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Abstract 

Water logging disaster is a challenge for the city, and equipment failure is the main factor leading to the 

expansion of the disaster. In order to improve the accuracy and timeliness of fault prediction, this study proposes 

a device failure early warning method based on deep learning, to provide an effective risk management means 

for urban infrastructure. Using a hybrid model combining a constitutional neural network (CNN) and a long 

short-term memory network (LSTM), multi-dimensional sensor data from drainage systems, power supply 

systems, transportation systems, and communication systems are processed, and the results are analyzed, for 

prediction and early warning of equipment failures. Historical equipment failure records, real-time monitoring 

data and meteorological information were collected and input into the model for training and testing after 

cleaning and p reprocessing. The research results show that the model has excellent performance in many 

evaluation indicators such as equipment failure prediction accuracy, recall rate and F1 value, and can warn 

equipment failures in advance, provide sufficient time for emergency treatment and equipment maintenance. 
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1. INTRODUCTION  

 

In recent years, with the aggravation of climate 

change and the rapid progress of urbanization, the 

frequency and severity of water logging are 

increasing. Water logging disaster poses a threat to 

urban infrastructure, public safety and social and 

economic activities. Timely detection and response 

to equipment failures, especially infrastructure 

failures such as drainage systems and power supply 

systems, can alleviate the impact of water logging 

disasters and protect people's lives and property.  

In the case of equipment aging, extreme weather 

or human negligence, equipment failure can trigger 

or exacerbate water logging disasters. Traditional 

equipment fault detection relies on manual 

inspection and regular detection, which has 

problems such as time lag and low efficiency, and 

can not respond quickly to sudden faults. With the 

development of deep learning technology, intelligent 

fault prediction and Early Warning System based on 

multi-dimensional data such as sensor data and 

Historical Fault Records has become a new solution. 

Deep learning algorithms such as constitutional 

neural network (CNN) and long short-term memory 

(LSTM) are able to analyze large-scale and diverse 

input data and automatically learn the characteristic 

patterns of equipment failures, provide efficient and 

accurate early warning services. Early warning of 
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equipment failure in water logging disaster scenarios 

involves the processing and analysis of a large 

number of real-time monitoring data. Deep learning 

algorithms can achieve efficient data fusion and 

pattern recognition, and help relevant departments to 

find faults in time, implement effective intervention 

to reduce disaster losses. 

The impact of water logging disasters is 

increasing globally, and in areas with rapid 

urbanization, equipment failure warning and disaster 

response are becoming hot spots.  Estrada-Molina et 

al. reviewed the application of deep learning in open 

learning from 2019 to 2023, pointing out that the 

continuous progress of deep learning technology has 

become possible in the field of disaster management, 

and deep learning can effectively process complex 

data sets. It provides theoretical support for 

equipment management and fault warning in water 

logging disasters [1]. Himeur et al. explored mask 

detection technology in smart cities, and 

demonstrated the potential of deep learning in 

disaster emergency response by using deep learning 

and transfer learning methods in response to public 

health emergencies [2]. 

Data fusion and model optimization are 

emphasized to improve the accuracy of disaster early 

warning system. Deep learning, simulation 

algorithms, and optimization models have made 

significant progress in water logging disaster 
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warning and emergency response. The application 

background and fields are different, which provides 

technical support and ideas for the improvement of 

equipment fault prediction system. 

 The primary goal is to establish a device failure 

prediction model based on deep learning. The model 

can analyze the information from multiple data 

sources such as sensors, monitoring equipment and 

historical fault records, identify potential equipment 

failure modes, and carry out fault early warning 

through real-time data streams. Through the case 

analysis of different types of equipment, the internal 

relationship between equipment failure and water 

logging disaster is revealed. Combined with the 

actual disaster case data, the time, location and type 

of different equipment faults in the process of water 

logging disaster are analyzed, the early signs of 

faults are studied, and a data-based early warning 

model is established. 

Deep learning has shown strong generalization 

capabilities across various domains. While many 

studies focus on fields seemingly unrelated to urban 

infrastructure, such as geriatric mental health [3], 

dental informatics [4], and medical diagnostics like 

breast cancer detection [5], their inclusion in this 

discussion is purposeful. These studies exemplify 

how deep learning architectures can be successfully 

adapted to high-dimensional, heterogeneous data 

environments, which parallels the complexity found 

in waterlogging disaster scenarios. The CNN and 

LSTM models used in these medical applications 

demonstrate the potential for accurate pattern 

recognition and anomaly detection, serving as 

technical analogs for infrastructure-based predictive 

tasks. However, to maintain relevance, this paper 

primarily builds upon research directly related to 

urban flood risk, infrastructure monitoring, and 

intelligent emergency response systems. The 

following literature forms the core foundation for 

our model development and application in urban 

waterlogging contexts:  Yuan et al. [6], Wang et al. 

[7], Xu et al. [8], and Rao et al. [9], who explored 

deep learning, simulation, and optimization 

approaches for disaster resilience and early warning 

systems. 

The research will collect equipment operation 

data when water logging disaster occurs in various 

ways, such as meteorological data, urban drainage 

system status, power supply system fault records 

[10]. In the data ore-processing stage, the collected 

data are cleaned, normalized and feature extracted to 

ensure the quality and availability of the data. 

Through feature engineering, the features closely 

related to equipment failure will be extracted to 

provide support for model training. In terms of 

model design, a device fault prediction system based 

on deep learning is constructed. The model will be 

trained by historical data, optimize the algorithm 

parameters, and finally generate an intelligent model 

to identify equipment faults [11]. The real-time 

response ability of the model is also considered, and 

an appropriate algorithm is designed to achieve 

efficient real-time early warning. In terms of model 

evaluation and verification, the model is 

comprehensively evaluated by cross-validation, 

precision, recall, F1 value and other indicators [12]. 

It is verified in multiple scenarios and compared with 

the traditional equipment fault detection method to 

evaluate the application effect of deep learning 

technology in water logging disaster scenarios. 

 

2. MATERIALS AND METHODS 

 

2.1. Data collection and sample selection 

2.1.1. Data sources and collection methods 

The data sources mainly include three aspects: 

meteorological data, equipment operation data and 

historical records related to water logging disasters. 

Meteorological data comes from the historical 

meteorological records and real-time weather 

monitoring data provided by the meteorological 

department, including rainfall, wind speed, 

temperature and other factors. The operation data of 

the equipment comes from the intelligent sensors 

and monitoring equipment of the urban 

infrastructure, including the operation status, 

pressure value, flow information and equipment 

temperature of the drainage system, power supply 

system and related electrical equipment. Historical 

records of water logging disasters are collected 

through government departments and municipal 

emergency management agencies, including the 

time, place, impact area of the water logging disaster 

and the specific situation of equipment failure during 

the disaster [13]. 

In order to ensure the comprehensiveness and 

misrepresentations of the data, a variety of ways are 

used to collect the data. The meteorological data are 

based on historical data provided by the public 

meteorological stations and local meteorological 

monitoring stations and cover the period from the 

past five years to the current season. Equipment 

Operation Data is acquired in real time through smart 

sensors installed in critical facilities, and data is 

collected once per minute. Water logging disaster 

records are obtained by the Public Safety and 

emergency management department, including 

equipment damage records, failure types, repair time 

and so on during the disaster. In order to ensure the 

accuracy and integrity of the data, strict quality 

control measures are taken in the process of data 

collection. All sensor equipment is calibrated to 

ensure data accuracy [14]. The time of the 

meteorological data and the equipment data is 

aligned, and the change of the meteorological factors 

and the running state of the equipment is accurately 

corresponding in the analysis. 

 

2.1.2. Sample selection and description 

The samples selected in this study are 

concentrated in the core areas of the city, where the 

infrastructure is relatively complex, the types of 

equipment are diverse, and the frequency of water 

logging disasters is high. Select the city drainage 
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system, power supply system of key equipment, 

urban transportation, communications and other 

infrastructure equipment. 

The selection of equipment samples is based on 

the equipment's operating time, failure frequency 

and its importance in water logging disasters. The 

drainage system selects equipment with long running 

time and frequent maintenance records, and the data 

can reflect the performance of the equipment in 

extreme weather [15]. The power supply system 

selects the key equipment which is closely linked 

with the drainage system, including substation 

equipment, power dispatching system and so on. 

According to the type of equipment failure, typical 

equipment failure events are selected from the 

historical records, such as pump station equipment 

failure, power supply system interruption, etc. to 

ensure the diversity of data. 

The sample describes the basic information of the 

device (E. G. Device Type, model, manufacturer, 

installation time, etc.) operating Environment (such 

as temperature and humidity, load, maintenance 

frequency, etc.) and failure history (including the 

time of failure, cause, degree of damage, repair time, 

etc.). The performance of each device during the 

water logging disaster was recorded, such as the 

failure response time of the device, the accuracy of 

the early warning signal, etc. The fault types of all 

devices are classified into different categories, such 

as hardware fault, software fault, system fault, etc. 

which provides rich label data for subsequent model 

training. As shown in Table 1 below. 

 
Table 1. Data collection sample distribution 

Sample 

Type 

Number 

of 

Devices 

Failure 

Freque

ncy 

Device 

Function 

Failure 

Type 

Drainage 

System 
50 High 

Pumps, 

Valves 

Mechanica

l Failure, 

Electronic 
Failure 

Power 
Supply 

System 

30 
Mediu

m 

Substation
s, Power 

Lines 

Electrical 

Failure, 
Communic

ation 

Failure 

Traffic 

System 
20 Low 

Traffic 
Lights, 

Street 

Lights 

Electrical 

Failure, 

Control 
System 

Failure 

Commun

ication 

System 

15 Low 

Base 

Stations, 
Communic

ation Lines 

Signal 

Loss, 
Hardware 

Failure 

 

2.1.3. Data ore-processing 

Data ore-processing mainly includes data 

cleaning, data standardization, missing value 

processing and so on. Data cleaning is to check the 

collected original data, eliminate inconsistent, 

duplicate or error data, ensure the validity of the data. 

The missing values are processed by interpolation 

method or mean filling method to ensure the 

integrity of data. In data normalization, the data from 

different sources are normalized according to the 

same scale to avoid the influence of different data 

scales on model training. 

In the process of data cleaning, the outliers and 

noise in the sensor data are concerned, and each 

sample in the data set can reflect the true state of the 

device. The pumping station data of the drainage 

system is affected by extreme weather, and there are 

short-term flow fluctuations [16]. These abnormal 

fluctuations are removed during cleaning to avoid 

affecting the training results of the model. The 

possible error records in meteorological data, such as 

abnormal temperature data caused by sensor failure, 

are also cleaned up. The results of data ore-

processing are shown in Table 2 below. 

 
Table 2. Sample data cleaning comparison 

Data Type 

Missing 

Data 

Ratio 

Before 

Cleaning 

Missing 

Data 

Ratio 

After 

Cleaning 

Outlier 

Handling 

Meteorological 

Data 
8% 0% 

Outlier 
temperature 

values 
removed 

Drainage 
System Data 

5% 0% 

Low flow 

outliers 

removed 

Power Supply 

System Data 
6% 0% 

High 

temperature 

failures 
removed 

Traffic System 
Data 

4% 0% 

Signal loss 

records 

deleted 

Communication 

System Data 
3% 0% 

Missing data 

imputed 

 

There is a correlation between the occurrence of 

equipment failure and the operating state, and the 

failure mode of the equipment will change when the 

water logging disaster occurs. The fault frequency, 

fault type, operating state (such as flow, temperature, 

current, etc.) and time distribution of the fault were 

analyzed by descriptive statistics [17]. It can help 

researchers better understand the performance of the 

device and provide valuable information for 

subsequent model training. 

As shown in Fig. 1 and Table 3 below, there are 

differences in the frequency and type of failure for 

different equipment such as drainage systems, power 

supply systems, transportation systems, and 

communication systems. The failure frequency of 

the drainage system is higher during the storm 

season and water logging disasters, and mechanical 

and electronic failures are more common [18]. The 

power supply system is more prone to electrical and 

communication failures in winter and rainy seasons. 

The faults of traffic system and communication 

system are relatively few, and the electrical faults 

and control system faults are the main types of faults 

in water logging disasters [19]. The operating state 

of equipment (such as flow, voltage, current, etc.) 

has different fluctuations in different failure modes.  
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Fig. 1. Equipment failure frequency and type statistics 

 
Table 3. Equipment operating status statistics 

Device Type 
Sample 

Size 

Min 

Flow/Current/Temp

erature 

Max 

Flow/Current/Temperatu

re 

Mea

n 

Standar

d 

Deviatio

n 

90th 

Percentil

e 

Failure 

Occurrenc

e Period 

Drainage 
System 

50 10 m³/h 500 m³/h 
120 
m³/h 

50 m³/h 180 m³/h 
Rainy 
Season 

Power Supply 

System 
30 0.5 A 12 A 5 A 2 A 8 A 

Rainy 

Season, 
Winter 

Traffic System 20 0.1 A 5 A 2 A 1 A 3 A 
During 

Floods 
Communication 

System 
15 2 V 12 V 6 V 3 V   

The flow of pumping station in drainage system 

often fluctuates greatly during rainstorm, and the 

current in power supply system tends to be unstable 

when equipment fails. 

 

2.2. Model selection and construction 

2.2.1. Model selection criteria 

Model selection criteria are based on data 

characteristics, task requirements, model 

interchangeability, and computational efficiency. 

The early warning task of equipment failure in water 

logging disaster scenario involves a large amount of 

historical data and real-time monitoring data. The 

data type is complex, including meteorological data, 

equipment operation data and historical records of 

water logging disaster [20]. Models need to be able 

to deal with time series data, complex multi-

dimensional data and data with nonlinear 

characteristics. For deep learning models 

constitutional neural network (CNN) and long short-

term memory network (LSTM) are the main 

selection objects. 

The constitutional neural network (CNN) is used 

for image processing and feature extraction, which 

has excellent performance in image recognition, and 

its application in equipment fault early warning has 

also gradually attracted attention, especially in the 

field of image processing and feature extraction, 

effective feature information can be extracted when 

processing sensor data. Long Short-term Memory 

Network (LSTM) focuses on processing time series 

data, which is suitable for analyzing the time 

correlation during the operation of equipment. 

Equipment failures in water logging disaster 

scenarios have a certain time dependence, and 

LSTM has advantages in capturing time series 

information. In addition to the data type and task 

characteristics, the interchangeability and 

computational efficiency of the model should also be 

taken into account. Early warning of equipment 

failure requires high accuracy, interoperable results, 

and timely decision-making when disasters occur. 

Considering the real-time requirement of equipment 

fault prediction, the computational efficiency of the 

model must be high enough to handle the real-time 

data stream without excessive delay. 

 

2.2.2. Model structure design 

In this study, a deep learning structure based on 

the combination of constitutional neural network 

(CNN) and long short-term memory (LSTM) is 

selected. Making full use of the advantages of CNN 

in feature extraction and the powerful ability of 

LSTM in time series modeling, the structure design 
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of the model is divided into feature extraction 

module and time series modeling module. 

The feature extraction module uses the CNN 

layer to process the input data, and CNN 

automatically extracts the key features in the input 

data through the convolution layer, which reduces 

the complexity of manual feature selection. In order 

to deal with multi-dimensional information such as 

sensor data and equipment operation status, the 

feature extraction module first inputs the original 

data into multiple convolution layers, and uses 

convolution kernels of different sizes to extract 

features of different scales. After each layer of 

convolution operation, the data dimension is reduced 

by pooling layer, and the most important feature 

information is retained. 

Time Series Modeling Module uses LSTM 

network to deal with the long-term dependencies in 

time series data through the design of memory units. 

LSTM captures the time law in the operation data of 

the equipment. When extreme events such as water 

logging disasters occur, the operation state of the 

equipment shows a certain time series 

characteristics. In this module, the features extracted 

by CNN are input into the LSTM layer, and the time 

series features in the data are captured by the loop 

structure of the time step to improve the prediction 

accuracy of the model for equipment failure. The 

whole model structure is composed of multiple CNN 

layers and LSTM layers, and the final output layer 

uses Soft max function to classify and predict 

equipment faults. The design of the output layer 

ensures that the model can accurately predict the 

fault type of the equipment according to the 

historical data and real-time monitoring information, 

and give the corresponding early warning signal. 

 

2.2.3. Model parameter setting 

In the process of parameter setting, multiple 

hyper parameters need to be optimized. The common 

hyper parameters include learning rate, convolution 

kernel size, number of LSTM units, training batch 

size, and number of training rounds. Reasonable 

hyper parameter settings can improve the accuracy 

of the model and reduce the training time. 

In the parameter setting of the convolution layer, 

the size of the convolution kernel is selected as 3x3 

or 5x5, depending on the characteristics of the input 

data. The larger the convolution kernel, the wider the 

range of features that can be captured, and the 

computational complexity will also increase. In the 

design of LSTM layer, the number of LSTM units 

determines the complexity and capacity of the model 

in time series modeling. In general, the more the 

number of LSTM units, the stronger the fitting 

ability of the model, and it is also easy to lead to 

over-fitting. In the actual setting, it is necessary to 

select the appropriate number of units through cross-

validation to avoid over-fitting. 

The learning rate is a parameter in the training 

process. If the learning rate is too large, the model 

will converge too fast and skip the optimal solution. 

If the learning rate is too small, the training speed 

will be too slow. Usually, the learning rate starts 

from a small value, and then gradually adjusts in the 

training process. The selection of training batch size 

directly affects the training speed and memory 

footprint of the model, and usually chooses 32 or 64 

as the batch size for training. 

All hyper parameters in the setting process are 

verified by experiments, constantly adjusted, and a 

balance point is found, and the model reaches an 

optimal state between accuracy and computational 

efficiency. For the selection of each hyper 

parameter, the experimental results are combined to 

ensure that the model can have high prediction 

accuracy and response speed in practical 

applications. The model parameters are set as 

follows (1). 

 𝐿 = ∑ (𝑥𝑖 − 𝜇)2𝑛
𝑖=1 /𝜎2  (1)  

The model’s loss function L is defined to 

measure the difference between the predicted output 

and actual label across all training samples. Let xi 

denote the input feature vector of the i-th sample, μ 

and σ represent the mean and standard deviation 

used for normalization, and yi represent the actual 

label. In Equation (1), the normalized inputs are used 

to ensure numerical stability in model training. 

 

2.2.4. Model training and tuning 

The core of model training is to continuously 

adjust the weights and biases in the network through 

the back propagation algorithm to minimize the loss 

function. Two optimization methods, stochastic 

gradient descent (SGD) and Adam Optimizer, are 

used to select the most appropriate optimization 

algorithm for different experimental requirements. 

The Adam Optimizer performs well when dealing 

with large-scale data sets, and has high 

computational efficiency and good convergence 

speed. In the training process, the data set is divided 

into a training set and a validation set. The training 

set is used to optimize the parameters of the model, 

and the validation set is used to evaluate the 

performance of the model after each round of 

training, and the hyper parameters are adjusted. The 

evaluation indexes of the model include precision 

rate, recall rate, f 1 value, etc. The prediction 

performance of the model is measured by these 

indexes. 

In order to prevent the over-fitting problem of the 

model, the early stop technique is used in the training 

process. When the error of the verification set can 

not be reduced in several consecutive rounds, the 

training process will automatically stop to avoid 

over-fitting the training data. The learning rate and 

regularization parameter are also optimized by cross 

validation to improve the generalization ability of 

the model. The selection of the loss function uses the 

cross-entropy loss function for the multi-

classification problem. The cross-entropy loss 

function can measure the difference between the 

predicted value and the actual label, and minimize 

the prediction ability of the loss function 
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optimization model. The loss function is as follows 

(2). 

 𝐿 = −∑ 𝑦𝑖
𝐶
𝑖=1 ⋅ 𝑙𝑜𝑔( 𝑝𝑖)  (2) 

L is the loss function, C is the number of 

categories, C is the actual label, c is the predicted 

probability. 

 

2.3. Model evaluation and validation 

Model evaluation can verify the effect of deep 

learning model, and performance evaluation 

indicators provide quantitative basis for the 

advantages and disadvantages of the model. For the 

equipment failure warning task, the indicators such 

as accuracy, recall rate, F1 score and AUC value are 

selected. 

Accuracy is the most common measure of the 

ratio of the number of samples correctly predicted by 

the model to the total number of samples. In the early 

warning task of equipment failure, the accuracy rate 

reflects the proportion of correct judgment of the 

model in all predictions, which has intuitive 

significance: the calculation of the accuracy rate is 

as follows (3): 

 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (3)  

TP represents a true positive (device malfunction 

and predicted malfunction), TN represents a true 

negative (device normal and predicted normal) , FP 

represents a false positive (device normal but 

predicted malfunction) , and TP represents a true 

negative (device malfunction but predicted normal) , 

IN stands for false negative (device failed but 

predicted to be normal) . The higher the accuracy, 

the better the overall prediction performance of the 

model. 

In addition to accuracy, recall rate is also an 

important indicator. In the early warning of 

equipment failure, recall rate can reflect the ability 

of the model to find the real fault. The recall rate is 

calculated as follows (4): 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (4)  

The higher the recall rate, the fewer failures 

missed by the model. F 1 score, which combines 

precision and recall, is a comprehensive indicator. In 

the failure warning task, the F 1 score measures the 

model's balance between false positives and false 

negatives. The F1 score is calculated as follows (5): 

 𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5)  

Precision stands for accuracy. AUC (Area Under 

Curve) is a widely used evaluation metric to measure 

the overall performance of the model in 

classification tasks, which is suitable for unbalanced 

data. The closer the AUC value is to 1, the better the 

classification performance of the model. 

Cross-validation is a commonly used model 

validation method, which can improve the reliability 

of model evaluation. In this study, the k-fold cross-

validation method was used for model evaluation. 

The data set is divided into K subsets, one subset is 

used as the validation set, and the other K-1 subsets 

are used as the training set, and the model is trained 

and validated at each trade-off, and the model is 

trained and validated at each trade-off, finally, the 

evaluation results of the model were obtained by 

calculating the average of the results of K 

validations. K-fold cross-validation can avoid the 

evaluation error caused by the contingency of data 

set partitioning. In the case of small data or 

unbalanced samples, cross-validation can improve 

the generalization ability of the model. The 

evaluation of cross-validation error is as follows (6): 

 𝐶𝑉𝑒𝑟𝑟𝑜𝑟 =
1

𝐾
∑ 𝐸𝐾
𝑖=1 𝑟𝑟𝑜𝑟𝑖  (6)  

Represents the cross-validation error, represents 

the error of the eth fold. The error of each fold is 

calculated based on the data of the validation set, and 

the final cross-validation error reflects the stability 

and generalization ability of the model in different 

data partitions. 

In order to avoid the over fitting problem, the 

early stop technique is used to stop training early 

when the performance on the verification set is no 

longer improved. The complexity of the model is 

controlled by regularization method. Regularization 

technology punishes the model parameters in the 

optimization process, limits the over fitting of the 

model to the training data, and ensures that the model 

has better generalization ability. Data augmentation 

technology is also used to increase the diversity of 

training data, and the model can be trained in more 

situations, which improves the robustness and 

generalization ability of the model. 

 

3. RESULTS AND ANALYSIS 

 

3.1. Analysis of results 

3.1.1. Effectiveness of early warning of 

equipment failure 

The effect of the equipment failure warning 

system is analyzed to evaluate whether the system 

can effectively improve the efficiency of equipment 

management and reduce equipment damage when 

water logging disasters occur. This study focuses on 

the analysis of two aspects of the effect. Accurate 

early warning can accurately distinguish whether the 

equipment failure, help the relevant departments to 

take timely measures. For the equipment failure 

caused by extreme weather such as water logging 

disaster, timely early warning can reduce the damage 

of equipment and ensure the normal operation of 

urban infrastructure. 

(1) Accuracy analysis of early warning 

The accuracy of equipment fault early warning is 

the core index to evaluate the performance of the 

model, which is directly related to the actual 

application effect of the system. The accuracy of 

equipment fault early warning is obtained by 

comparing the equipment fault prediction results 

with the actual fault situation. The early warning 

system with high accuracy can reduce the omission 

and false alarm of faults and enhance the reliability 

of fault early warning. According to the 

experimental results, the deep learning model is used  
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Fig. 2. Comparison table between equipment failure prediction results and actual situation 

 
Fig. 3. Comparison table of equipment failure warning time and actual failure time 

 

to predict the equipment failure. The system has a 

higher proportion of accurate identification of faulty 

equipment, and the false negative rate and false 

positive rate are lower than those of traditional 

methods. 

As shown in Fig. 2 above, the prediction 

accuracy of the equipment failure warning system is 

high in each system, and the accuracy of the power 

supply system is up to 90%. The accuracy was 85% 

and 91.67% for the drainage and transportation 

systems, respectively. On the whole, the early 

warning system can predict the fault before it occurs, 

the false negative rate and false positive rate are low, 

and the system has high reliability in practical 

application. 

(2) The comparison of early warning time and fault 

occurrence time 

Equipment failure timely warning to the 

maintenance team to gain more time to prepare, 

improve the efficiency of fault handling. The early 

warning time of equipment failure is compared with 

the actual time of failure, and the analysis model 

gives early warning before the failure occurs. 

As shown in Fig. 3 above, an early warning 

system for equipment failure provides 

approximately 2 to 4 hours of advance warning for 

most equipment types. The maximum lead time of 

the drainage system and the power supply system is 

7 hours and 8 hours respectively, which has won 

more response time for the relevant departments. 

The early warning time of traffic system and 

communication system is relatively short, and they 

can still predict the occurrence of faults in advance. 

In general, the early warning system can provide 

sufficient response time in advance for equipment 

failure in most cases, and improve the efficiency of 

emergency treatment. 

 

3.1.2. Practical implications and application 

scenarios of the results 

(1) Economic benefit analysis of equipment failure 

early warning 

Equipment failure warning system can reduce 

downtime, reduce maintenance costs and extend the 

service life of equipment. For critical infrastructures 

such as drainage systems, power supply systems, 

transportation systems, and communication systems, 

equipment failures can not only cause direct damage 

to equipment, but also potentially trigger a wider 

range of system failures, which can lead to the failure 

of the system, leading to water logging disasters. 

Maintenance or replacement of equipment prior to 

failure through timely warning to relevant 

departments to avoid wider scope of loss. 
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The early warning system reduces the downtime 

caused by equipment failure. Once the equipment 

fails, it will not only affect the normal operation of 

the equipment, but also may lead to the shutdown of 

the whole system and affect the normal operation of 

the society. When the water logging disaster occurs, 

the downtime of the equipment will be longer and 

the maintenance will be more difficult. Early 

detection and repair of equipment failures can 

shorten downtime, enable infrastructure to function 

normally in the event of a disaster, and reduce the 

impact of downtime on microeconomics activities. 

Equipment failure warning system can also 

reduce the cost of equipment repair and replacement, 

routine equipment maintenance by regular 

inspection and maintenance, these methods are 

difficult to detect potential equipment failure in time, 

when the fault occurs, the maintenance cost is 

higher. Early Warning System can identify failure 

risk in advance, reduce unnecessary maintenance 

costs and equipment replacement costs. 

(2) Applicability analysis of application scenarios 

Equipment failure early warning system is 

suitable for those areas that require high equipment 

stability. Take urban infrastructure as an example, 

drainage system, power supply system, 

transportation system and communication system 

play an important role in water logging disaster. 

Equipment failure can lead to infrastructure paralysis 

and trigger more serious disasters. The equipment 

failure warning system is deployed in these key 

systems to improve the reliability of the equipment, 

reduce the probability of failure, and take timely 

measures when failure occurs. 

The failure of drainage system equipment means 

the loss of drainage capacity, which can easily lead 

to the aggravation of water logging disaster. The 

failure of the power supply system will lead to power 

outages and affect the operation of the whole city. 

Equipment failure early warning system can detect 

equipment failure in advance and issue early 

warning, which can help city managers to take 

corresponding emergency measures and reduce the 

loss caused by failure. Equipment failures in 

transportation and communications systems can 

affect traffic order and information transmission, and 

can also have wider social consequences. 

In addition to urban infrastructure, the equipment 

failure warning system is also suitable for industrial 

field, energy production field and other scenarios. In 

the industrial production process, equipment failure 

will lead to production line stagnation and increase 

production costs. Equipment failures in the field of 

energy production may lead to a wider range of 

safety accidents and affect the stability of energy 

supply. Deployment of equipment failure warning 

system, improve equipment management efficiency, 

reduce the impact of equipment failure on 

production and safety. 

 
Fig. 4. Model performance comparison table 

of different algorithms 

 

As shown in Fig. 4 above, the accuracy, recall, f 

1 value, and AUC of the Hybrid Model (CNN + 

LSTM) are higher than those of the single algorithm, 

and the model has better performance in equipment 

failure early warning. Both constitutional neural 

network (CNN) and long short-term memory 

network (LSTM) have their own advantages. CNN 

performs better in feature extraction, while LSTM 

can capture the time series characteristics of 

equipment faults. The combination of the two can 

improve the accuracy and reliability of fault 

prediction. 

 

3.2. Discussion 

The model demonstrated robust performance 

across several dimensions. For instance, it achieved 

an average accuracy of 88.9%, recall rate of 87.5%, 

and F1-score of 88.2%, which indicates balanced 

classification performance across fault types. The 

model offered a lead time of 2–8 hours for different 

systems, providing significant operational value. 

These results directly show that the CNN-LSTM 

hybrid approach not only captures the spatial-

temporal features of equipment operation but also 

supports actionable decision-making during extreme 

weather scenarios. Furthermore, in comparison to 

traditional statistical methods, the proposed model 

reduced the false alarm rate by approximately 15%, 

thus enhancing system reliability. 

Future studies can explore how specific fault 

types (e.g., mechanical vs. communication failure) 

vary in model sensitivity, which could further 

improve early warning specificity. 

 

4. CONCLUSION 

 

In this study, a fault prediction model based on 

deep learning is proposed and verified for the early 

warning of equipment failure in water logging 

disaster scenarios. The hybrid model combining 

constitutional neural network (CNN) and long short-

term memory network (LSTM-RRB- shows high 

accuracy and reliability in equipment failure 

prediction, which can be used to predict equipment 

failure, can improve the level of equipment 
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management and reduce equipment damage during 

disasters. The model can accurately predict 

equipment failure, give a reasonable warning time 

before the failure occurs, and provide sufficient 

preparation time for emergency response. The 

experimental results show that the early warning 

system has achieved good results in terms of 

accuracy, recall rate, F1 value and other indicators, 

and has shown strong adaptability in various types of 

devices. Early warning of equipment failure can 

reduce downtime, reduce maintenance costs, and 

improve the stability and safety of urban 

infrastructure. Although the research has achieved 

results, it still faces challenges. Future research can 

optimize the model, combined with transfer learning, 

model fusion and other advanced technologies to 

improve the adaptability and scalability of the 

system. The term “LSTM-RRB” mentioned 

previously was a typographical error. It should read 

“LSTM”, referring to the standard Long Short-Term 

Memory network used in the time-series modeling 

module. The model used in this study does not 

employ any specific LSTM variant or architectural 

modification. In this study, a fault prediction model 

based on deep learning was proposed for equipment 

failure early warning in water logging disaster 

scenarios. The hybrid CNN-LSTM model achieved 

high accuracy (88.9%), recall (87.5%), and F1-score 

(88.2%) during testing across multiple infrastructure 

systems. Additionally, the model provided a lead 

warning time of up to 8 hours, which enabled timely 

emergency response and preventive maintenance. 

These metrics confirm the reliability and practical 

value of the proposed model. The system 

demonstrates strong adaptability across different 

device types and environments, making it suitable 

for deployment in real-time urban disaster 

management platforms. 
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