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Abstract 

This paper presents a method for diagnosing rotating machines operating under varying conditions based 

on order analysis, Gaussian mixture models (GMMs) and Bayesian inference. A classifier was constructed 

based on the values of the amplitudes of the order spectrum and the value of the rotational speed changing due 

to the variable load of the machine. 

An analysis was conducted on the functionality of the method in diagnosing misalignment and unbalance 

of a drive system consisting of a drive motor and planetary gearbox. The drive train was subjected to a variable 

load of the main gear of a bucket wheel excavator at a variable oil temperature. In the diagnostic experiment, 

the method was shown to be highly effective in diagnosing preset system faults. The implementability of the 

method in embedded systems was also investigated. The method was implemented in a system with a real-time 

operating system and an FPGA. The method was tested in continuous monitoring mode on a laboratory bench.  

 

Keywords: vibroacoustic diagnostics, machine condition monitoring, real-time operating system, variable load,  

machine learning 

 

List of Symbols/Acronyms 

 
FFT – Fast Fourier Transform 

xo1 – Order No. 1 axis X 

yo72 – Order No. 72 axis Y 

zo8 – Order No. 8 axis Z 

 

1. INTRODUCTION 

 

Condition monitoring of rotating machinery 

operating in industrial plants is increasingly 

important [1–5]. Failure of essential machinery 

causes production downtime and generates the need 

for costly unplanned repairs or the replacement of 

damaged assets. In extreme cases, faulty machinery 

can lead to loss of health or life of personnel. Early 

detection of equipment failures is an essential aspect 

of industrial plants. 

In the machinery industry, more and more 

companies are choosing to implement advanced 

diagnostic systems that cover entire plants or groups 

of plants. These solutions often monitor multiple 

machines simultaneously and use advanced 

analytical methods to assess their condition. 

Wireless diagnostic devices or specialised diagnostic 

software can also be found on the market, which 

serve as central units for large assemblies of 
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diagnostic equipment. In most cases, these systems 

are based on the analysis of RMS, peak value or 

basic statistical parameters. These parameters work 

well for rotating machines operating under constant 

conditions. For machines in fluctuating operating 

conditions, it is necessary to use more sophisticated 

diagnosis methods based on synchronous methods, 

which additionally should not be sensitive to load 

changes [6,7]. Such methods are being developed in 

the scientific literature, e.g. for diagnosing 

gearboxes [8–12], rolling bearings [13–15], or entire 

systems [16–18]. 

For the method to be implemented in industrial 

continuous monitoring systems, it must be relatively 

simple and not have too many parameters depending 

on the object to be diagnosed. Commercially 

available systems operate as stand-alone devices 

performing measurement and simple condition 

assessment based on alarm thresholds, while in-

depth data analysis is performed by cooperating 

computer programs [19–23]. No universal devices 

offer analysis of machines operating under variable 

load conditions among these systems. There are 

dedicated devices for machines operating in a 

limited load range (wind turbines, hydroelectric 

power plants) based on the ISO 20816-3:2022 

standard [24]. Furthermore, these devices require 

https://doi.org/10.29354/diag/209804
mailto:chazy@agh.edu.pl
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0009-8726-8125
https://orcid.org/0000-0002-2654-6138


DIAGNOSTYKA, Vol. 26, No. 3 (2025)  

Chazy B, Pawlik P.: The use of a naive Bayes classifier in continuous monitoring systems for … 

 

2 

manual input of alarm threshold values, which could 

be automated using machine learning methods. What 

is lacking is a solution that is designed for machines 

operating under variable loads, that allows automatic 

calibration to work with any rotating machine using 

machine learning methods, and one in which all the 

analysis is done automatically within a single device 

- the analyser - and the software is only used to 

receive the analysis results. 

This paper presents a machine diagnosis method 

that performs fault identification in real-time (during 

measurement). Unlike existing solutions dedicated 

to machines operating within a certain load range, 

the proposed method is dedicated to machines 

operating under variable conditions. The method is 

based on synchronous analysis, Gaussian mixture 

models (GMM) and the naive Bayes classifier 

algorithm. The method is implemented in a 

measurement-diagnostic system, which performs the 

measurement, analyses the data and presents the 

analysis results to the user. The system also performs 

an automatic evaluation of the machine’s condition.  

This article in Chapter 2 describes the proposed 

method, whose algorithm is adapted for 

implementation in continuous diagnostic monitoring 

systems. Chapter 3 describes the analysis of the 

functionality of the proposed method on a laboratory 

bench. Chapter 4 presents the measurement data 

analysis: algorithmic selection of diagnostically 

significant symptoms, and a naive Bayes classifier 

training as part of automatic machine condition 

assessment. Chapter 5 proposes the implementation 

of the method in a device with a real-time operating 

system and an FPGA. The final chapter provides a 

summary of the method discussed and the results of 

the analysis of the diagnostic experiment data. 

 
2. THE PROPOSED DIAGNOSTIC METHOD 

 

The proposed method was developed for 

machines operating under variable load conditions.  

The method assumes initial measurements to 

adjust the algorithm to specific machines and 

defects. Measurements should be taken for the 

normal operating condition of the machine and 

defective conditions.  

Measurement of the vibration-acoustic signals 

takes place synchronously. Due to the occurrence of 

variable loads, an order analysis is performed - 

resampling the measurement signals based on the 

tachometer signal so as to obtain signals 

synchronous to the shaft rotation [25]. The 

resampled vibroacoustic signals are used to 

determine the one-sided order power spectra [26] 

according to the formula: 

𝐺𝐴𝐴(𝑂𝑟𝑑𝑒𝑟) = {
𝑆𝐴𝐴(𝑂𝑟𝑑𝑒𝑟), 𝑂𝑟𝑑𝑒𝑟 = 0

2𝑆𝐴𝐴(𝑂𝑟𝑑𝑒𝑟), 𝑂𝑟𝑑𝑒𝑟 ≠ 0
 (1) 

where: 

 𝑆𝐴𝐴(𝑂𝑟𝑑𝑒𝑟) =
𝐹𝐹𝑇(𝐴)∙𝐹𝐹𝑇(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑁2  (2) 

𝐹𝐹𝑇(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denotes the complex conjugate of the 

discrete Fourier spectrum of the synchronous signal 

A with N samples. The signal length N is the length 

of the frame into which the resampled measurement 

signal is segmented in the rotation angle domain. 

The number of N samples is chosen in such a way as 

to obtain an appropriate spectrum resolution. 

The spectral components of the order power 

spectra for the subsequent frames constitute the 

features used further for analysis and, ultimately, for 

classification.  

The selection of those orders – symptoms that are 

diagnostically significant is done algorithmically. 

For this purpose, a recursive feature elimination 

(RFE) algorithm was used using a random forest 

classifier [27,28].  

Among the features from the reduced set, those 

features for which the Spearman correlation 

coefficient between them and the other features 

indicates a strong correlation are removed. 

A naive Bayes classifier makes a diagnostic 

decision based on selected symptoms, whose 

distributions are described by Gaussian mixture 

models. It is a classifier that is simple to implement 

and takes up little of the device’s operating memory. 

It makes a classification decision based on the Bayes 

theorem, which states the probability of condition 𝑋𝑖 

occurring with a measured symptom S [29]. The S-

symptom can be a parameter obtained by 

measurement that provides information on the 

technical condition of the machine. 

 𝑃(𝑋𝑖|𝑆) =
𝑃(𝑋𝑖)∙𝑃(𝑆|𝑋𝑖)

𝑃(𝑆)
  (3) 

 𝑃(𝑋𝑖|𝑆) =
𝑃(𝑋𝑖)∙𝑃(𝑆|𝑋𝑖)

∑ 𝑃(𝑆|𝑋𝑘)∙𝑃(𝑋𝑘)
𝐾
𝑘=1

  (4) 

where: 

• P(Xi|S) is the conditional probability of state Xi 

occurring after measuring symptom S, 

• P(S|Xi) is the conditional probability that the 

observed symptom value S corresponds to the 

state Xi, 

• P(Xi) is the probability of occurrence of state Xi, 

• P(S) is the probability of a symptom S, 

• K is the number of states Xi. 

The diagnostic decision falls on that state 𝑋𝑖, 

belonging to the vector of states 𝑋, for which the 

probability 𝑃(𝑋𝑖|𝑆) is highest. Given that the 

denominator of Equation 4 for each state is equal, 

and assuming that the occurrence of each state is 

equally likely, in practice, the diagnostic decision 

falls on the state for which the probability 𝑃(𝑆|𝑋𝑖) is 

the highest. We assume that the a priori probability 

of each state is the same due to the absence of 

information indicating otherwise. However, 

Bayesian inference allows this probability to be 

taken into account if it is available.  

If there is more than one symptom, then 𝑆 is a 

vector of symptoms. Assume that the components of 

the vector 𝑆 are independent. The probability 𝑃(𝑆|𝑋𝑖) 

is then equal to [30]: 

 𝑃(𝑺|𝑋𝑖) = ∏ 𝑃(𝑆𝑗|𝑋𝑖)
𝐽
𝑗=1  (5) 

where J is the dimension of the vector S (vectors 

are shown in bold). 
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In practice, however, because the product of a 

high number of small numbers can be numerically 

unstable and quickly reach 0, the natural logarithm 

of the probability (log-likelihood) is used [31]. This 

allows the product operation to be replaced by a sum 

operation. 

 𝑙𝑛(𝑃(𝑺|𝑋𝑖)) = ∑ 𝑙𝑛 (𝑃(𝑆𝑗|𝑋𝑖))
𝐽
𝑗=1  (6) 

The logarithm is a monotonic function, so instead 

of comparing probabilities to make a classification, 

log-likelihood values can be compared. 

The probability 𝑃(𝑆𝑗|𝑋𝑖) can be obtained using a 

simple probability distribution model obtained from 

the measurement data. A Gaussian mixture model 

can be used as such a model [28, 32]. Because the 

symptom distributions cannot be described by a 

normal distribution (Chapter 4), they are 

approximated by the sum of three normal 

distributions. The non-normality of the distributions 

of the order spectrum components is due to the 

varying load, which affects the amplitude of the 

vibrations. For the sum of the distributions – a 

Gaussian mixture, the log-likelihood 𝑙𝑛(𝑃(𝑆|𝑋𝑖)) 
equals: 

 𝑙𝑛(𝑃(𝑺|𝑋𝑖)) = ∑ 𝑙𝑛 (∑ 𝑤𝑛𝑓𝜇𝑛,𝑗𝜎𝑛,𝑗
2 (𝑆𝑗)

𝑁
𝑛=1 )𝐽

𝑗=1  (7) 

where: 

• 𝑓𝜇𝑛,𝑗,𝜎
2
𝑛,𝑗(𝑥) is the probability density function of 

a normal distribution with mean 𝜇𝑛,𝑗 and variance 

𝜎2
𝑛,𝑗 for the n-th probability density function in 

the GMM and the j-th feature, 

• 𝑤𝑛 is the weight of the n-th probability density 

function in the Gaussian mixture model, 

• N is the number of components of the Gaussian 

mixture model. 

In summary, the proposed machine diagnostic 

method consists of the following steps: 

1. Synchronous measurement of acceleration and 

rotational speed - for proper and faulty states of 

the machine. 

2. Resampling of acceleration signals to obtain 

signals synchronous to shaft rotation. 

3. Calculation of order power spectra. 

4. Algorithmic selection of diagnostically 

significant features. 

5. Elimination of features that are highly correlated 

with other features. 

6. Approximation of feature distributions using 

Gaussian mixture models. 

7. Training of a naive Bayes classifier using 

previously derived statistical models.  

8. Using a trained model to classify the condition of 

the machine. 

 

3. DIAGNOSTIC EXPERIMENT 

 

3.1. Laboratory bench 

The laboratory bench shown in Figure 1 is a 

model of a loaded industrial machine. It consists of 

a drive motor followed by a planetary reduction gear 

with a ratio of 4. The gear consists of a ring gear with 

72 teeth, a sun gear with 24 teeth and three planetary 

gears with 24 teeth each. A claw coupling connects 

the output shaft of the gearbox to the load motor. The 

motor speeds are controlled by three-phase inverters. 

The machine load is set by reducing the speed of 

the load motor. When the motors are working in 

unison, the speed of the planetary gearbox output 

shaft and the set speed of the load motor are equal, 

and the machine runs without load. When, on the 

other hand, the set speed of the load motor is less 

than a quarter of the speed set for the driving motor, 

the driving motor will have to overcome the load. 

The load will be greater the greater the difference 

between these speeds. 

 

 

Fig. 1. Photography of the laboratory station: 

1 - control inverters, 2 - drive motor, 3 - 

planetary gearbox, 4 - claw coupling, 5 - 

brake motor 

 

The motors are controlled by an application that 

uses the analogue outputs of the NI USB 6002 

measurement card to generate voltage signals, with 

which it applies the appropriate voltage to the control 

inputs of the inverters. The application controls the 

motors so that the driving motor operates under 

varying load conditions. In the first phase, the motors 

are ramped up linearly so that no load is present. A 

load profile is then applied to the input of the inverter 

responsible for the load. To replicate the load 

variation to that which would occur during operation 

of an industrial machine, this signal is replayed from 

the recorded speed waveform of the planetary 

gearbox input shaft of the KWK 1500s excavator 

during its operation. Variations in rotational speed 

were caused by varying loads on the bucket wheel 

mounted on the gearbox output. This signal was 

scaled to the plenary gearbox under test on the 

laboratory bench. By inflicting this type of load, we 

can investigate how the damage inflicted on the 

laboratory bench will affect the diagnostic signals of 

the planetary gearbox. Investigating this under 

industrial conditions is impossible due to the 

impossibility of introducing damage into an 

industrial machine. 

An example of a machine load profile in the form 

of voltages applied to the control inputs of the 

inverters is shown in Figure 2. 
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Fig. 2. Set load profile 

 

Because of the variable load, the shaft speed on 

the laboratory bench is also variable. It oscillates 

around 710 rpm +/- 10 rpm. An example of the shaft 

rotational speed during one load cycle is shown in 

Figure 3. 

 
Fig. 3. The shaft rotational speed 

 

The sensor locations on the test bench are shown 

in Figure 4. 

 

 

Fig. 4. Sensor locations on the test bench:  

1 - current sensor, 2 - thermometer,  

3 - accelerometer, 4 - rotation marker,  

5 - tachometer 

 

The sensors used were a MEMS ADXL335 

acceleration sensor, ARD 7662 tachometer, TA12-

200 AC current sensor, LM35 temperature sensor. 

The sensors were connected with the analogue 

inputs of the NI myRIO-1900 device.  

 
3.2. Experiment 

The measurement system described above was 

first used to take measurements. Measurements were 

needed to collect data for three different machine 

states: an operational state and two defects - to then 

analyse them and train the classifier.  

The measurement was made for each of the three 

states of the machine: 

• undamaged condition - the machine was working 

without defects, 

• unbalanced state - with a 0.68 g unbalanced mass 

added to the coupling of 0.05 m diameter,  

• misalignment condition - with 2 mm thick 

washers placed under the front feet of the driving 

motor, causing shaft misalignment. 

Due to the varying operating conditions (i.e. 

loads and temperatures), signals of 15 min were 

recorded. This allowed the entire heating time of the 

machine to be recorded. The acceleration and 

rotation marker signals were recorded at a sampling 

rate of 5kHz to record the entire bandwidth of the 

acceleration sensor (up to 1.6kHz) in accordance 

with the Nyquist-Shannon sampling theorem and 

with a sufficient margin. The temperature and 

current drawn by the drive varied over the same 

range for each state. Order power spectra, 

temperature, and current were used to analyse the 

data as symptoms. 
 

4. DATA ANALYSIS 

 

As part of the data analysis, symptoms that carry 

diagnostic information were algorithmically selected 

and used to train a classifier model. The order power 

spectrum for each of the three directions contains 

orders from 0 to 96, which, together with the RMS 

value of the current and the temperature of the 

gearbox, gives 293 features. 

To assess whether the distributions of features 

within the groups are normal, a Shapiro-Wilk test 

was performed for each feature and each group 

[33,34]. The following hypotheses were posed:  

• null hypothesis - the distribution of the feature 

can be described by a normal distribution,  

• alternative hypothesis - the distribution of the 

feature cannot be described by a normal 

distribution. 

A normality test of the distribution was 

performed for a significance level of 𝛼 = 0.05. Table 

1 shows the p-values for each group. Due to the large 

number of characteristics, only the five 

characteristics with the highest p-value values 

among the three states were included. 

 

Table 1. P-value values for the features 

Feature operational imbalance misalignment 

zo1 4,74e-06 2,89e-02 1,70e-09 

yo2 2,83e-15 2,70e-02 3,09e-16 

zo9 2,07e-03 8,58e-10 1,98e-34 

zo6 9,71e-04 1,53e-25 4,50e-39 

zo11 1,43e-10 9,09e-04 1,05e-35 

 

Out of the 293 features and three groups, in all 

cases, p-value < 𝛼, so the alternative hypothesis must 
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be accepted - symptom distributions cannot be 

described by a normal distribution. 

 

4.1. Feature selection 

 A recursive feature elimination (RFE) algorithm 

with a random forest classifier was used to initially 

reduce the number of features [27,28]. The target 

feature count was 100. The following algorithm was 

then performed for the remaining features: the 

dataset was divided into 10 parts, and then, similarly 

to the cross-validation method, the random forest 

classifier was trained 10 times using nine of the 10 

parts of the dataset, each time excluding a different 

part of the data from training. After each iteration of 

this algorithm, the feature significance returned by 

the model was saved and averaged for each feature 

after completion. The average significance for each 

feature was thus obtained. Figure 5 shows these 

significances with the standard deviation and 

cumulative significance shown. Based on this data, 

the 10 most significant features were selected. 

Features related to temperature and current 

appeared to be of little relevance in terms of 

diagnosis because these parameters varied in the 

same way for each case and were not affected by 

damage. 

Among the features derived from the vibration 

acceleration signals, one would expect to find fault 

information in the 1st, 2nd and 4th harmonics of the 

shaft, while the significance analysis of the features 

did not show these harmonics as significant. This 

may be due to the variable loading of the system. 

However, in this case, the most significant features 

appeared to be the amplitudes of the order spectrum 

from the gear meshing band. According to [35] the 

meshing frequency of a planetary gearbox is equal 

to: 

 𝑓𝑧 = 𝑓1
𝑧3𝑧1

𝑧3+𝑧1
 (8) 

where f1 is the rotational frequency of the input shaft, 

z3 is the number of teeth in the ring gear, and z1 is the 

number of teeth in the sun gear. The gear meshing 

frequency on the laboratory bench is 18 times the 

rotational frequency of the input shaft, which 

corresponds to 72 order after considering the gear 

ratio.  

The next step was to exclude features that are 

highly correlated with other features. Correlated 

features carry the same information, leading to 

feature redundancy and causing overfitting [36]. 

Using the naive Bayes classifier, one of the 

assumptions is that the features are independent. To 

avoid overfitting and meet the model assumptions, it 

is necessary to exclude correlated features.  

The Spearmann correlation coefficient for each 

pair of features was calculated from a set limited to 

ten features. The matrix of Spearman’s correlation 

coefficients is shown in Figure 6. Some features 

were then excluded so as to eliminate strong 

correlations - with a coefficient above 0.7 [37]. 

 
Fig. 6. Spearman correlation coefficient matrix 

 

Based on the above analysis, the set was reduced 

to six symptoms: zo72, zo69, zo78, zo14, zo77, 

zo71. An example of the distribution of a pair of 

features derived from the reduced set is shown in 

Figure 7. The figure shows that, based on the 

selected features, it is possible to differentiate the 

individual groups - the technical states of the 

machine. 

 

4.2. Classifier training 

To train the classifier, each feature of the reduced 

set was first normalised to an interval between 0 and 

1. The minimum and maximum values for each 

feature were saved so that the new data could later 

undergo the same transformation. Next, the data was 

split into a training set and a test set in a 3:1 ratio - 

the first set was used to train the model, and the 

second set was used to evaluate it.  

Training consisted of determining a Gaussian 

mixture model for each state and for each feature 

based on the training dataset. The number of 

components of the mixture was set equal to 3, and 

the covariance matrix was chosen to be diagonal. 

For the number of states K, the number of 

symptoms J and the number of components of the 

Gaussian mixture model N, the following were 

obtained: 

• K vectors of weights 𝑤 of dimension N, 

• K average matrices M of dimension 𝑁 × 𝐽, 
• K variance matrices 𝚺 of dimension 𝑁 × 𝐽. 

The classifier was then evaluated using data from 

the test set. Each sample from the dataset was 

classified by assigning it to the class 𝑋𝑖 with the 

highest log-likelihood value according to the 

formula x. The confusion matrix of the classifier is 

shown in Figure 8, and its metrics are presented in 

Table 2. 
Table 2. Classifier metrics 

Machine 

condition 

Precision Sensitivity Support 

Imbalance 0.99 0.96 187 

Misalignment 1.00 1.00 188 

Good condition 0.96 0.99 188 

Accuracy   0.98 
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Fig. 5. Feature importance ranking 
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Fig. 7. Example of the distribution of a pair of features 

from the reduced set 

 

 
Fig. 8. Confusion matrix 

 

The resulting classifier most accurately identifies 

the misalignment state. As for the other two states: 

imbalance and operational state, the model achieved 

lower metrics. Eight samples from the imbalance 

state were classified as operational state and three 

samples from the operational state were assigned to 

the imbalance class. Despite this, the classifier 

achieves very high metrics - the accuracy of the 

classifier was 0.98, which means that of all 

classifications, 98% were correct. 

 

5. IMPLEMENTATION OF THE METHOD IN 

THE RT SYSTEM PROPOSITION 

 

The classifier prepared in this way was 

implemented on an NI MyRIO device. This device 

has a controller with a real-time operating system 

(RTOS) and an FPGA circuit, which has its 

industrial equivalent [38]. The RT operating system 

ensures reliable system operation and is a commonly 

used system in diagnostic equipment. The 

measurement and diagnostic system created is 

shown in diagram form in Figure 9. 

The software that comprises the diagnostic 

system: the program running on the FPGA, the 

program running on the RT OS and the application 

running on the Windows PC were implemented 

using the LabVIEW development system. 

 

 

Fig. 9. System diagram 

 

The basic assumption of the developed 

diagnostic system is that it is intended to operate 

under varying load conditions during the operation 

of a machine. Measurement of the vibroacoustic 

signals, processing of these signals, and evaluation 

the machine’s technical condition are carried out by 

the NI MyRIO device. 

The program implemented on the FPGA is 

responsible for reading the values of the signals from 

the A/D converter. Once per time period which is the 

inverse of the specified sampling frequency, it reads 

the instantaneous value of the measured signals and 

sends them to the RT via a DMA FIFO queue. 

The measured values are: 

• vibration acceleration in three directions, 

• shaft rotational speed. 

The program running on the real-time operating 

system is based on a four-thread architecture. Its 

structure is shown in Figure 10. Each thread is a state 

machine and communication between them is 

carried out through queues.  

The thread used to receive control data from the 

PC manages the other threads. The PC application 

communicates with this thread using TCP/IP 

protocol. 

The thread responsible for recording the 

measurement signals receives the data from the 

DMA FIFO queue that was sent from the FPGA and 

then sends it to the analysis thread. 

 

 

Fig. 10. RT program architecture 

 

In the analysis thread, as a part of the processing 

of the measurement signals, due to the occurrence of 

variable loading, an order analysis is performed - 
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according to the method described in Chapter 2. In 

order to assess the technical condition of the 

machine, those amplitudes of the order spectrum are 

used - symptoms whose diagnostic relevance has 

been indicated by the analysis described in Chapter 

3.  

Based on the selected symptoms, the Naive 

Bayes Classifier, whose training is described in 

Chapter 2, makes a diagnostic decision.  

The automatic evaluation of the machine’s 

condition takes place even before the data is sent 

from the program running on the RT to the PC-based 

application. 

The measurement data, the results of the order 

analysis and the diagnostic decision are sent to the 

next thread, which sends them to the application 

running on the PC via TCP. 

Using the Windows PC software, it is possible to 

communicate with the NI MyRIO device to set the 

measurement configuration and the processing 

parameters and to receive the raw and processed 

measurement data and the diagnostic decision. The 

classification result is displayed on the program’s 

user interface. 

 

 

Fig. 11. PC application architecture 

 

The application running on the PC is based on 

four threads: a user interface thread, which is used to 

control the system and display the data and analysis 

results, and state machine-based threads for sending 

data to the RT, receiving data from the RT and 

writing data to a file. The architecture of the 

application is shown in Figure 11.  

The device was tested on the laboratory bench 

described in section 3.1 regarding the continuous 

operation of the device in an application for 

continuous diagnostic monitoring. The myRIO 

device recorded measurement signals while 

simultaneously analysing and assessing the technical 

condition of the object under test. 

 

6. SUMMARY 

 

This paper presents a new method for diagnosing 

machines operating under varying conditions. The 

method is based on the order power spectrum of the 

vibration acceleration signal and a naive Bayes 

classifier. A functionality analysis of the proposed 

method was carried out on a laboratory test bench for 

planetary gearboxes. The method showed 98% 

effectiveness in classifying misalignment, unbalance 

and correct machine operation. A prototype of the 

diagnosis system with the myRIO-1900 computing 

unit was built. The use of the prototype in continuous 

diagnostic monitoring systems was tested. 

Traditional diagnostic systems are based on the 

ISO 20816-3:2022 standard [24], according to this 

standard, rotating machines should be operated 

under nominal operating conditions and at a fixed 

operating temperature during diagnosis [30]. 

The developed system is adapted to work during 

the operation of a machine operating in variable 

conditions. It measures the diagnostic signals, 

processes them - among other things, it carries out an 

order analysis and performs an automatic evaluation 

of the technical condition of the machine and 

presents the measurement data and the classification 

result to the user (using TCP/IP protocol). 

Dedicated systems for variable-speed machines 

based on synchronous methods already exist in 

industry [39], but in most cases, they are inefficient 

for machines operating under variable load and 

temperature [6]. Dedicated methods for machines 

operating under variable conditions are being 

developed [40] but are not yet implemented in 

industrial diagnostic monitoring systems. 

Automatic evaluation of the machine’s condition 

is achieved by analysing the measurement data to 

create a ‘naive Bayes classifier’, which uses a 

Gaussian mixture model to assign the machine to one 

of three states: operable, imbalance and 

misalignment. The fault base can be extended to 

include other faults that occur in industry. 

The analyser is a prototype for an industrially 

deployable diagnostic system. 

The analyser is universal - the classification 

algorithm can be calibrated to work with any rotating 

machine. However, this requires measurements with 

artificially introduced faults. It must be taken into 

account that sometimes this is not possible due to the 

need to stop the machine. 

The proposed method requires data from a faulty 

machine, which can be difficult to obtain in an 

industrial environment. However, it is possible to 

define the most common damages such as 

misalignment, imbalance and train the model with 

this data. To detect other defects, the method can be 

adapted to return information about an unidentified 

machine condition. The classifier, trained for 

artificially introduced states, will indicate the one of 

the states for which the probability is highest, even 

if the damage is not included in the training data. 

Then the probability that the machine belongs to 

each state will be low. It is possible to improve the 

method by introducing a probability threshold below 

which the classifier indicates an unidentified 

machine state. 

Reliable and reproducible measurements are 

necessary for the analyser to function correctly. 

Otherwise, a significance analysis of the symptoms 

may indicate those that do not contribute diagnostic 

information, thus misleading the classifier, causing 

disturbances and unstable condition assessment. 
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Further work is planned with a more complex 

analysis that considers signals describing the 

machine’s load and operating conditions. 
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