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Abstract 

In recent years, the wavelet transform filtering algorithm has attracted significant attention due to 

widespread applications in signal denoising. However, its fixed threshold method has limitations, such as 

constrained denoising performance and loss of signal details, which requires improvement to adapt to complex 

noise environments. To address this issue, a wavelet transforms filtering algorithm combining adaptive 

thresholding and an improved threshold function is proposed. The algorithm dynamically calculates thresholds 

based on the statistical properties of the signal and employs a continuously differentiable threshold function to 

balance denoising and signal fidelity. Experimental tests on simulated signals with varying noise levels and 

real-world signals show that the improved algorithm achieves an SSIM index of 0.942, the closest to the original 

image, preserving image details and textures to the greatest extent. In denoising house images, the GAPT-

Wavelet method clearly preserves the contours and textures of the house, with a PSNR of 87.90 dB and an 

MSE of 0.021 dB. When the maximum data size n=800, the algorithm’s runtime is 46 seconds, maintaining a 

fast response time. The study has shown that the improved algorithm outperforms traditional methods in terms 

of denoising performance, computational efficiency, and adaptability, demonstrating significant potential for 

practical applications in scenarios such as medical image denoising, engineering equipment fault diagnosis, and 

industrial signal monitoring, thereby highlighting its important practical significance in the fields of engineering 

and technical diagnostics. 
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1. INTRODUCTION 

 

With the increasing demands for signal quality 

in fields such as communications, healthcare, and 

seismic monitoring, signal denoising technology has 

become crucial for improving data quality and 

ensuring the effectiveness of subsequent processing. 

In recent years, the Wavelet Transform Filtering 

Algorithm (WTFA) has been widely applied in 

various signal processing tasks due to its advantages 

in multi-scale analysis and efficient denoising [1]. 

Wavelet transform can effectively decompose 

signals, extract features from different frequency 

ranges, and possesses good time-frequency 

localization properties [2]. However, traditional 

WTFA often relies on fixed threshold strategies, 

which show certain limitations in complex noise 

environments. This can lead to restricted denoising 

performance and often fails to preserve signal details 

adequately [3]. The adaptive thresholding method 

can dynamically adjust thresholds based on the 

statistical properties of different signals, allowing for 

 
Received 2024-03-13; Accepted 2025-08-12; Available online 2025-08-12 

© 2025 by the Authors. Licensee Polish Society of Technical Diagnostics (Warsaw. Poland). This article is an open access article distributed 

under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 
 

more accurate differentiation between signal and 

noise, and avoiding the inefficiency of fixed 

thresholds in changing noise environments [4]. By 

adjusting the threshold function, signal details can be 

effectively preserved while denoising, thus 

enhancing denoising performance and signal quality 

[5]. Therefore, this study proposes a WTFA based on 

adaptive thresholding and an improved threshold 

function. The innovation of this algorithm lies in the 

introduction of a dynamic threshold adjustment 

mechanism, which combines the statistical 

characteristics of the signal and multi-scale analysis 

to overcome the limitations of traditional fixed 

threshold methods, improving the algorithm's 

adaptability and denoising performance. This 

improved method is flexible in handling different 

noise levels and signal characteristics, offering high 

computational efficiency and better denoising 

performance. It provides new ideas and technical 

solutions for the field of signal denoising. 
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2. RELATED WORK 

 

The WTFA, due to its superior time-frequency 

localization properties, performs excellently in 

handling signals with multi-scale features and 

complex noise. It is widely applied in fields such as 

signal denoising, image processing, and speech 

recognition [6]. Molaei et al. addressed the issue of 

incompatibility with Fourier transform in 3D near-

field dual-station microwave imaging caused by 

physical layer compression and non-uniform 

radiation patterns in dynamic metasurface antennas. 

They proposed a Fourier transform-based imaging 

algorithm, and experimental results demonstrated its 

excellent performance in numerical simulations [7]. 

Jiang et al. tackled the problem of fixed time 

windows in S-transform, which leads to limited 

time-frequency resolution and poor energy 

concentration in seismic signal analysis. They 

proposed an adaptive generalized S-transform 

algorithm based on a novel generalized Gaussian 

window function. Experimental results showed that 

this method improved time-frequency resolution and 

energy concentration in seismic signal analysis [8]. 

Li et al. addressed the problem of difficulty in 

identifying the first wave in microseismic records 

due to the mixture of high- and low-frequency noise. 

They proposed an innovative threshold denoising 

method based on discrete wavelet transform. This 

method demonstrated higher denoising efficiency in 

various contrast tests and significantly enhanced the 

clarity of the first wave in actual microseismic 

records [9]. Tian et al. solved the issue of low 

reconstruction accuracy due to the limited 

characterization ability of discrete cosine transform 

in the electro-photoplethysmographic inference of 

standard electrocardiogram. They proposed an 

improved framework based on cross-domain joint 

dictionary learning and label consistency, and 

experimental results achieved Pearson correlation 

coefficients of 0.88 and 0.92 on two benchmark 

datasets [10]. Yao et al. addressed the low 

computational efficiency of traditional supervised 

descent methods in electromagnetic inverse 

scattering problems. They proposed an enhanced 

supervised descent learning framework combining 

complex-valued deep convolutional neural networks 

and semantic segmentation models. Experimental 

results showed that this framework significantly 

reduced computation time and achieved real-time 

imaging. [11]. 

With the increasing demand for signal 

processing, threshold denoising methods, as one of 

the classic denoising techniques, have gradually 

overcome the limitations of traditional fixed 

threshold methods in complex noise environments 

by introducing adaptive adjustment mechanisms and 

optimizing threshold functions. This has effectively 

improved denoising performance and signal fidelity 

[12]. For example, Peng et al proposed a fault 

diagnosis method for air compressors based on 

improved Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (ICEEMDAN) 

combined with wavelet threshold denoising, and 

further constructed a fault identification model using 

MPGA-SVM. Compared with the CEEMDAN plus 

wavelet threshold approach, the proposed joint 

denoising method improved the signal-to-noise ratio 

by 6.5% and reduced the mean squared error by 

16.1%, while the MPGA-SVM model achieved a 

fault diagnosis accuracy of 98.33% [13]. Wang et al. 

addressed the problem that traditional vibration-

based fault diagnosis is susceptible to noise 

interference, and proposed a fault diagnosis method 

based on time-shift denoising and discrete wavelet 

transform-enhanced conditional domain adaptation 

using motor stator current signals. Experimental 

results showed that this method achieved a 

maximum diagnostic accuracy of 93.94% across two 

public datasets and one real-world dataset [14]. Iqbal 

et al. addressed the challenge of noise suppression in 

seismic signal processing by proposing an intelligent 

denoising framework, DeepSeg, based on deep 

convolutional neural networks. The DeepSeg model 

was trained using only synthetic seismic data 

without relying on real data, making it highly 

adaptable and showing potential in fields such as 

seismic imaging, environmental noise preprocessing, 

and microseismic event monitoring [15]. Yao et al. 

addressed the issue of decreased fault diagnosis 

accuracy in high-noise industrial environments by 

proposing an intelligent bearing fault diagnosis 

framework incorporating instance-enhanced batch 

normalization, improved channel attention blocks, 

and a location-focused soft threshold denoising 

structure. Experiments conducted on three public 

datasets validated the effectiveness and robustness of 

this method for fault identification under high-noise 

industrial scenarios [16]. Li et al. tackled the 

challenge of accurately identifying bearing faults in 

CNC machine tool spindle systems operating under 

high-noise conditions by introducing a fault 

diagnosis method combining deep residual 

shrinkage networks with a Transformer architecture. 

Experimental results demonstrated that this method 

achieved a diagnostic accuracy of at least 98% under 

various SNR conditions [17]. 

In summary, current research indicates that, 

although WTFA and threshold denoising methods 

have made significant progress in various signal 

processing applications, existing studies have 

generally relied on fixed threshold or simple 

adaptive threshold strategies. These methods fail to 

fully account for the dynamic changes in signal 

characteristics under complex noise environments, 

leading to certain limitations in denoising 

performance and signal detail preservation. To 

address the issues, this study proposes a wavelet 

transform filtering algorithm based on an adaptive 

thresholding method and an improved threshold 

function (Gaussian Adaptive Thresholding and 

GAN-FFDNet-based Wavelet, GAPT-Wavelet), with 

its innovations primarily reflected in several aspects. 

For the first time, a Gaussian adaptive thresholding 
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scheme based on statistical characteristics is 

integrated with a Fast and Flexible Denoising 

Network (FFDNet) and Generative Adversarial 

Networks (GAN), enhancing the adaptability of the 

threshold through deep neural networks and enabling 

dynamic adjustment to local signal characteristics 

under complex noise environments. The study 

employs a continuously differentiable improved 

threshold function to optimize the balance between 

denoising and signal fidelity, significantly improving 

the preservation of signal details. The proposed 

framework demonstrates strong generalizability and 

application potential in various typical real-world 

scenarios such as medical image processing, seismic 

signal denoising, and industrial equipment 

monitoring. Although this method achieves notable 

improvements in denoising performance and detail 

preservation, the introduction of deep learning 

structures inevitably increases the computational 

complexity and resource consumption compared 

with traditional methods. Future work may further 

optimize the model in terms of lightweight design 

and real-time performance to expand its applicability 

to large-scale real-time applications. 

 

3. WTFA BASED ON GAUSSIAN ADAPTIVE 

THRESHOLDING AND AN IMPROVED 

THRESHOLD FUNCTION 

 
3.1 Gaussian adaptive thresholding based on the 

combination of FFDNet and GAN 

Adaptive thresholding methods dynamically 

adjust thresholds to adapt to various noise 

environments, enhancing the flexibility and 

performance of thresholding techniques in complex 

signal processing tasks, and proving suitable for 

improving WTFA [18-19]. FFDNet is a deep 

learning-based denoising network, directly accepts 

noise level information and adjusts thresholds during 

the denoising process based on noise intensity, 

effectively addressing these limitations. It primarily 

employs convolutional neural networks for image or 

signal denoising [20]. The FFDNet architecture is 

illustrated in figure 1. 

 

Downsampled Subimages

& Nosie Level Map

Downoised Subimages

Nonlinear Mapping

Conv+ReLU

Conv+BN+ReLU

Conv

Conv+BN+ReLU

 

Fig. 1. FFDNet structure diagram 

 

Figure 1 shows the operational architecture of 

FFDNet. The network's core component, the 

nonlinear mapping module, includes multiple layers 

of convolution operations and activation functions. 

The first layer applies convolution and ReLU 

activation. Two subsequent layers combine 

convolution with batch normalization and ReLU 

activation, followed by a final convolutional layer 

that generates denoised features. The nonlinear 

mapping module processes the input and outputs 

denoised sub-images. The reconstruction process 

then combines these sub-images into a complete 

denoised image. FFDNet focuses on using the input 

noisy signal and noise standard deviation for 

denoising, as described in equation (1) [21]. 

( , )x G y =    (1) 

In equation (1), x   represents the denoised 

signal, y   denotes the input signal,    stands for 

the noise standard deviation, and G   refers to the 

FFDNet denoising network. During training, 

FFDNet adopts the L2 loss function, minimizing the 

Mean Squared Error (MSE) between the denoised 

result and the ground truth signal. The loss function 

is described in equation (2). 
2

~ 2
[ ]

yFFDNet y p trueL x x=  −    (2) 

In equation (2), 
truex  represents the true signal. 

FFDNet uses a residual network structure, where 

each layer applies convolutional operations to 

extract features from the signal and enhances the 

learning effect through residual connections. 

However, the traditional approach used by FFDNet 

mainly relies on convolutional network-based noise 

prediction, which struggles with detail recovery 

when generating higher-quality images. Therefore, 

GAN is introduced to enhance the recovery of image 

details and textures [22]. When combining FFDNet 

with GAN, the goal is to use GAN to improve the 

details of the denoised signal and then use FFDNet 

to perform the denoising. The integrated network can 

generate more natural and realistic signals. For the 

structure and objective of the combined network, the 

generator part uses FFDNet for initial denoising of 

the noisy signal, producing a denoised image or 

signal. The denoised signal expression is shown in 

equation (3) [22] . 

( , ) ( , )G y FFDNet y =    (3) 

In equation (3), y  represents the noisy input, 

   is the standard deviation of the noise, and 

( , )G y    is the denoised signal output by the 

generator. The objective of the discriminator is to 

determine whether the signal output by the generator 

is close to the real signal, thereby helping the 

generator improve the denoising effect. The 

discriminator distinguishes between the generated 

signal and the real signal by outputting a probability 

value, D . The expression is shown in equation (4). 

( ) ( )d dD x W x b=  +    (4) 

In equation (4), 
dW   and 

db   represent the 

weights and biases of the discriminator,    is the 

Sigmoid activation function, and ( )D x   indicates 

the probability that the input signal is a real signal. 
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Fig. 2. Operational structure of the improved adaptive thresholding method 

 

The training objective of GAN is to minimize 

the adversarial loss between the generator and the 

discriminator. The goal of the generator is to deceive 

the discriminator into believing that the generated 

signal comes from a real signal. The loss functions 

of the generator and discriminator are shown in 

equation (5). 

~

~ ~

[log(1 ( ( , )))]

[log ( )] [log(1 ( ( , )))]

y

x y

G y p

D x p y p

L D G y

L D x E D G y





=  −


=  + −

 (5) 

In equation (5), 
xp  represents the distribution 

of the real signal, 
yp  represents the distribution of 

the noisy signal, D  is the discriminator, and 
GL  

and 
DL  are the adversarial losses of the generator 

and discriminator. The total loss function is 

expressed in equation (6). 

total FFDNet G DL L L L= + +    (6) 

In equation (6), FFDNetL   represents the traditional 

denoising loss. The total loss of the network training 

is a weighted combination of the traditional 

denoising loss, generator loss, and discriminator loss. 

The total loss function ensures that the generator 

learns to recover clearer signals from noisy signals, 

while the discriminator distinguishes the differences 

between noise and real signals as much as possible. 

The operational architecture of the integrated 

adaptive thresholding method with FFDNet and 

GAN is shown in figure 2. 

As shown in figure 2, the method first normalizes 

the input noisy image or signal and generates the 

corresponding noise level map. Then, the generator 

part uses FFDNet for initial denoising, while the 

discriminator is responsible for distinguishing the 

differences between the output of the generator and 

the real image. The entire training process optimizes 

the generated adaptive threshold by combining 

FFDNet's noise level prediction ability with GAN's 

generative capability. This threshold adjusts based 

on global noise level predictions and feature map 

distributions to adapt to the noise characteristics of 

different regions of the image. Finally, by using the 

adaptive threshold to denoise the high-frequency 

components and preserve the key information in the 

low-frequency components, the method outputs an 

optimized high-quality denoised image or signal, 

achieving the goal of maximizing noise removal 

while retaining image details. 
 

3.2 Threshold function based on Gaussian 

processes and its improvement on WTFA 

WTFA performs multi-resolution 

decomposition of the signal to extract different 

frequency components, enabling effective separation 

of noise and precise signal reconstruction. It is an 

efficient tool widely used for denoising and feature 

extraction. The operational structure of WTFA is 

shown in figure 3. 

 
s
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Fig. 3. The operational structure of WTFA 

 

Figure 3 illustrates the structure of WTFA and 

its signal processing example in practical 

applications. WTFA first decomposes the input 

signal S and progressively breaks it down into low-

frequency components (A) and high-frequency 

components (D) according to the decomposition 

levels. This decomposition can continue deeper, with 

each level producing more refined frequency bands. 

The right side shows the corresponding time-domain 

signals of each layer's decomposition result in 

practical applications. The low-frequency 

components retain the overall trend of the signal, 

while the high-frequency components capture the 

rapid variations of the signal. By such decomposition 

and reconstruction, the algorithm effectively extracts 

different frequency characteristics of the signal, 

achieving goals such as filtering, denoising, or 
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Fig 4. Gaussian regression operational flowchart 

 

feature extraction. By integrating FFDNet and 

GAN's adaptive thresholding method, the flexibility 

and adaptability of threshold computation can be 

enhanced. Building on this, improving the threshold 

function by introducing a more flexible nonlinear 

adjustment mechanism enables more precise 

adaptation to different noise characteristics, thereby 

improving denoising performance and strengthening 

WTFA's ability to preserve signals in complex noise 

environments. The introduction of Gaussian Process 

(GP) provides more flexible nonlinear modeling 

capability for the improved threshold function, 

allowing the threshold function to dynamically 

adjust based on the statistical characteristics of the 

data. GP, as a powerful non-parametric method, has 

a core advantage in inferring through the covariance 

structure between data without relying on explicit 

model assumptions [23]. The expression of GP is 

shown in equation (7). 

2

( ) ~ ( ( ), ( , '))

( ) [ ( )]

( , ') '

f x m x k x x

m x f x

k x x x x



 




= 


= + −

   (7) 

In equation (7), ( )f x   represents a random 

function defined in the input space x  , 

( ( ), ( , '))m x k x x   indicates that this function is a 

GP, with mean function ( )m x   and covariance 

function ( , ')k x x  . x   and 'x   are points in the 

input space, 2   represents the noise variance. In 

GP, assume a training dataset { , }Data X y= , where 

1 2{ , , , }nX x x x=    is the input data and 

1 2{ , , , }ny y y y=   is the corresponding output data, 

which are also the observations. The predicted result 

obtained through GP regression is shown in equation 

(8). 
2

* * * *

2 1

* *

2 2 1

* * * * *

( | , , ) ( , )

( , ) ( ( , ) )

( , ) ( , ) ( ( , ) ) ( , )

p y X y x

k x X K X X I y

k x x k x X K X X I k X x

 

 

 

−

−

 = 


=  +


= −  +

(8) 

In equation (8), 
*x   and 

*y   represent the 

predicted new test points and the corresponding 

outputs, respectively, 
*   and 2

*   represent the 

predicted mean and variance, respectively. When 

processing signals in non-stationary and complex 

noise environments, using a GP-based threshold 

function can improve the performance of traditional 

hard and soft thresholding methods. The typical 

definition of the hard threshold function is shown in 

equation (9). 

,
( , )

0,
hard

x if x
T x

otherwise




 
= 


   (9) 

In equation (9), x   represents the signal 

coefficients, and    represents the set threshold. 

Based on equations (7) to (9), the operational flow of 

GP regression is shown in figure 4. 

From figure 4, it can be seen that Gaussian 

regression consists of three main steps. First, the 

training data is input and preprocessed to generate 

random vectors. Next, an appropriate kernel function 

is chosen, and the covariance matrix is calculated. 

New data points are then input for prediction, and the 

model outputs the predicted mean and variance. 

Finally, the GP regression process is completed. The 

entire process combines the kernel function and 

covariance matrix, fully utilizing the properties of 

Gaussian distributions for regression modeling and 

prediction. The main issue with the hard 

thresholding function is that when the coefficient x  

approaches zero, it causes signal discontinuities, 

leading to artifacts or ringing effects. To address this, 

the GP-based hard thresholding function introduces 

noise covariance estimates, allowing the threshold to 

adapt to the local features of the signal. The 

improved hard thresholding function is shown in 

equation (10). 

,
( , , )

0,
GP hard

x if x
T x

otherwise

 
 −

  
= 


   (10) 

In equation (10),    is the parameter 

controlling the threshold, and   is the signal noise 

standard deviation estimated by GP. In this case, the 

threshold dynamically depends on the noise estimate, 

allowing it to adaptively adjust in different noise 

environments, thereby better preserving the signal 

details. The soft thresholding function is improved 

using the same principle, and the definition of the 

soft thresholding function is shown in equation (11). 

,

( , )

0,

soft

x ifx

T x x ifx

otherwise

 

  

− 


= +  −



   (11) 
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Fig. 5. GAPT-Wavelet operation diagram 

 

In equation (11), the drawback of the soft 

thresholding function is that it compresses the signal 

amplitude, especially low-amplitude signals that 

may be excessively suppressed. To prevent an 

overall reduction in the signal amplitude, an adaptive 

threshold can be introduced through GP, so that each 

signal coefficient is smoothly adjusted based on its 

local statistical characteristics. The improved 

function expression is shown in equation (12). 

,
( , , )

0,
GP soft

x if x
T x

otherwise

   
 −

 −   
= 


  (12) 

In equation (12),    and    are jointly 

estimated by the GP model. GP is not only used for 

noise modeling of the signal but also for dynamically 

adjusting the selection of the threshold, ensuring the 

authenticity of the signal and the preservation of its 

details during the denoising process. The final 

operation process of GAPT-Wavelet is shown in 

figure 5. 

Figure 5 shows the operation process of GAPT-

Wavelet. GAPT-Wavelet first preprocesses the noisy 

image, including loading and normalizing the image, 

and then performs wavelet transform to decompose 

the image and extract different frequency 

components. Next, it uses FFDNet and GAN to 

generate adaptive thresholds, combines global noise 

level predictions, and calculates the adaptive 

thresholds. Subsequently, GP is used to model and 

optimize the threshold function, generating the final 

threshold. The high-frequency components are 

filtered through threshold denoising to remove noise. 

Finally, an inverse wavelet transform is applied to 

reconstruct the image, and the denoised image result 

is output. The entire process integrates deep learning 

and probabilistic modeling, which enhances the 

denoising effect and image quality. 

 

4. PERFORMANCE VALIDATION AND 

COMPARISON OF GAPT-WAVELET 

 

4.1 Verification of GAPT-Wavelet’s denoising 

effect 

To verify the performance of the improved 

WTFA, a series of detailed experimental setups were 

established. The system used an Intel Core i7 CPU, 

an NVIDIA RTX 3060 GPU, 16GB of RAM, and a 

Windows 10 operating system. The programming 

language Python 3.8, PyTorch 1.10+ framework, and 

PyWavelets and OpenCV platforms were used, with 

the Kodak24 image dataset selected. GAPT-Wavelet 

was compared with the classical Gaussian Filtering 

Algorithm (GFA), standard WTFA, and 

Noise2Noise in terms of performance, primarily 

focusing on denoising effectiveness and 

computational efficiency. The SSIM index obtained 

from the experiments are shown in figure 6. 

As shown in figure 6(a), the SSIM index of 

GAPT-Wavelet was 0.942, which was the closest to 

the original image, indicating that it achieved the 

best denoising performance with the maximum 

preservation of image details and textures. In 

contrast, Noise2Noise had an SSIM index of 0.874, 

which was second-best but still showed some loss of 

details. The WTFA image was blurry with noticeable 

noise, while GFA performed the worst, with severe 

distortion of the image structure. Figure 6(b) 

illustrates the variation of the SSIM index with the 

number of training iterations for each algorithm. 

GAPT-Wavelet showed rapid improvement in the 

early stages, with the SSIM index quickly reaching 

0.94, demonstrating excellent convergence speed 

and stability. Noise2Noise's SSIM index stabilized at 

0.87, while the SSIM indices of WTFA and GFA 

stabilized at 0.725 and 0.517, respectively, indicating 

their denoising capabilities and convergence 

performance were significantly inferior to GAPT-

Wavelet. Overall, GAPT-Wavelet demonstrated the 

best performance in both denoising accuracy and 

convergence speed. Next, MSE for the four 

algorithms was tested, and the results are shown in 

figure 7. 

As shown in figure 7(a), at a Signal-to-Noise 

Ratio (SNR) of 10dB, the MSE of different 

algorithms gradually decreased as the number of 

iterations increased. The MSE of GAPT-Wavelet 

initially started at 0.16dB and rapidly dropped to 
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Fig 7. Comparison of mean squared error
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Fig.8 Comparison of denoising results 

 

0.03dB within 50 iterations, after which it stabilized. 

Noise2Noise stabilized at 0.039dB. Figure 7(b) 

showed the situation at an SNR of 20dB. GAPT-

Wavelet’s MSE similarly dropped quickly from 

0.16dB to 0.02dB, outperforming other algorithms 

by far. The MSE of WTFA and GFA stabilized at 

0.078dB and 0.125dB, respectively. In terms of both 

initial decrease speed and final error values, GAPT-

Wavelet demonstrated the best performance. Next, 

the denoising effects of the algorithms were 

experimentally verified, with the results shown in 

figure 8. 

As shown in figure 8(a), GAPT-Wavelet not only 

effectively removed noise but also preserved the 

most complete details and color information, making 

it very close to the original image. In contrast, Hard 

Threshold Denoising caused excessive smoothing of 

image details, Soft Threshold Denoising yielded 

slightly better results but still showed some blurring, 

and Improved Threshold Denoising, while 

improving detail restoration, still lacked the 

naturalness in color and texture compared to GAPT-

Wavelet. Figure 8(b) demonstrated the denoising 

performance comparison on a house image. GAPT-

Wavelet again showed the best performance after 

denoising, clearly retaining the contours and textures 

of the house with almost no difference from the 

original image. In contrast, Hard Threshold 

Denoising blurred the edge details of the house, and 

although Soft Threshold Denoising and Improved 

Threshold Denoising restored some details, they still 

failed to completely eliminate the noise or over-

smoothing problem. Further experimental 

verification provided more specific PSNR and MSE, 

as shown in table 1. 
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Table 1. PSNR and MSE comparison results 

Image Algorithms 
PSNR 

(dB) 
MSE (dB) 

Flowers 

GAPT-Wavelet 87.34 0.024 

Improved Threshold 78.57 0.063 

Soft Threshold 72.26 0.086 

Hard Threshold 69.64 0.145 

Nosie2nosie 84.85 0.037 

WTFA 77.59 0.078 

GFA 70.69 0.127 

House 

GAPT-Wavelet 87.9 0.023 

Improved Threshold 78.75 0.061 

Soft Threshold 72.38 0.091 

Hard Threshold 69.64 0.0145 

Nosie2nosie 84.48 0.032 

WTFA 77.24 0.075 

GFA 70.26 0.132 

 

As shown in Table 1, in the flower image, the 

PSNR of GAPT-Wavelet was 87.34dB and the MSE 

was 0.024dB. Compared to Noise2Noise, the PSNR 

increased by 2.49dB and the MSE decreased by 35%. 

In the house image, GAPT-Wavelet had a PSNR of 

87.90dB and an MSE of 0.021dB. Compared to 

WTFA and GFA, GAPT-Wavelet demonstrated 

significantly better denoising performance in both 

PSNR and MSE. 

 

4.2 Verification of GAPT-Wavelet’s 

computational efficiency and robustness 

Based on the validation of GAPT-Wavelet's 

denoising performance, the study further assessed its 

computational efficiency and robustness. The 

experiment first examined the performance of the 

algorithms under different conditions and noise 

levels, while maintaining processing efficiency. The 

computation times for the four algorithms were first 

verified, as shown in figure 9. 
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Fig. 9. Comparison of runtime under different 

sample size conditions 

 

Figure 9 showed the runtime of four 

algorithms—GAPT-Wavelet, Noise2Noise, WTFA, 

and GFA—under different sample sizes. It could be 

seen that GAPT-Wavelet exhibited the smoothest 

growth in runtime. With n=200, its runtime was 8 

seconds, and even with the maximum data size of 

n=800, its runtime was only 46 seconds, 

significantly lower than the other algorithms. In 

contrast, Noise2Noise took 67 seconds to run at 

n=800, while WTFA and GFA had even higher time 

complexities, with GFA’s runtime approaching 200 

seconds at n=800. Overall, GAPT-Wavelet 

maintained the lowest runtime across all data sizes, 

demonstrating extremely high computational 

efficiency and good scalability, making it the optimal 

choice among the four algorithms. The subsequent 

study compared the denoising performance of the 

algorithms under different interference conditions, 

as shown in figure 10. 
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Fig. 10. Comparison of denoising performance 

under different interference conditions 

 

In figure 10(a), a Gaussian noise scenario was 

presented, where GAPT-Wavelet consistently 

achieved the highest PSNR. Its initial value was 

close to 40dB and remained at 39dB even at σ=20, 

outperforming Noise2Noise at 36dB and WTFA at 

28dB. In figure 10(b), a salt-and-pepper noise 

scenario was shown, where GAPT-Wavelet's initial 

PSNR was 36dB and remained at 48dB even with a 

4% noise ratio. In comparison, GFA performed the 

worst, with a final PSNR of 24dB. Overall, GAPT-

Wavelet demonstrated the lowest PSNR drop and 

strongest robustness in both noise scenarios, 

outperforming the other algorithms. The error rate of 

the algorithms was verified, with the results shown 

in figure 11. 
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Fig. 11. Error rate comparison chart 

 

In figure 11(a), it can be observed that, after 50 

iterations, GAPT-Wavelet outperformed in all three 

error rates. The pixel recovery error rate was only 

0.06, the signal recovery error rate was 0.065, and 

the classification error rate was less than 0.1, all 

lower than those of Noise2Noise. In figure 11(b), 

when the number of iterations increased to 100, 

GAPT-Wavelet's error rates further decreased, with 

the pixel recovery error rate at 0.056 and the 

classification error rate at 0.057, demonstrating 

exceptional convergence speed and stability. In 

figure 11(c), after 300 iterations, all three error rates 

of GAPT-Wavelet were below 0.05. In contrast, 

WTFA and GFA maintained relatively high error 

rates of 0.18 and 0.32, indicating poorer convergence 

performance. Overall, GAPT-Wavelet demonstrated 

the lowest error rates and optimal convergence 

across all iteration conditions. Finally, the study 

evaluates the denoising performance on different 

types of real-world engineering signals, and the 

results are presented in Table 2. 

 
Table 2. Quantitative comparison of denoising 

performance on real-world engineering signals 

Signal 

type 
Method 

SNR 

(dB) 
MSE 

Fault 

feature 

amplit

ude 

Bearing-

fault 

Noisy 3.41 0.162 0.031 

WTFA 11.25 0.039 0.062 

Nosie2Noise 12.40 0.031 0.071 

GAPT-Wavelet 15.82 0.022 0.091 

Gearbox

-fault 

Noisy 4.12 0.154 0.028 

WTFA 12.08 0.037 0.061 

Nosie2Noise 13.35 0.029 0.075 

GAPT-Wavelet 16.34 0.019 0.099 

Motor-

noise 

Noisy 3.89 0.170 0.032 

WTFA 11.50 0.041 0.065 

Nosie2Noise 12.94 0.033 0.073 

GAPT-Wavelet 15.63 0.021 0.088 

Table 2 presents the quantitative comparison of 

denoising performance for three types of real-world 

engineering signals, namely bearing fault vibration, 

gearbox fault vibration, and motor noise signals. For 

all signal types, GAPT-Wavelet consistently 

achieves the highest SNR and the lowest MSE 

among all compared methods. Notably, the 

amplitude of the extracted fault feature is 

significantly enhanced after denoising by GAPT-

Wavelet, indicating that weak diagnostic information, 

which is hardly detectable in the original noisy 

signals, can be effectively recovered. Compared with 

traditional hard and soft thresholding as well as 

WTFA and Noise2Noise, the proposed method 

demonstrates superior denoising capability and 

better preservation of critical features. These results 

validate the robustness and practical value of GAPT-

Wavelet for various technical diagnostic scenarios. 

 

5. CONCLUSION 

 

To address the issue of WTFA's poor 

performance in complex environments, a GAPT-

Wavelet was proposed by combining FFDNet and 

GAN to improve the adaptive thresholding method. 

A nonlinear adaptive threshold function was also 

introduced to improve the traditional hard and soft 

threshold functions, leading to the design of GAPT-

Wavelet. In denoising of floral images, GAPT-

Wavelet achieved a PSNR of 87.34dB and an MSE 

of 0.024dB. For color images, it preserved the most 

complete details and color information. In the salt-

and-pepper noise scenario, GAPT-Wavelet 

maintained a PSNR value of 48dB at a 4% noise 

level. After 300 iterations, GAPT-Wavelet's pixel 

recovery error rate was 0.043, the signal recovery 

error rate was 0.049, and the classification error rate 

was 0.045. The results demonstrated that GAPT-
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Wavelet exhibited excellent denoising performance, 

showcasing outstanding denoising ability, fast 

convergence, and good preservation of details, 

especially in complex noise environments. Although 

GAPT-Wavelet performed well, its algorithm design 

was complex, and the computational resource 

consumption was relatively high. In scenarios with 

extremely large-scale data or real-time applications, 

there might be room for optimizing time efficiency. 

Future research could further optimize the 

computational efficiency of GAPT-Wavelet, 

combining lightweight models or hardware 

acceleration to better meet the demands of real-time 

processing and large-scale data applications, while 

also exploring its scalability in various complex 

noise scenarios. 
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