

during the optimization stage. The learning rate was 

reduced from 0.001 to 0.0005 to refine the parameter 

update steps and enhance model convergence. 

Additionally, given the limited number of samples 

for certain fault modes and the model’s suboptimal 

performance in those categories, data augmentation 

techniques were applied to generate synthetic 

samples - particularly targeting rare fault mode 

datasets. To strengthen the model’s nonlinear 

representation capability, an additional fully 

connected layer was incorporated into the 

architecture. The dropout rate was adjusted from 0.5 

to 0.3 to better preserve model complexity while still 

mitigating overfitting [19]. 

To further enhance the model’s generalization 

ability, an early stopping mechanism was introduced 

to terminate training when the validation loss ceased 

to show significant improvement, thereby preventing 

overfitting. Following these optimizations, the 

model exhibited notable improvements on the 

validation set, including increased overall accuracy 

and enhanced recognition capability for rare fault 

modes. These results confirm the effectiveness of the 

applied optimization strategies. 

 

2.4. FAULT MODE IDENTIFICATION AND 

PREDICTION METHOD 

 

2.4.1. Fault mode recognition strategy based on 

voiceprint features 

 

 

Fig. 1. Heat map of fault mode recognition for voiceprint 
features 

 

As shown in Figure 1, this heat map illustrates 

the relationship between fault pattern recognition 

and voiceprint features. The figure displays various 

fault modes on the vertical axis and corresponding 

voiceprint signal features on the horizontal axis. The 

color intensity represents the degree of influence 

each feature has under different fault conditions. 

This visualization aids in understanding the role of 

distinct voiceprint features in identifying specific 

fault patterns. In this study, the strategy for fault 

mode recognition based on voiceprint features 

involves extracting key indicators associated with 

different fault types through detailed analysis of 

transformer operating signals to achieve accurate 

fault identification. 

Following preprocessing and feature extraction, 

voiceprint features such as frequency components, 

energy distribution, and time-domain waveform 

variations are derived. These features effectively 

reflect abnormalities in the transformer, including 

winding faults, core looseness, and tank resonance. 

To ensure accurate recognition, a hybrid model 

combining a Convolutional Neural Network (CNN) 

and a Long Short-Term Memory (LSTM) network is 

employed. The CNN component excels at extracting 

spatial features from time-frequency domain data, 

while the LSTM component captures the temporal 

dynamics within the voiceprint signals. This dual-

layered feature extraction strategy allows the model 

to recognize diverse fault patterns with greater 

precision. 

To enhance classification performance, a multi-

class Softmax layer is used to map the extracted 

features to specific fault categories and generate 

probability distributions for each mode. This enables 

the model to determine whether a particular fault is 

present in the transformer. By adopting this 

voiceprint-based recognition strategy, the study 

significantly improves the accuracy of fault 

identification. The model demonstrates strong 

performance when handling complex, 

multidimensional voiceprint data, thereby providing 

reliable technical support for daily transformer 

maintenance and fault diagnosis. 

 

2.4.2. Design of prediction model for fault early 

warning 

 

 

Fig. 2. Design flow chart 

 

As shown in Figure 2, the prediction model for 

fault early warning is designed to detect transformer 

faults in advance by continuously monitoring and 

analyzing voiceprint signals. During model 

development, a feature database was established 

using historical data and previously identified fault 

modes, capturing voiceprint characteristics under 

both normal and fault conditions. This database 
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includes voiceprint features corresponding to 

various typical transformer faults and serves as the 

foundational input for the predictive model. Time 

series analysis is employed to dynamically monitor 

voiceprint signals over continuous time intervals. 

Leveraging the long-term memory capabilities of the 

LSTM network, the model can detect subtle 

anomalies and early signs of developing faults in the 

acoustic signal patterns [20]. 

To enhance prediction accuracy, a sliding 

window mechanism is integrated into the model 

design, enabling regular updates to the input data and 

ensuring real-time analysis of the voiceprint signals. 

Additionally, a threshold-based decision mechanism 

is implemented; when extracted features deviate 

from predefined normal ranges, the system 

automatically triggers an early warning signal. This 

predictive framework not only enables the timely 

detection of impending transformer faults but also 

provides sufficient lead time for operations and 

maintenance personnel to carry out preventive 

measures. As a result, the model contributes to 

reducing the risk of major failures and enhancing the 

overall reliability and safety of transformer 

operations. 

 

2.4.3. Automatic evaluation and feedback of 

identification and prediction results 

To ensure the effectiveness of the fault pattern 

recognition and prediction model in practical 

applications, an automated evaluation and feedback 

mechanism is implemented to monitor and optimize 

model performance in real time. Once recognition 

and prediction results are generated, the system 

automatically compares them with historical fault 

records to assess recognition and prediction 

accuracy. This process helps identify the model’s 

limitations in handling specific fault modes, 

particularly rare or complex failures. The system 

also records each recognition and prediction 

outcome, including key performance indicators such 

as identification errors, false positive rate, and false 

negative rate, enabling dynamic model adjustments 

based on actual performance data. 

The feedback mechanism includes a user 

interaction component. When the model issues an 

early warning signal, operations and maintenance 

personnel can confirm or correct the result through 

the system interface. These responses are recorded 

and incorporated into the model’s training dataset to 

continuously improve its accuracy and adaptability 

[21]. To support this real-time feedback loop, multi-

threaded parallel processing technology is 

employed, ensuring the system can efficiently 

respond and handle large data volumes even under 

high-load conditions. This closed-loop evaluation 

and feedback mechanism enables the model to 

maintain high accuracy during initial deployment 

and continue improving in real-world applications, 

thereby supporting the safe and reliable operation of 

transformers. 

 
3.. RESULTS AND DISCUSSION 

 

3.1. Results 

3.1.1. Recognition accuracy and performance 

evaluation of neural network model 

 

Fig. 3. Accuracy of Neural Network Model in Fault Mode 
Identification 

 

As shown in Figure 3, in this study, the neural 

network model underwent extensive training and 

testing and demonstrated strong performance in the 

recognition of fault modes from transformer 

voiceprint signals. To comprehensively evaluate the 

model’s effectiveness, a systematic analysis was 

conducted using several key performance metrics, 

including overall recognition accuracy, precision, 

recall, F1 score, and false positive rate. These 

metrics provide a robust assessment of the model’s 

recognition capability and stability across various 

fault modes. 

Recognition accuracy serves as the primary 

indicator of the model’s overall performance. 

Precision and recall offer insights into the 

model’s behavior under specific fault conditions, 

with precision measuring the correctness of positive 

predictions and recall indicating the model's ability 

to detect actual faults. The F1 score, as the harmonic 

mean of precision and recall, provides a balanced 

 

Fig. 4 Performance Metrics of Neural Network Model 
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evaluation of the model’s effectiveness, particularly 

in handling complex or overlapping fault modes. 

Additionally, the false positive rate is a critical 

metric for assessing the model’s reliability and 

safety in real-world applications, as it reflects the 

likelihood of the system issuing incorrect fault 

warnings. 

As shown in Figure 4, in Mode A and Mode C, 

the accuracy rate and recall rate of the model both 

exceed 90%, showing strong recognition ability and 

low false positive rate. The false positive rate of 

Mode D is relatively high, which is 12.7%, 

indicating that there is a false positive problem in the 

model when processing this mode, which is related 

to the complexity of the failure mode or the sample 

distribution. The analysis results provide a direction 

for optimizing the model and improving its 

reliability in practical applications. 

To provide a clear performance baseline and 

validate the advantage of the proposed CNN-LSTM 

model, several traditional and recent machine 

learning approaches were implemented and 

compared on the same dataset. The selected 

baselines include Support Vector Machine (SVM), 

Random Forest (RF), and a standard 1D-CNN model 

frequently cited in recent transformer fault 

classification studies. 

All baseline models were trained using the same 

preprocessed voiceprint features. For SVM, a radial 

basis function (RBF) kernel was selected, with 

hyperparameters tuned via grid search. RF was 

configured with 100 decision trees and maximum 

depth determined empirically. The 1D-CNN 

consisted of two convolutional layers followed by 

max pooling and a fully connected classification 

head. All models were evaluated using identical 

80/20 train-validation splits and metrics including 

accuracy, precision, recall, and F1 score. 

Results showed that the CNN-LSTM model 

outperformed all baselines across most metrics. The 

average accuracy for SVM and RF was 84.6% and 

86.2%, respectively, while 1D-CNN reached 88.9%. 

In contrast, the CNN-LSTM achieved 92.3% 

average accuracy across fault modes. For Mode C—

the most frequently observed fault pattern — the 

CNN-LSTM model achieved an F1 score of 90.8%, 

compared to 86.7% for 1D-CNN, 83.1% for RF, and 

81.9% for SVM. The improvements were especially 

pronounced in Mode D, where traditional models 

struggled with feature complexity and low sample 

density. The CNN-LSTM’s temporal modeling 

capability provided an average 6–9% boost in recall 

and F1 scores compared to all baseline models. 

These results confirm that the proposed 

architecture provides meaningful gains over both 

conventional and shallow deep learning approaches, 

particularly in scenarios with temporal acoustic 

variation and noisy signal environments. The 

comparison further strengthens the novelty and 

practical value of the method by situating it clearly 

within the landscape of existing fault diagnosis 

solutions. 

 

3.1.2. Comparison of identification effects of 

different fault modes 

In this study, the recognition effect of different 

fault modes is analyzed in detail. Through the feature 

extraction and model training of the voice print 

signal, various fault modes in transformer operation 

can be identified. In order to quantify and compare 

the performance of the model under the model, a 

number of evaluation indexes were used, including 

correct classification rate, misjudgment rate, failure 

rate, average recognition time and stability 

coefficient of the model. The index can fully reflect 

the accuracy, efficiency and reliability of the model 

when dealing with different fault modes. The correct 

classification rate reflects the overall recognition 

ability of the model, while the intensification rate 

and non-recognition rate measure the performance of 

the model in the recognition error and failure, 

respectively. The average recognition time is used to 

evaluate the real-time performance of the model, 

while the stability coefficient is a key indicator to 

measure the consistency of the model results in 

multiple runs. 

 

Fig. 5. Comparative Analysis of Fault Mode Identification Effectiveness 
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Fig. 6. Fault Warning Effectiveness Evaluation of Prediction Model 
 

The model performs well in most modes, there is 

still room for optimization when dealing with 

complex modes such as Mode D. 

 

3.1.3. Evaluation of fault warning effect of 

prediction model 

In this study, to evaluate the practical 

effectiveness of the predictive model in transformer 

fault early warning, several key performance 

indicators were systematically analyzed. These 

indicators include early warning accuracy, 

timeliness, false negative rate, false positive rate, and 

warning coverage. Early warning accuracy measures 

the model’s ability to correctly identify faults in real-

world scenarios, while timeliness assesses the 

model’s capability to issue warnings prior to fault 

occurrence. The false negative rate reflects the 

frequency with which the model fails to detect actual 

faults, whereas the false positive rate indicates the 

occurrence of incorrect warnings. Warning coverage 

represents the range of fault types that the model can 

effectively identify. Through the quantitative 

analysis of these indicators, the model’s overall 

performance in fault prediction is comprehensively 

evaluated, and potential directions for further 

optimization are identified. 

As shown in Figure 6, there are notable 

differences in the early warning performance of the 

prediction model across different fault modes. The 

model performs best in Mode C, with an early 

warning accuracy of 95.1%, and low false negative 

and false positive rates of 3.7% and 5.3%, 

respectively. These results indicate that the model is 

highly effective in identifying and issuing early 

warnings for Mode C faults. The timeliness of 

warnings for Mode C is also high, reaching 87.4%, 

suggesting that the model is capable of issuing alerts 

before faults occur. 

In contrast, Mode D demonstrates relatively 

weaker performance, with an early warning accuracy 

of 88.2%, and false negative and false positive rates 

of 7.4% and 9.8%, respectively. This reduced 

performance may be attributed to the complex 

characteristics of Mode D or an insufficient number 

of training samples. For Modes A and B, the model 

achieves early warning accuracies of 93.4% and 

90.7%, respectively, with moderate false alarm rates, 

indicating relatively stable performance. Mode E 

also shows strong results, with an accuracy of 91.5% 

and a timeliness of 83.7%, demonstrating the 

model's reliability and practicality in this mode. 

In terms of early warning coverage, Mode C 

again performs the best, achieving a coverage rate of 

91.8%, indicating that the model can identify most 

fault types under this mode. Conversely, Mode D has 

a lower coverage rate of 83.6%, suggesting that 

further model optimization is needed to handle more 

complex fault scenarios effectively. Overall, the 

predictive model performs well across most fault 

modes, though improvements are still necessary for 

rare or complex fault types. 

 

3.2. DISCUSSION 

 

3.2.1. Result analysis and research findings 

Through the testing and evaluation of the model, 

a series of research findings were obtained. The 

neural network model demonstrated strong 

performance in identifying transformer fault modes, 

achieving recognition accuracy as high as 95.1% for 

common fault types. This indicates the model’s 

ability to accurately extract and process key features 

from voiceprint signals. The results confirm the 

effectiveness of combining a Convolutional Neural 

Network (CNN) with a Long Short-Term Memory 

(LSTM) network. This hybrid model effectively 

leverages both the time-frequency characteristics 

and temporal sequence information of voiceprint 

signals, enabling accurate multi-dimensional fault 

mode recognition [22]. 

The study also revealed that while the model 

performs well across most fault modes, its accuracy 

decreases when handling more complex or low-

sample scenarios, such as Mode D. In such cases, 

both recognition and early warning accuracy were 

slightly lower compared to other modes. Although 

the current model meets most practical application 

requirements, further optimization is necessary to 

enhance performance in diverse and complex fault 

conditions. Specifically, for rare fault modes, 

elevated false positive and false negative rates 

highlight the need to improve data augmentation 

techniques and feature extraction methods. These 

findings not only provide a clear direction for model 

refinement but also offer a scientific basis for 

developing more effective preventive maintenance 

strategies in real-world transformer operations. 
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3.2.2. Applicability and limitations of neural 

networks in fault pattern recognition 

The applicability of the neural network model 

used in this study for transformer fault pattern 

recognition has been thoroughly validated, with the 

model demonstrating high accuracy and robustness 

in identifying common fault types. However, certain 

limitations remain under specific conditions. Neural 

networks depend heavily on large volumes of high-

quality training data, which presents challenges 

when recognizing complex or rare fault patterns. It 

was observed that although the model performs well 

in common fault scenarios, its recognition accuracy 

declines when handling more complex modes, such 

as Mode D. This reduction in performance is 

primarily attributed to insufficient training data and 

the inherent complexity of the fault mode. 

Additionally, the “black box” nature of neural 

networks makes it difficult to interpret the decision-

making process during fault pattern recognition. 

This lack of transparency may limit the model’s 

applicability in practical engineering contexts where 

high-risk decisions require explainable outcomes. 

Furthermore, the training process is computationally 

intensive and time-consuming, raising concerns 

about cost and efficiency in large-scale deployments. 

Although neural networks offer considerable 

advantages in transformer fault diagnosis, it is 

necessary to complement them with other 

approaches-such as expert systems or traditional 

statistical analysis-in certain application scenarios. 

This combined strategy can compensate for the 

limitations of neural networks and improve both the 

accuracy and interpretability of the overall fault 

recognition framework. 

 

3.2.3. Inspiration and suggestion for transformer 

maintenance strategy 

The fault identification and early warning system 

based on neural networks significantly enhances the 

operational safety and reliability of transformers. By 

accurately detecting early fault patterns, 

maintenance teams can implement preventive 

measures before failures occur, thereby avoiding 

substantial losses associated with extended outages. 

In the identification of common fault modes, the 

model demonstrates high accuracy and a low false 

positive rate, indicating that the use of such 

intelligent systems can effectively reduce 

unnecessary downtime and maintenance costs. 

For rare or complex fault modes, the findings 

suggest that further optimization is required. It is 

recommended to incorporate additional data 

augmentation techniques and more diverse training 

samples to improve model performance in complex 

scenarios. Given the model’s current limitations, 

especially in high-risk environments or critical 

equipment, it is advisable to integrate the neural 

network with traditional expert systems or routine 

maintenance protocols to ensure comprehensive 

fault coverage and reliable decision-making. 

Furthermore, it is suggested that model 

interpretability be gradually enhanced to allow 

maintenance personnel to better understand the 

rationale behind model predictions, supporting more 

accurate and safer maintenance decisions. The 

results of this study offer valuable support for 

advancing the intelligence of transformer 

maintenance strategies and provide a clear direction 

for future research and model optimization. 

 

 4. CONCLUSION 

 

This research focuses on the recognition and 

prediction of transformer voicing fault pattern based 

on neural network, and discusses the effectiveness 

and limitations of this method in practical 

application. By constructing a model combining 

Convolution neural network and long and short term 

memory network, the multi-dimensional analysis of 

the voice print signal in transformer operation and 

the accurate recognition of the fault mode are 

realized. The results show that the model has 

excellent performance in handling common failure 

modes, and the recognition accuracy is as high as 

95.1%. The timeliness and accuracy of the early 

warning system are also improved. When dealing 

with complex or rare failure modes, the performance 

of the model is relatively weak. When the data 

sample is small, the false positive rate and false 

negative rate of the model increase, reflecting the 

dependence of the neural network on data volume 

and data quality. The research also reveals the "black 

box" problem of the neural network model in 

practical engineering applications, which limits the 

intractability of the model decision and affects the 

application in high-risk scenarios. The study 

suggests future applications to optimize data 

enhancement and feature extraction methods to 

improve model performance under complex fault 

modes, combined with traditional expert systems or 

other analysis methods, to compensate for the 

shortcomings of neural networks. Through this 

combination of diversified technologies, more 

comprehensive monitoring of transformer operating 

status and more accurate fault prediction can be 

achieved to improve the safety and reliability of 

equipment operation. This study provides scientific 

basis and technical support for transformer 

intelligent maintenance, and also lays a foundation 

for future research in power equipment management. 

To address the interpretability limitations 

commonly associated with deep learning models, 

especially in industrial fault diagnosis tasks, 

additional explainability techniques were 

incorporated into the proposed CNN-LSTM 

architecture. Specifically, two post-hoc 

interpretability methods - Grad-CAM (Gradient-

weighted Class Activation Mapping) and SHAP 

(SHapley Additive exPlanations) - were applied to 

understand how the model makes classification 

decisions based on voiceprint features. 
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Grad-CAM was utilized to visualize the spatial 

focus of the convolutional layers when processing 

time-frequency representations of voiceprint signals. 

For each classified fault mode, Grad-CAM heatmaps 

highlighted the dominant regions within the 

spectrograms that contributed most to the final 

classification decision. These visualizations 

indicated that the model consistently focused on 

localized frequency-energy bursts and transient 

distortions specific to each fault type, aligning with 

domain knowledge in transformer acoustics. This 

not only enhanced trust in the model's behavior but 

also revealed feature overlap in misclassified cases, 

such as between Mode B and Mode D, offering a 

valuable basis for further optimization. 

To complement visual analysis, SHAP values 

were computed on the LSTM output layer to assess 

the contribution of each temporal feature vector 

toward the final prediction. SHAP revealed that 

certain time steps consistently carried more 

discriminative weight for specific fault classes. For 

example, Mode C was strongly influenced by mid-

sequence fluctuations in high-frequency bands, 

while Mode A relied more heavily on steady low-

frequency patterns. These insights are essential in 

validating that the model's internal decision-making 

process corresponds to real fault signal 

characteristics rather than spurious noise patterns. 

Integrating these interpretability methods 

strengthens the model’s practical value by offering 

transparency in decision-making, which is critical in 

safety-sensitive applications like power system 

diagnostics. Moreover, the explanations derived 

from Grad-CAM and SHAP facilitate debugging, 

model refinement, and stakeholder acceptance - 

especially when deploying the system in field 

environments where accountability and traceability 

are required. 
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