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Abstract  

This paper studies the use of the Laplace transform as a key tool for solving fractional differential equations 

which involve non-integer derivatives and are used to model various physical phenomena such as viscoelastic 

materials and control systems Fractional differential equations pose significant challenges due to the complexity 

of fractional derivatives and integral terms making classical solution methods inefficient The methodology in 

the paper relies on the Laplace transform to convert fractional equations shifting to a frequency domain to the 

temporal domain simplifying the handling of these complex equations This approach enables precise and 

efficient solutions and transforms complex equations into more manageable forms The study also explores 

practical applications such as solving equations related to viscoelastic materials which exhibit dynamic 

behavior governed by fractional equations This contributes to a deeper understanding of these materials and 

their mathematical modeling The paper concludes that the Laplace transform offers a robust framework for 

solving a wide range of fractional differential equations more efficiently with significant benefits in 

mathematical modeling and analysis Additionally the study highlights the importance of integrating digital 

methods with the Laplace transform for solving complex boundary problems thereby enhancing practical 

applications in fields like applied mathematics and engineering 
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1. INTRODUCTION 

The Laplace transform, introduced by Pierre-

Simon Laplace in 1782, is a key tool for solving 

linear differential equations [1], [2]. It converts a 

function shifting to a frequency domain to the 

temporal domain and is widely used in fields like 

control engineering, electrical circuits, and signal 

processing. Unlike the Fourier transform, which 

represents functions as vibrational modes, the 

Laplace transform resolves functions into their 

moments [3], [4], [5].  

The application of Laplace transforms in solving 

fractional differential equations marks a significant 

advancement in mathematical analysis, offering new 

methods to tackle complex problems across various 

fields. These equations, involving both fractional 

derivatives and integral terms, appear in real-world 

phenomena such as viscoelastic materials and 

control systems. Laplace transforms simplify their 

solution by converting them Converting from the 
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frequency spectrum to the time frame enables better 

analysis of temporal signals. 

Key methodologies include the decomposition 

method, which Yang et al in [6] demonstrated as an 

effective approach for obtaining approximate 

solutions with high precision. By breaking down 

complex problems into simpler components, this 

method improves computational efficiency. Another 

approach is compliant fractional transformations, 

explored by Ozkan et al in [7], which integrate 

fractional derivatives within the Laplace transform 

framework to address partial equations with irregular 

orders. 

The Yang-Laplace transform, used by Jassim in 

[8], provides exact solutions for Volterra integro-

differential equations by combining local fractional 

operators with Laplace transforms. This method 

enhances understanding of physical phenomena 

modeled by such equations. Additionally, Zada, A et 

al in [9] showcased the robustness of the ρ-Laplace 

transform in solving Liouville-Caputo fractional 

equations, highlighting its practical applications. 
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Lastly, Shah et al in [10] introduced digital 

techniques using Laplace transforms for solving 

complex boundary problems, emphasizing the 

growing role of digital methods in conjunction with 

Laplace transformations in applied mathematics. 

In this context, the study presented in this paper 

explores the mathematical framework of Laplace 

transforms, highlighting they’re their practical 

applications in solving differential equations, 

convolution operations, and their impact in fields 

such as control engineering and signal processing. 

  
2. PROBLEM AND METHODOLOGY 

 

2.1 Problem 

The paper addresses the challenge of solving 

fractional differential equations, which involve non-

integer derivatives and are essential for modeling 

various real-world phenomena such as viscoelastic 

materials and control systems. Solving these 

equations is challenging. using classical methods, 

and their complexity lies in the presence of fractional 

derivatives and integral terms that require advanced 

mathematical techniques for simplification. 

 

a. Methodology 

 The Laplace transform is employed as the 

primary method to simplify and solve fractional 

differential equations. By converting functions 

Converting from the frequency spectrum to the time 

frame enables better analysis of temporal signals., 

the Laplace transform makes it easier to handle 

complex differential equations. This transformation 

allows for the solution of fractional equations by 

transforming them into a more manageable form in 

the frequency domain. The methodology not only 

simplifies the equations but also provides a 

generalized framework for applying the Laplace 

transform to a broad range of problems across 

various fields such as control engineering and signal 

processing. 

 

3. LT FOR FRACTIONAL DIFFERENTIAL 

EQUATIONS 

 

In this part of the paper, we will cover some 

essential preliminaries, which are summarized 

below 

a. The causal function for a fractional derivative 

h(t) is defined as: 
𝑑𝛼

𝑑𝑡𝛼 ℎ(𝑡) =

{
ℎ(𝑚)(𝑡)                          𝐼𝑓  𝛼 = 𝑚 ∈ ℕ

1

Ʈ(𝑚−𝛼)
∫

ℎ(𝑚)(𝑡)

(𝑡−𝑥)𝛼−𝑚+1 𝑑𝑡  𝐼𝑓 𝑚 − 1 < 𝛼 < 𝑚
𝛽

0

  (1) 

 

The Euler gamma’s function ̧ Ʈ (.) Can be 

obtained as follows: 

Ʈ(𝑢) = ∫ 𝑡(𝑢−1). 𝑒−𝑡  𝑑𝑡    𝑤ℎ𝑒𝑟𝑒  ℝ > 0
∞

0
   (2) 

b. The LT of h(t), t  [0, ] It's determined by: 

ℒ[ℎ(𝑡)](𝑤) = ∫ 𝑒−𝑤𝑡 . ℎ(𝑡)𝑑𝑡 , (𝑤 ∈ ℂ)
∞

0
    (3) 

c. The Mittag-Leffler formula is expressed as 

follows: [11, 12]: 

𝐸𝛼,𝜎(𝑢) = ∑
𝑢𝑧

Ʈ(𝛼𝑧+)

∞
𝑧=0 , (𝑢, 𝛼, 𝜎 ∈ ℂ , ℝ(𝜎) > 0)  

(4) 

d. The Wright function that is the simplest [12], 

[13] is defined as: 

(𝛼, 𝜎, 𝑢) = ∑
1

Ʈ(𝛼𝑧+)

∞
𝑧=0

𝑢𝑧

𝑧!
 , (𝑢, 𝛼, 𝜎 ∈ ℂ )  (5) 

e. The general Wright function m
.

n
. (u) is defined 

for u ℂ,(ai,bj) ℂ [30],[32],and real i ,j  ℝ 

(i=1,….,n; j=1,….m) by the series : 

𝑚
.

𝑛
. (𝑢) = 𝑚

.
𝑛

. {
(𝑎𝑖 , 𝛼𝑖)1,𝑛

(𝑏𝑗 , 𝜎𝑗)
1,𝑚

| 𝑢} 

= ∑
∏ Ʈ(𝑎𝑖+𝛼𝑖𝑧)𝑛

𝑖=1

∏ Ʈ𝑚
𝑗=1 (𝑏𝑗+𝜎𝑗𝑧)

.
𝑢𝑧

𝑧!

∞
𝑧=0         (6) 

f. The fractional derivatives of Riemann-Liouville 

[33],[34] Da+
α y and Db−

 y of order   ℂ (ℝ() ≥
0)  are determined by:                           

 𝐷𝑎+
𝛼 𝑦(𝑥) =

1

Ʈ (𝑛−)
. [

𝑑.

𝑑𝑥
]

𝑛

∫
𝑦(𝑡)𝑑𝑡

(𝑥.−𝑡)𝛼−𝑛+1  
𝑥

0
  

(𝑛 = [ℝ()] + 1; 𝑥 > 𝑎)           (7) 

      𝐷𝑎+
𝛼 𝑦(𝑥. ) =

1

Ʈ (𝑛−)
[−

𝑑

𝑑𝑥
]

𝑛

. ∫
𝑦(𝑡)𝑑𝑡

(𝑥.−𝑡)𝛼−𝑛+1 ,
𝑏

𝑥

(𝑛 = ([ℝ()] + 1, 𝑥 < 𝑏)            (8) 

Respectively, where [ℝ()] represents the 

integral part of ℝ() 

g. The shifted factorial [17], [18], with (1) n= n! for  

n  ℕ0 = (0,1, 2, . . .) is defined as: 

(𝜹)𝒏 = {
1. . .           (𝑛 = 0),

𝛿(𝛿 + 1) … (𝛿 + 𝑛 − 1)  (𝑛 ∈ ℕ0/{0}
   (9) 

h. The definition of the binomial coefficients is: 

(𝛿
𝑛

) =
𝛿.!

𝛿! (𝛿.−𝑛)!
=

𝛿(𝛿−1)(𝛿−𝑛+1)

(𝑛)!
,             (10) 

Were.0! =1, and (δ, n) are integers then: 

(
𝛿

0
) = 1, (

𝛿

𝛿
) = 1, 𝑎𝑛𝑑 (1 − 𝑢)−𝛿 

= ∑
(𝛿.)𝑞

𝑞.!

+∞
𝑞=0 . 𝑢𝑛 = ∑ [𝛿+(𝑞−1)

𝑞
]∞

𝑞=0 . 𝑢𝑞    (11) 

i. ℒ[(, σ; t)](. S) = (
1

S
). Eα,σ(1/S)  (α > −1,

σ ∈ ℂ ; R(S) > 0)                              (12)  

j. The LT of the generalized Wright function is: 

ℒ { m
.

n
. [

(ai, αi)1,n

(bj, σj)1,m

| − t]} (𝑆) 

=
1

𝑆
m

.
n+1

. (
(1,1);(ai,αi)1,n

(bj,σj)
1,m

| −
1

𝑆
)         (13) 

(R(S) > 0) , i = 1, … … . n and j = 1, … … m) 

k. ℒ[Dβh(t)](S) = Sβ[ℒh(t)](s) −

∑ Sβ−qh(q−1)(0) n
q=1                                  (14) 

Where 0, n-1n, h (t) ∈ Cn(0, ∞), hn(t) ∈
L1(0, b)) for any b0) [19] 

l. The inverse Laplace transform is:  

ℒ−1 [
Ʈ(n+1)

Sn+1 ] = tn                       (15) 

Equation (13) in the preliminary (k) can be easily 

clarified using the integral transform technique, 

along with equation (3) in the preliminary (b), as 

demonstrated in  [12 [ ,]20 ]  
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4. FRACTIONAL DIFFERENTIAL 

EQUATION SOLUTIONS 

 

For this part, we suppose that, for a given value 

of the parameter S, f(t) suffices for the Laplace 

transform L[f(t)] to converge. 

Theorem 4.1: Consider, 12 and a1, a2  ℝ., the 

fractional differential equation is therefore as 

follows: 

f ′′(. t. )+. a1...f
()(t) + a2..f(t) = 0,       (16) 

The unique solution is found when f (0) =b0 and 

f′ (0) =b1: 

f(t) = b0 ∑
(−a2)q.t2.q

q!

∞
q=0 . ∑

Ʈ(α+q+1)(−a1t2−)
α

Ʈ[(2−)α+2.q+1]α!

∞
α=0 +

b1 ∑
(−a2)qt2.q+1

q!
 ∞

q=0 ∑
Ʈ (α+q+1)(−a1.t2−).α

Ʈ [(2−).α+2q+2]α!

∞
α=0 +

a1. b0 ∑
(−a2)qt2.q−+1

q!

∞
q=0 . ∑

Ʈ (α+q+1)(−a1.t2−)
α

Ʈ [(2−)α+2.q−+3]α!

∞
α=0 +

a1. b1 ∑
(−a2)qt2q−+2

q !

+∞
q=0 . ∑

Ʈ (α+q+1).(−a1.t2−)
α

Ʈ [(2−).α+2q−+4]α!

+∞
α=0   

(17) 

Proof, Applying the LT to equation (16) and 

considering the given initial conditions, we get: 

ℒ[f(t)](S2 + a1. S + a2) = 

b0. S + c. b0S−1 + a1. b1S−2 + b1           (18) 

From equation (18), we find: 

ℒ[f(𝑡)] =
b0. 𝑆 + b1 + a1.(b1𝑆−1 + b1S−2)

𝑆2 + a1𝑆 + a2

= 

b0 ∑(−a2)q

+∞

q=0

 

. ∑ (
𝑞 + 𝛼

𝛼
) (−a1.)

α
+∞

q=0
𝑆(−2).𝛼−2.𝑞−1 

+ b1 ∑(−a2)q

+∞

q=0

. 

. ∑ (
𝑞 + 𝛼

𝛼
) (−a1.)

α
+∞

q=0
𝑆(−2).𝛼−2.𝑞−2 

+a1. b0 ∑(−a2)q

+∞

q=0

 

. ∑ (
𝑞 + 𝛼

𝛼
) (−a1.)

.α
+∞

q=0
𝑆(−2).𝛼−2.𝑞+(−3) 

+a1. b1 ∑(−a2)q

+∞

q=0

 

. ∑ (𝑞+𝛼
𝛼

)(−a1.)
α+∞

q=0 𝑆(−2)𝛼−2𝑞+(−4)               (19) 

Given that: 

𝟏

𝑺𝟐 + 𝐚𝟏. 𝑺 + 𝐚𝟐

= ∑
(−𝐚𝟐)𝐪𝑺𝟐.𝒒−𝟐

(𝟏 + 𝐚𝟏. 𝑺−𝟐)𝒒+𝟏

+∞

𝐪=𝟎

= 

∑ (−𝐚𝟐.)
𝐪∞

𝐪=𝟎 ∑ (𝒒+𝜶
𝜶

)(−𝐚𝟏.)
𝛂∞

𝛂=𝟎 𝑺(−𝟐).𝜶−𝟐.𝒒−𝟐 

(20) 

Thus, we obtain solution (17) by applying the 

inverse Laplace transform to equation (19). 

f(t) = b0 ∑
(−a2)qt2q

q. !

+∞

q=0

∗ ∑
Ʈ (α + q + 1) ∗ (−a1t2−)α

Ʈ [(2 − )α + 2q + 1]α!

+∞

α=0

+ b1 ∑
(−a2)qt2q+1

q. !
 

∞

q=0

 

. ∑
Ʈ (α + q + 1) ∗ (−a1t2−)α

Ʈ [(2 − )α + 2. q + 2]α!

∞

α=0

+ a1. b0 ∑
(−a2)qt2.q−+2

q. !

∞

q=0

 

. ∑
Ʈ (α + q + 1) ∗ (−a1t2−)α

Ʈ [(2 − )α + 2. q −  + 3]α!

∞

α=0

+ a1. b1 ∑
(−a2)qt2.q−+3

q. !

∞

q=0

 

. ∑
Ʈ (α+q+1)∗(−a1t2−)

α

Ʈ [(2−).α+2.q−+4]α!

∞
α=0                       (21) 

Thus, we observe that the final expression is 

identical to equation (21). 

Example 4.1: A fractional differential equation for 

generalized viscoelastic free damping oscillations. 

f ′′(t) + √5f (
3

2
)(t) + 10f(t) = 0      (22) 

Considering the starting circumstances f (0) = 

b0 and f′ (0) =b1, and (a1 = √5, a2 = 10), the 

equation admits a unique solution, which is: 

f(t) = b0 ∑
(−10)qt2q

q!

∞
q=0 . ∑

Ʈ(α+q+1)(−a1t
(

3
2)

)

α

Ʈ[((
1

2
)α+2q+1]α!

∞
α=0  

+b1. ∑
(−10)qt2.q+1

q.!
 ∞

q=0 ∑
Ʈ.(α+q+1)(−√5t

(
1
2)

)

α

Ʈ.[(
1

2
)α+2q+2]α!

∞
α=0 . 

∑
Ʈ.(α+q+1)(−√5t

(
1
2)

)

α

Ʈ.[(
1

2
)α+2q+2]α!

∞
α=0 √5. b0 ∑

(−10)qt
(2.q+

1
2)

q.!

∞
q=0  

∑
Ʈ(α+q+1)(−√5t

(
1
2)

)

α

Ʈ[(
1

2
)α+2q+(

3

2
)]α!

∞
α=0 +√5. b1. 

∑
(−10)qt

(2.q+
3
2)

q.!

∞
q=0  ∗ ∑

Ʈ.(α+q+1)(−√5t
(
1
2)

)

α

Ʈ.[(
1

2
)α+2q+(

5

2
)]α!

∞
α=0   (23) 

Upon close examination of Figure 1, the effect of 

the fractional order λ is evident in accelerating 

damping and reducing oscillations, as observed in 

electrical systems such as fractional RLC circuits, 

and in viscoelastic materials like polymers and 

biological tissues. when b0= b1=1. 

 

 
Fig. 1. dynamics of equation (21) resolution 

 

Theorem 4.2, suppose (12), a1, a2 ℝ.. In this 

case, the fractional differential equation 

 𝑓()(𝑡) + 𝑎1. 𝑓′(𝑡) + 𝑎2. 𝑓(𝑡) = 0         (24) 

The unique solution is found when f (0) =b0 and 

f′ (0) =b1: 

f(t) = 

b0 ∑
Dt2.q

q !

∞

q=0

. ∑
Ʈ (α + q + 1). (−a1)𝑡𝐴

Ʈ [( − 1). α +  q + 1]α!

∞

α=0
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+b1 ∑
D

q !
 

∞

q=0

∑
Ʈ (1 + α + q)(−a1)𝑡𝐴+1

Ʈ [(α − α) + q + 2]α!

∞

α=0
+ 

a1.b0 ∑
D

q !

∞

q=0

. ∑
Ʈ (1 + α + q). (−a1)𝑡𝐴+−1

Ʈ [(α − α) + . q + ]. α!

∞

α=0
 

(25) 

Proof, Applying LT (Preliminary k) and 

relevant factors, we obtain: 

Sℒ[f(t)] − S−1. f(0) − S−2. 𝑓′(0) 

+a1. Sℒ[f(t)] − a1. 𝑓′(0) + a2.ℒ[f(t)] = 0 

 (S + a1S + a2)ℒ[f] = 

b0. S−1 + b1. S−2 + a1. b1 , 

 ℒ[f(t)] =
b0. S−1 + b1. S−2 + a1.b1

S + a1. S + a2

= 

b0 ∑(−a2)q

∞

q=0

. ∑ (
𝑞 + 𝛼

𝛼
) (−a1)α

∞

q=0
𝑆𝐴−1 

+b1 ∑(−a2)q

∞

q=0

. ∑ (
𝑞 + 𝛼

𝛼
) (−a1)α

∞

q=0
𝑆𝐴−2 

+a1. b0 ∑(−a2)q

∞

q=0

. ∑ (
𝑞 + 𝛼

𝛼
) (−a1)α

∞

q=0
𝑆𝐴− 

(26) 

Where, 𝐴 = (1 − ). 𝛼 − . 𝑞 

Given that: 

1

S + a1. S + a2

=
𝑆−1

(𝑆−1 + a1 + a2. 𝑆−1)
 

=
𝑆−1

(𝑆−1 + a1). (1 +
a2. 𝑆−1

𝑆−1 + a1
)

= 

∑(−a2)q

∞

q=0

. ∑ (
𝑞 + 𝛼

𝛼
) (−a1)α

∞

α=0
𝑆𝐴−  

(27) 

From Equation (26), the solution to Equation 

(25) is obtained via the inverse LT 

𝑓(t) = 

= b0 ∑
(−a2)qt2q

q!

∞

q=0

. ∑
Ʈ (B)(−a1)

Ʈ [C + 1]
.
𝑡𝐴

α!

∞

α=0
 

+b1 ∑
(−a2)q

q !
 

∞

q=0

∑
Ʈ (B). (−a1)

Ʈ[C + 2]
.
𝑡A+1

α!

∞

α=0
 

+a1b0 ∑
(−a2)q

q !

∞

q=0

∑
Ʈ (B). (−a1)

Ʈ [C + ]

∞

α=0

𝑡A+−1

α!
 

(28) 

Where, B = (1 + α + q) , 𝐶 = ( − 1)α + q 

The Wright function expresses this solution as, 

𝑓(t) = b0 ∑
tq

q !

∞

q=0

. 1
.

1
. [

(q + 1,1)

(. q + 1,  − 1)
| − D] + 

b1 ∑
𝑡q+1

q !
 

∞

q=0

. 1
.

1
. [

(q + 1,1)

(. q + 2,  − 1)
| − D] + 

a1. b0 ∑
𝑡.q+−1

q !

∞

q=0

. 1
.

1
. [

(q + 1,1)

(. q + ,  − 1)
| − D] 

(29) 

Where, 𝐷 = a1𝑡(−1) , 𝑋 = (−a2)𝑞 

Example 4.2, Setting = 3/2, a1 = −1 and a2=-2 in 

Theorem 4.2, the equation becomes, 

 f (
3

2
)(t) = f ′(t) + 2. f(t),             (30) 

The form of the solution to the previous 

equation is 

𝑓(t) = 

b0. ∑
(2)q

q !

+∞

q=0

. ∑
Ʈ (1 + α + q). (1)

Ʈ [(
1
2

)α + (
3
2

)q + 1]
.
𝑡

(
α
2

)+(
3𝑞
2

)

α!

∞

α=0
 

+b1 ∑
2q

q !
 

∞

q=0

∑
Ʈ (1 + α + q)

Ʈ [(
α
2

) . + (
3q
2

) + 2]
.
𝑡

(
α
2

)+(
3𝑞
2

)+1

α!

∞

α=0
 

−b0 ∑
2q

q !

∞

q=0

. ∑
Ʈ(1 + α + q)

Ʈ [
1
2

. (α + 3q + 3)]

∞

α=0
.
𝑡

(
α
2

)+(
3𝑞
2

)+(
1
2

)

α!
 

Figure 2 shows how the solution of the 

fractional differential equation responds for 

different values of  when b0= b1=1. 

As we can see from the figure as λ increases, the 

damping becomes stronger. As an applied example 

of this case Heat diffusion in composite materials, 

where different components lead to memory-

dependent response. 

 
Fig. 2. Solution of f(t) for different values of  

(Example 4.2) 

 

Theorem 4.3, Suppose 0 <  < 1 and a ∈ R. Then 

the equation is 

 f ()(t) − af(t) = 0,                 (31) 

Considering the starting circumstances y (0) = 

b0, the solution to equation (31) takes the form: 

𝑓(𝑡) = 𝑏0. ∑
(𝑎.𝑡)𝑞

Ʈ[.𝑞+1]
∞
𝑞=0 = 𝑏0. 𝐸,1(𝑎. 𝑡)  (32) 

Proof, via using the Laplace transform to 

equation (31), we obtain: 

𝑆ℒ[𝑓(𝑡)] − 𝑏0. 𝑆−1 − 𝑎. ℒ[𝑓(𝑡)] = 0,     (33) 

Hence, we have, 

ℒ[f(t)] =
b0. S−1

b0. S − 𝑎
=

b0. S−1

1 − 𝑎. S−
= 

b0. S−1 ∑(𝑎. S−)𝑞 =

∞

q=0

b0. ∑ 𝑎𝑞 . S−.q−1

∞

q=0

 

𝑓(𝑡) = b0. ∑
(a. 𝑡)q

Ʈ [. q + 1]

∞

q=0

= b0. 𝐸,1(a. 𝑡) 
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Remark 4.1, If a1 = 0 in Equation (33), then the 

equation: 

  

 f ()(t) + a2f(t) = 0, and  0 <    2  (33) 

With the initial conditions f (0) = b0 and f ′(0) =
b1 has its solution given by 

𝑓(𝑡) = b0. ∑
(−𝑎2. 𝑡)

q

Ʈ  [1 + q]

+∞

q=0

+ b1. 𝑡 ∑
(−𝑎2. 𝑡)

q

Ʈ  [2 + q]

+∞

q=0

 , 

(34) 

Figure 3 illustrates the plot of solutions of 

equation (33). 

Where we notice, the system stabilizes more 

quickly as λ increases. As an applied example of 

this case Drug absorption in biological tissues, 

where absorption slows due to the memory 

properties of the medium. 

 
Fig. 3. The specific solution of f(t) for various 

λ values (Example 4.3). 

 

Theorem 4.4, an equation of nearly simple 

harmonic oscillation [21], [22] 

 f ()(t) + 𝑊2f(t) = 0,    0 <    2      (35) 

With the initial conditions f (0) = b0 and f ′(0) =
𝑏1 has its solution given by 

𝑓(𝑡) = b0𝐸,1(−𝑊2𝑡) + b1𝑡𝐸,2(−𝑊2𝑡) (36) 

The proof can be completed by substituting 

a2 = W2 into Equation (33) 

Figure 4 shows the solution of the nearly simple 

harmonic oscillation equation (35) for different 

values of λ. The figure illustrates how varying λ 

affects the oscillation behavior over time. As an 

applied example of this case Vibrations of a flexible 

robotic arm using smart materials like 

piezoelectrics, which exhibit fractional behavior 

under stimuli. 

 

5. CONCLUSION 

 

This work illustrates the application of the 

Laplace transform to the solution of fractional 

differential equations, highlighting the usefulness of 

this intricate field. Deeper links are revealed among 

the LT and other transforms, opening the door to the 

discovery of further interactions specific to the 

Laplace transform. A unique approach is presented 

that uses binomial series extension coefficients in 

conjunction with the Laplace transform to offer a 

strong framework for solving these problems. In 

addition, the research looks at a number of 

characteristics and provides examples to show how 

this method might help us understand viscoelastic 

electrical systems better. By investigating more 

Laplace transform applications in more intricate 

electrical engineering contexts, future study can 

expand on these discoveries. 

 
Fig. 4. Nearly Simple Harmonic Oscillation for 

varying λ 
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