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Abstract 

During operation, power transformers generate continuous vibrational signatures bearing mechanical fault-

induced impulses, which constitute the fundamental evidence for equipment condition assessment. To 

investigate acoustic-fingerprint characteristics under varying operating conditions, this paper proposes a 

Reinforced Integrated Deep Transfer Learning Network (REDTLN) for multi-fault-domain diagnostics. The 

methodology first constructs multiple specialized Deep Transfer Learning Networks (DTLNs) using novel 

kernel Maximum Mean Discrepancy (kMMD) variants, enabling source-specific adaptation to enrich 

transferable feature representations. Subsequently, a unified unsupervised ensemble framework integrates 

multi-metric divergence measures, employing a reinforcement-guided combinatorial search algorithm to 

discover optimal DTLN integration rules. This intelligent fusion mechanism significantly enhances multi-

source transfer capability, improving diagnostic accuracy and robustness in dynamic noise environments and 

complex operational scenarios. Experimental results confirm the model's efficacy in precisely identifying 

abnormal states while maintaining sustained >95% accuracy for representative faults under diverse acoustic-

interference conditions. 
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1. INTRODUCTION 

 

Power converters are the cornerstone for safe 

transfer and allocation of electric energy. Real-time 

and accurate monitoring of their operating 

conditions is crucial for guaranteeing the robustness 

and secure operation of the network [1-2]. 

In order to detect these faults timely and 

accurately, and even predict some dangerous 

operating conditions, it is necessary to study online 

status monitoring and fault diagnosis methods of 

transformers. According to the working principle of 

a power transformer, when the transformer is 

working, the vibration of the transformer core and 

windings will emit continuous and stable sound 

signals, which are tightly associated with the 

operational state of the equipment [3-4]. 

Alternatively, the condition monitoring technique 

grounded in the voiceprint characteristics of the 

sound signal has the advantages of being non-

destructive and having low requirements on the 

environment and detection equipment. It has been 

applied in many fields, especially the operating 

condition monitoring of transformers combined with 

deep learning [5-6]. Related studies have been 

published in recent years. Wu et al. [7] analyzed the 
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noise propagation mode and parameters affecting 

performance, and elaborated on the importance of 

voiceprint recognition for Transformer status 

monitoring and fault diagnosis; Rodriguez-Serna et 

al. [8] utilized The threshold value obtained by 

vibration information fusion is used to judge the DC 

bias fault of 500 kV auto-transformer; in [9], the Mel 

frequency representation of the acoustic signal is 

input into the deep learning model to achieve 

voiceprint-based Transformer operating status 

judgment; Hou and Bergmann [10] used the visual 

geometric group network to classify the gamma 

cepstral coefficient characteristic parameters of the 

sound wave and distinguish the diverse operational 

states of the 10 kV dry Transformer. However, 

various random environmental noises can cause 

differences between training signals and actual 

signals, thereby reducing fault diagnosis accuracy. 

Collective training is a beneficial AI technique 

that seeks to enhance overall effectiveness by 

merging various distinct predictors through efficient 

guidelines [11]. Hence, collective training serves as 

an admirable option for executing multi-origin field 

adaptation learning. Via collective training, valuable 

insights embedded within numerous origin fields can 

be thoroughly harnessed. For guided collective 
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training, integration principles are typically crafted 

based on precision or a compromise between 

precision and variety [12-13]. Nonetheless, in this 

examination, the destination field datasets lack 

labels, which will render it considerably more 

challenging to achieve a potent integration principle. 

Strengthening education is an additional potent 

artificial intelligence technique. For example, Zoph 

et colleagues crafted an artificial network 

architecture hunt strengthening education technique 

founded on strategy slope and realized commendable 

outcomes. Wang et associates utilized it for roller 

defect detection [14-15]. Motivated by such, our 

team investigates employing strengthening 

education for ideal amalgamation guideline creation 

for collective training paradigms. A strengthening 

education system comprises an orchestrator that 

fabricates maneuvers (amalgamation guidelines) and 

a supervisor that acquires incentives. The 

orchestrator comprises a Recurrent Neural Network 

(RNN) strategy slope employed to revise settings. 

In this examination, a Reinforcement Ensemble 

Deep Transfer Learning Network (REDTLN) is 

suggested to execute the migration education 

challenge in multiple-origin zones. Its central 

concepts encompass three principal components: 

single-origin single-goal zone adaptation, uniform 

gauge blueprint for unsupervised collective training, 

and multi-origin and multi-paradigm strengthening 

amalgamation. Initially, a sequence of profound 

transfer learning networks (DTLN) with diverse 

novel kernel MMDs (kMMD) are established to 

study various transferable characteristics. This 

investigation employs some innovative core 

operations for draft distinct kMMDs and assemble 

diverse DTLNs. In such manner, the efficiency of 

diverse core operations might be confirmed and the 

range of separate paradigms might be augmented. 

The poly-origin zone and destination zone data 

collections are arranged into numerous pairs, and 

every duo is input to the DTLN for individual origin-

singular destination zone adjustment. Subsequently, 

a fresh uniform unsupervised collective training 

performance assessment indicator is devised based 

on MMD and diversity metrics. Ultimately, a 

uniform gauge is utilized as an incentive to construct 

a strengthening education technique to seek effective 

amalgamation regulations of these DTLNs and attain 

multi-origin and multi-paradigm strengthening 

amalgamation. 

 

2. REINFORCEMENT ENSEMBLE DEEP 

TRANSFER LEARNING NETWORK 

 

In this segment, a strengthening collective 

profound adaptation education network is suggested 

to address the adaptation education challenge in 

multi-origin zones. It is partitioned into the 

following five sections, namely: the foundational 

theory of zone adjustment, single-origin and single-

destination zone adjustment, uniform metric 

blueprint for unguided collective training, and multi-

origin and multi-paradigm enhancement integration. 

 

2.1. Basic theory of domain adaptation 

Over the past few years, profound learning 

approaches for defect identification have realized 

significant triumphs [16-17]. On most occasions, 

they tackle the issue with sufficient tagged training 

information [18-23]. Training and examination 

datasets must originate from an identical distribution 

[24]. However, occasionally it is challenging to 

fulfill all aforementioned criteria. If no tagged data 

are accessible, current profound learning techniques 

might not be sensible. Consequently, adaptation 

learning was devised to address this predicament by 

utilizing tagged data from some differing yet 

associated fields [25]. 

 

Fig. 1. Schematic diagram of domain 

adaptation 

 

As depicted in Fig. 1, various fields frequently 

generate field discrepancies, so merely training with 

tagged data from an alternative field may lead to 

inferior performance on the target field. To this aim, 

adjustment is introduced to diminish distribution 

variations. Presently, MMD (Maximum Mean 

Discrepancy) is the most prevalent distance metric to 

lessen the variations between distinct fields [26-28]. 

TCA, JDA DDC, and DAN are representative 

MMD-based adjustment techniques. 

To address the challenge of defect identification 

with untagged data, this document employs an 

adjustment technique utilizing kMMD. Suppose 

there exists a source field 𝐷𝑆 and a destination field 

𝐷𝑇 ,  𝑋 = {�̂�𝑖|𝑋𝑖 , 𝑖 = 1,2, … , 𝑠} denotes the origin 

field data set, where 𝑠 indicates the quantity of 

samples; the sample 𝑖 is represented by 𝑋𝑖 , and �̂�𝑖 

represents its label;  𝑋 = {𝑍𝑗 , 𝑗 =

1,2, … , 𝑡} represents the untagged destination field 

data set;  𝑡 denotes the sample count; 𝑍𝑗  represents 

the 𝑗𝑡ℎ sample. The kMMD between the source zone 

𝐷𝑆 and the target zone 𝐷𝑇  can be determined as Eq. 

(1): 

𝑀𝑘(𝑋, 𝑍) =
1

𝑠2
∑ 𝑘(𝑋𝑖 , 𝑋𝑗)

𝑠

𝑖,𝑗=1

+
1

𝑡2
∑ 𝑘(𝑍𝑖, 𝑍𝑗)

𝑡

𝑖,𝑗=1

−
2

𝑠𝑡
∑ 𝑘(𝑋𝑖 , 𝑍𝑗)

𝑠,𝑡

𝑖,𝑗=1

 

(1) 

Which 𝑘(𝑥, 𝑦) indicates the core function, like 

straight core, Gaussian core, etc. 
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2.2. Single source single target domain 

adaptation 

His examination employs kMMD to assemble an 

individual-origin individual-destination zone 

adaptive DTLN. As depicted in Fig. 2, the assembled 

DTLN comprises three ConvM, a flatten layer (FL), 

two fully linked tiers (FC) and a probability sorter 

(C). Every filtering unit sequentially includes a filter 

tier (Conv), a batch standardization tier (BN), and a 

peak pooling tier (MPL).  

First ConvM Unit: Employs a 1D convolutional 

structure with an input channel count of 1, output 

channel count (number of filters) of 256, kernel size 

of 1×1, stride of 1, no padding, and no bias. 

Second ConvM Unit: Input channel count of 256, 

output channel count of 512, kernel size maintained 

at 1×1, stride of 1, no padding, and no bias. 

Third ConvM Unit: Configuration identical to 

the second unit, with input channel count of 512, 

output channel count of 512, kernel size of 1×1, 

stride of 1, and no bias. 

The dimensionality design of the fully connected 

layers (FC) is: 

First FC Layer: Takes flattened features from the 

convolutional output, reducing dimensionality from 

512 to 128. 

Second FC Layer: Further compresses the 128-

dimensional features to the dimension corresponding 

to the number of fault categories. 

The input of the model in this paper is the time-

domain signals of acoustic fingerprints collected 

directly from acoustic/vibration sensors. This model 

is designed to analyze and extract features from these 

acoustic fingerprint time-domain signals. 

 

Fig. 2. DTLN architecture 

 

In this examination, merely the count of ConvM1 

sieves is modifiable to lessen the complexity of 

hyperparameter choice. Following determination of 

the hyperparameters, DTLN undergoes pre-training 

employing tagged source information before zone 

adaptation. Throughout the preliminary education 

procedure, the Adam method is utilized to refine the 

later target metric, as shown in Eq. (2): 

𝐽𝐸 = −
1

𝑠
∑(�̂�𝑖𝑙𝑜𝑔𝑦𝑖)

𝑠

𝑖=1

 (2) 

in which s denotes the count of instances; y^i and 

ŷ^i represent the predicted tag and actual tag of the 

ith instance, respectively. The research results show 

that high-level features are more susceptible to 

domain differences than basic-level characteristics. 

As illustrated in Fig. 2, to derive field-consistent 

traits and discriminators, we utilize many-tier field 

adjustment via shell MMD in wholly linked tiers 

FC1, FC2 and classifiers. 

Primary aim within DTLN largely comprises pair 

divisions. Initial division represents information 

expense derived input domain, utilized toward 

directed education, whereas secondary division 

encompasses densely linked layer alongside core 

MMD pertaining model discrimination, used for 

domain adaptation, as shown in Eq. (3): 

𝐽𝐷𝑇𝐿𝑁 = 𝐽𝐸 + 𝛼 [∑ 𝑀𝑘(𝐹𝐷𝑆,𝑖 , 𝐹𝐷𝑇,𝑖)

𝑖∈𝐿

+ 𝑀𝑘(�̂�𝐷𝑆
, 𝑦𝐷𝑇

)] 

(3) 

Among them, 𝐽𝐸  represents the cross-entropy 

cost on the origin field, 𝐿 =
{𝐹𝐶1, 𝐹𝐶2}, 𝐹𝐷𝑆,𝑖 , 𝐹𝐷𝑇,𝑖  represents the origin field 

and destination field characteristics of the 𝑖𝑡ℎ layer 

respectively, �̂�𝐷𝑆
 signifies the true classification for 

the source domain, 𝑦𝐷𝑇
 signifies the forecasted 

classification of the destination domain, and 𝛼 

serves as the limiting factor. 

To acquire portable characteristics, DTLN is 

utilized to execute single-origin single-destination 

zone adaptation. Multi-origin zone data and 

destination zone data are arranged into pairs. Each 

pair comprises an origin zone dataset and a 

destination zone dataset. To boost variety, six 

DTLNs featuring six unique kMMDs were compiled. 

As shown in Table 2, the cores of kMMD include 

Gaussian core alongside other innovative cores, such 

as exponential core, Cauchy core, hyperbolic tangent 

core, polynomial core, and logarithmic core. Hence, 

should there be N source areas, one would generate 

N sets of data collections. Every set of data 

collections is input into six varieties of DTLN for 

uni-source uni-target area adjustment. An aggregate 

of 6N domain acclimation models shall result. 

 

2.3. A novel integrated evaluation framework for 

unsupervised collective education 

Many of the current collective education 

techniques handle situations with annotated 

information, that is, guided collective education. 

Guided collective education typically creates 

integration guidelines via precision or a compromise 

of precision and variety metrics. Certain variety 

metrics utilized in guided collective education also 

necessitate the accuracy of an individual 

foundational framework. Nevertheless, limited 

endeavors have been undertaken regarding unguided 

collective education. Within this investigation, the 

destination field datasets are unannotated, thus the 

precision is not obtainable. Absent annotation details, 

it grows more challenging to formulate efficient 

integration guidelines. Consequently, there exists an 

immediate necessity to devise a novel approach to 

produce combination principles appropriate for 

unguided collective education. Within this 

investigation, an integrated evaluation criterion is 

structured to assess the effectiveness of collective 
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education and direct the system to produce efficient 

integration guidelines. As no annotation details are 

accessible, an integrated evaluation criterion is 

structured relying on alternative viable options. The 

initial option is the MMD among the forecasted 

annotation of M_ST collective education and the 

annotations of numerous origin fields, calculable as 

Eq. (4): 

𝑀𝑆𝑇 = ∑ 𝑀𝐾(�̂�
𝐷𝑆

𝑖 , 𝑦𝐷𝑇
𝑒)

𝑁

𝑖=1

 (4) 

Within these, N signifies the count of origin 

fields; the true annotation of the origin field is 

denoted as  �̂�
𝐷𝑆

𝑖 ; the forecasted annotation of 

collective education is denoted as 𝑦𝐷𝑇
𝑒 . This criterion 

can diminish the discrepancy in annotation 

distribution between the origin field and the 

destination field. Hence, the lesser 𝑀𝑆𝑇, the superior 

the effectiveness. Variety is crucial to the triumph of 

collective education and is considered in crafting 

integrated metrics. Variety metrics encompass 

paired metrics and unpaired metrics. Paired metrics 

traditionally evaluate the disparity between two 

foundational learners and achieve the ultimate 

overall variety by averaging all paired metrics. Non-

paired metrics largely directly gauge the variety of 

the collective instead of computing the average of 

paired metrics. This research examines both paired 

and unpaired metrics to acquire varied frameworks. 

The discrepancy metric is utilized to execute the 

paired metric and is computed as Eqs. (5) and (6): 

𝑑𝑖𝑣−𝑝

=
2

𝑛(𝑛 − 1)
∑ ∑ 𝑑𝑖𝑠(𝑦𝐷𝑇(𝑖), 𝑦𝐷𝑇(𝑗))

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 
(5) 

𝑑𝑖𝑠(𝑦𝐷𝑇(𝑖), 𝑦𝐷𝑇(𝑗))

=
1

𝑡
∑ ΙΙ(𝑦𝐷𝑇(𝑖)

𝑘 ≠ 𝑦𝐷𝑇(𝑗)
𝑘 )

𝑡

𝑘=1

 
(6) 

Within these, 𝑑𝑖𝑣−𝑝  signifies the total variety, 

𝑑𝑖𝑠(𝑦𝐷𝑇(𝑖), 𝑦𝐷𝑇(𝑗))  signifies the coupled variety 

between the primary learner 𝑦𝐷𝑇(𝑖) and 𝑦𝐷𝑇(𝑗) ; 

m≤6N denotes the quantity of chosen primary 

learners, II() signifies the flag function; when the 

forecasted annotation of the 𝑖𝑡ℎ primary framework 

is 𝑦𝐷𝑇(𝑖)
𝑘  discordant with the forecasted annotation of 

the 𝑗𝑡ℎ  primary framework 𝑦𝐷𝑇(𝑗)
𝑘 , the output is 1, 

otherwise it is 0. The 𝑑𝑖𝑣−𝑝 v score span is from 0 

to 1. The higher the score, the more significant the 

variety. 

Shannon entropy serves to assess uncoupled 

variety, computed as Eqs. (7) and (8): 

𝑑𝑖𝑣−𝑛𝑝 =
1

𝑡
∑ ∑(−𝐻(𝑦𝐷𝑇

𝑘

𝑐

𝑖=1

𝑡

𝑘=1

= 𝑖|𝑍𝑘)𝑙𝑜𝑔𝐻(𝑦𝐷𝑇
𝑘

= 𝑖|𝑍𝑘)) 

(7) 

𝐻(𝑦𝐷𝑇
𝑘 = 𝑖|𝑍𝑘) =

1

𝑛
∑ 𝜋(𝑦𝐷𝑇(𝑗)

𝑘 = 𝑖)

1

𝑗=1

 (8) 

where 𝑐 denotes the count of classes. Likewise, 

the higher the score, the more significant the variety. 

Ultimately, these three evaluations are integrated 

into a comprehensive evaluation to assess the 

effectiveness of collective education more 

efficiently. The comprehensive evaluation E is 

presented in Eq. (9): 

S = μ
1

𝑀𝑆𝑇

+ 𝛽𝑑𝑖𝑣−𝑝 + 𝜔𝑑𝑖𝑣−𝑛𝑝 (9) 

Within these, μ  , 𝛽  and 𝜔  denote the balance 

factors for three distinct evaluations; to ensure the 

coherence of the evaluations, we adopt the inverse of 

𝑀𝑆𝑇. The greater the integrated evaluation S is, the 

superior the collective education effectiveness is. 

These balancing factors are automatically 

learned through a reinforcement learning-based 

adaptive optimization framework. Specifically, 

during the training process of REDTLN, the 

weighting parameters are modeled as trainable 

variables. They undergo joint optimization with the 

feature transfer objectives via policy gradient 

algorithms, PPO algorithms, enabling them to 

dynamically adapt to the distribution discrepancy 

characteristics across different source-target domain 

combination. 

 

2.4. Multi-source and multi-model enhanced 

integration 

Within this chapter, multi-origin and multi-

framework enhancement integration shall be 

attained by merging collective education and 

enhancement learning. Collective education is 

utilized to integrate the outcomes of 6P DTLNs to 

derive collective outcomes. Enhancement learning is 

formulated to produce appropriate integration 

guidelines for the collective. 

Typically, the integration guidelines of collective 

education encompass mean voting and weighted 

voting. Mean voting allocates identical weight to 

every framework for the collective. Weighted voting 

assigns varying weights to every framework 

according to some criterion (such as precision). 

Rational allocation of voting weights serves as an 

assurance to secure effective integration. Toward 

this aim, an enhancement learning approach is 

formulated to explore the optimal integration of 

guidelines for DTLNs. As depicted in Fig. 3, the 

enhancement collective model comprises four 

components: regulator, operation, sub-collective 

model, and incentive. 

 

Fig. 3. Enhanced integrated model 
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As depicted in Fig. 4, the regulator is constructed 

via a long short-term memory network (LSTM) and 

a softselect classifier. The regulator emits the 

likelihood of the selection operation. 

 

 

Fig. 4. LSTM stack structure 

 

LSTM is introduced as an exceptional kind of 

recursive neural web (RNN) for handling temporal 

sequence progressive data. The framework includes 

self-links and three components, specifically entry 

valve, exit valve, and reset valve. These valves 

enable LBMN storage units to retain and retrieve 

information across extended durations, alleviating 

the diminishing slope issue. The computation 

procedure is illustrated in Eqs. (10)-(14): 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (10) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (11) 

𝐶𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (12) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 (13) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (14) 

Within these; 𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡  individually signify a 

regulation factors for a reset valve; entry valve or 

exit valve within LSTM: 𝐶𝑡−1denotes an quantity for 

a storage cell within LSTM at a prior instant 

(temporal point): Storage cells serve crucial 

elements in LSTM frameworks for retaining and 

transmitting data: An  𝐶𝑡  signifies a fresh input 

obtained by LSTM at a present instant: That might 

be novel information from an input series, utilized to 

refresh the storage cell: Denotes the storage cell 

condition of LSTM at a present instant: Storage cells 

are locations where data is preserved within the 

framework and can hold data from past instants as 

well as the effect of fresh inputs: An v_z signifies the 

result of LSTM at a present instant, too termed the 

concealed state: That is the data delivered by the 

LBMN framework to the top or bottom layer, 

typically employed for forecasting or categorization 

of tasks: 𝑊 and 𝑏: signify the mass array and offset 

array accordingly: 𝜎(𝑥)is a activation function and 

its formula is 𝜎(𝑥) =
1

1+𝑒−𝑥; 𝑇𝑎𝑛ℎ(𝑥)is a activation 

function and its formula is 𝑇𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 : 

Presuming that the parameters of the regulator are 

denoted as 𝜃𝑐, the goal function is computed as Eq. 

(15): 

𝐽𝑐(𝜃𝑐) = −
1

6𝑁
∑(�̂�𝑖𝑙𝑜𝑔𝑃𝑖 + 𝜆 ∑ 𝜃𝐶

2)

6𝑁

𝑖=1

 (15) 

Within these, the initial segment denotes the 

disorder cost; the following section signifies the 

mass reduction clause; 𝜆  represents the associated 

mass reduction coefficient. The operation within 

enhancement education serves the integration 

guideline, the selection mass for each DTLN, which 

forms a chain of 6N items. Operations are articulated 

as 𝐴 = 𝑤 = [𝑤1, 𝑤2, … , 𝑤6𝑁]  produced with 

likelihood 𝑃.  

Upon an integration guideline being secured, a 

sub-collective framework may be assembled via 

weighted selection. The outcomes from collective 

education might be achieved. Presume that the 

integration guideline emitted by the regulator is 

denoted as Eq. (16): 

𝑆𝑐𝑜𝑟𝑒𝐷𝑇(𝑒)
𝑘 = ∑(𝑤𝑖𝑦𝐷𝑇(𝑖)

𝑘 )

6𝑁

𝑖=1

 (16) 

In accordance with the ultimate selection 

outcome 𝑆𝑐𝑜𝑟𝑒𝐷𝑇(𝑒)
𝑘 , the classification with the peak 

rating shall be termed the collective's forecasted 

identifier, symbolized as 𝑦𝐷𝑇
𝑒 . For executing strategy 

slope proficiently, incentives are the paramount 

component. Within this examination, we employ a 

harmonized criterion S  to specify incentives 𝑅 , as 

depicted in Eq. (17): 

𝑅𝑞 = 𝑆𝑞  (17) 

Within these, 𝑆𝑞 and 𝑅𝑞 are the quantities of the 

harmonized metric and incentive in the 𝑞𝑡ℎ interval 

respectively, wherein 𝑆0 = 0 .. Within this 

examination, the condition domain is partitioned into 

a sequence of distinct masses, articulated as 𝑆 =
{0,0.05,0.1, … ,0.95,1} . The execution of the 

enhancement education collective is illustrated 

beneath. The regulator can emit the likelihood 𝑃𝑖  of 

a operation 𝐴𝑖. Based on 𝑃𝑖 , the forecasted quantity 

𝑊𝑖  that might be acquired. Subsequently transmits 

the forecasted quantity into the succeeding temporal 

phase to forecast the quantity of 𝑊𝑖+1  Upon 

acquiring 𝑊6𝑁, the consolidation outcome might be 

derived based on Eq. (16). The incentive might be 

computed based on Eq. (17). To locate ideal masses, 

the anticipated incentive necessitates optimization. 

Consequently, the goal function is articulated as Eq. 

(18): 

𝐿(𝜃𝐶) = 𝐸𝑃(𝐴1:𝐴6𝑁;𝜃𝐶)[𝑅] (18) 

Subsequently, the strategy slope technique shall 

be executed to refresh the factors of the regulator, 

computed as Eq. (19): 

∇𝜃𝑐𝐿(𝜃𝐶) = 𝐸𝑃(𝐴1:𝐴6𝑁;𝜃𝐶)[∇𝜃𝑐𝐽𝐶(𝜃𝐶)𝑅] (19) 

Ordinarily, Eq. (20) is utilized to estimate Eq. (19) 

to compute the inclination. 

∇𝜃𝑐𝐿(𝜃𝐶) = ∑ ∇𝜃𝑐𝐽𝐶(𝜃𝐶)𝑅𝑞

𝑄

𝑞=1

 (20) 

wherein 𝑄  denotes the count of collective sub-

models within a batch. The preceding formula 

constitutes an impartial estimation of the inclination. 

This estimation exhibits significant variability. 

Consequently, to diminish this variability, the 

baseline function 𝑆′  is incorporated into the 

evaluation, as depicted in Eqs. (21)-(23): 

∇𝜃𝑡
𝐿(𝜃𝐶) = ∑ ∇𝑒𝐽𝐶(𝜃(𝜃))𝑅𝑎

′

𝑜

𝑖=1

 (21) 
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𝑅𝑞
′ = (𝑆𝑞 − 𝑆′) (22) 

𝑆′ = 𝛾𝑆′ + (1 − 𝛾𝑆𝑞−1) (23) 

The 𝑆𝑞  depends solely on the operations prior to 

the present phase, ensuring that Eq. (21) stays an 

impartial estimation of the inclination. Ultimately, 

based on the acquired inclination, the factors of the 

regulator might be refreshed iteratively as illustrated 

in Eq. (24): 

𝜃𝐶 = 𝜃𝐶 − 𝜂∇𝜃𝑐𝐿(𝜃𝐶) (24) 

The REDTLN structure is exhibited in Fig. 5. 

Arrange N origin realm data and destination realm 

data into N pairs of individual origin-individual 

destination data collections. 6N DPLMs are 

established using diverse kernel MMDs and pre-

conditioned using N origin realm data. Feed each 

pair of data into the corresponding DPLM to attain 

individual origin-individual destination realm 

adaptation. Ultimately, a multi-origin multi-model 

enhancement collective education model is 

formulated. 

 

Fig. 5. REDTLN architecture 

 

3. EXPERIMENTAL ANALYSIS 

 

3.1. MFD-REDTLN model verification analysis 

Within this chapter, numerous knowledge 

migration exercises involving various origin areas 

are designed using multiple datasets. These tasks are 

designed to demonstrate the efficacy of the presented 

solution. This paper applies three data sets to 

confirm the effectiveness of the proposed approach. 

The voiceprint data collection 1 (D1), data 

collection 2 (D2), and data collection 3 (D3) of 

power transformers under different environmental 

working conditions were selected respectively. In 

this study, D1, D2, and D3 each consist of six failure 

modes, which are partial discharge (PD), secondary 

circuit, short-circuit impact, loose components, 

severe overload, and cooler noise. Each failure 

framework comprises 120,000 information records, 

which are arranged into 100 examples; each example 

includes 1200 data points.  

Based on the multi-source domain fault 

identification experiments designed in this study, 

data partitioning strictly adheres to the domain 

isolation principle to prevent data leakage. For each 

experimental scenario, the source domain data is 

merged and uniformly divided as follows: Training 

set: 70% – Used for training the feature extractor and 

classifier of the DTLN network. Validation set: 15% 

– Employed for hyperparameter tuning and early 

stopping strategies. Test set: 15% – Utilized to 

evaluate model generalization capability. The entire 

target domain dataset exclusively serves as the test 

set for the final assessment of the REDTLN model's 

cross-domain diagnostic performance. This 

partitioning ensures that the model accesses only 

source domain data during training and validation, 

while the target domain data remains completely 

independent of the training process. Furthermore, the 

source and target domains are completely mutually 

exclusive in terms of specific transformer units or 

operating conditions, with no data overlap existing 

between them. 

By adjusting equipment load conditions-

including no-load, rated-load, and overload states -

we simulated operational processes under varying 

working conditions. Simultaneously, background 

noise sources were introduced, such as 

electromagnetic whine from motors, cavitation noise 

phenomena in fluid pipelines, and ambient acoustic 

interference. During the data collection phase, high 

signal-to-noise ratio (SNR) microphone arrays were 

employed to enhance the signal fidelity. 

Three multi-origin zone defect identification 

experiments, namely (D1, D2)-D3, (D1, D3)-D2 and 

(D2, D3)-D1, are designed using data collections D1, 

D2 and D3 to validate the efficacy of the suggested 

approach. Effectiveness. Taking (D1, D2)-D3 for 

instance, this involves implementing varied-region 

adjustment from origin zones D1 and D2 to 

destination zone D3. During the pre-training 

procedure of DTLN, the number of cores m of 

ConvM1 is selected from 10 to 20, the corresponding 

training times are selected as 10, and the education 

pace is fixed at 0.001. Throughout the process of uni-

origin uni-destination area adjustment training, the 

training times of each DTLN are established from 10 

to 30, the education pace is fixed from 0.0001 to 

0.005, and α is established from 0.05 to 2.5. Within 

the diverse-input varied-framework reinforcement 

combination procedure, the count of LSTM cells 

within the regulator is chosen from 20 to 100, λ is 

fixed to 0.001, the education pace is fixed at 0.001, 

and Adam is used to improve the regulator, and γ is 



 DIAGNOSTYKA, Vol. 26, No. 3 (2025)  7 

Mu M, Niu J, Guo G, Tian M, Li J, Li J. Reinforcement-enhanced deep transfer fusion network for … 

 

picked from 0.5 to 0.5. 0.95, and the number of 

iterations is fixed at 100. 

A single DTLN achieves uni-origin uni-

destination area adjustment, while MFD-REDTLN 

achieves multi-source and multi-model enhanced 

integration. Separate DTLNs leveraging diverse 

kMMDs display varied effectiveness, several 

notably distinct. Upon introducing an isolated DTLN 

to various initial regions, it similarly demonstrates 

differing knowledge migration efficiencies. During 

trials, MFD-REDTLN surpasses lone DTLN. 

Regarding destination region D1 paired with starting 

region D2, DTLN1 reached the top accuracy 

(61.18%); utilizing D3 as baseline area info, DTLN8 

attained maximum precision (84.67%). Employing 

D2 and D3 as base field details, MFD-REDTLN 

performance stands at 99.50%, significantly 

exceeding all standalone DTLNs. The confusion 

matrix for the superior DTLN and MFD-REDTLN 

across diverse settings is depicted in Fig. 6. Through 

multi-input multi-framework reinforced collective 

learning, MFD-REDTLN attains greater accuracy 

compared to the leading DTLN in each malfunction 

condition. These results highlight the efficiency of 

the introduced technique. 

 
 
a) DTLN1 confusion matrix with source field D2   

 
b) DTLN8 confusion matrix with source field D3 

 

c) MFD-REDTLN confusion matrix 

Fig. 6. Error classification tables for best-

performing DTLN and MFD-REDTLN 

across varied situations within destination 

area D1 

 

Likewise, for the target zone D2 and origin zone 

D1, DTLN1 reached the top reliability (82.67%). 

When D3 serves as source field data, DTLN7 obtains 

the highest precision (84.83%). Upon utilizing D2 

and D3 as origin area information, the precision of 

MFD-REDTLN reaches 94.83%, marking it as the 

peak performance among all individual DTLNs. The 

error classification table for the top-performing 

DTLN and MFD-REDTLN across varied scenarios 

is shown in Fig. 7. MFD-REDTLN mostly achieves 

superior accuracy compared to the top DTLN in each 

failure mode. These results further confirm the 

effectiveness of the suggested approach. 

 

a) DTLN1 confusion matrix with source field D1  

 

b) DTLN7 confusion matrix with source field D2 
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c) MFD-REDTLN confusion matrix 

Fig. 7. Error classification tables for top-performing 

DTLN and MFD-REDTLN across various settings 

within destination region D2 

 

For target zone D3, DTLN3 reached the top 

accuracy (82.00%) when D1 served as source 

domain data. When D3 functions as source field data, 

DTLN11 achieves the peak precision (94.16%). 

Upon applying D2 and D3 as origin area information, 

the precision of MFD-REDTLN reaches 98.67%, 

marking it as the peak performance among all 

individual DTLNs. The confusion matrix of the 

optimal DTLN and MFD-REDTLN in different 

scenarios is shown in Fig. 8.  

 
a) DTLN3 confusion matrix with source field D1 

 
b) DTLN11 confusion matrix with source field D3 

 
c) MFD-REDTLN confusion matrix 

 

Fig. 8. Error classification tables for top-performing 

DTLN and MFD-REDTLN across various settings 

within destination region D3 

 

These findings show that the effectiveness of 

separate DTLNs using various kMMD and origin 

fields differs greatly and that they lack sufficient 

accuracy and stability. There is presently no reliable 

approach to assist in selecting appropriate kMMD 

and origin fields. MFD-REDTLN combines single-

origin single-destination zone adaptation with multi-

origin multi-paradigm enhanced integration. It 

eliminates the necessity to choose a particular 

kMMD or origin field, but typically delivers better 

outcomes than an individual DTLN. This 

underscores the efficiency of MFD-REDTLN. 

 

3.2. Analysis of the search process of 

reinforcement learning 

Fig. 9, Fig. 10 and Fig. 11 illustrate the unified 

metric and related ensemble learning accuracy as a 

function of the iteration count for experiments (D2, 

D3)-D1, (D1, D3)-D2, and (D1, D2)-D3 accordingly. 

chart. The x-axis indicates the cycle number, the left 

section shows the standardized measure, scaled by 

dividing by its peak value, and the right panel 

displays reinforcement learning ensemble accuracy. 

 

 

Fig. 9. Changes of the unified metric and 

ensemble learning accuracy curves with the 

number of iterations in Experiment (D2, D3)-

D1 



 DIAGNOSTYKA, Vol. 26, No. 3 (2025)  9 

Mu M, Niu J, Guo G, Tian M, Li J, Li J. Reinforcement-enhanced deep transfer fusion network for … 

 

 

Fig. 10. Experiment (D1, D3)-Unified metric 

and ensemble learning accuracy curves in D2 

change with the number of iterations 

 

 

Fig. 11. Experiment (D1, D2)-Unified metric 

and ensemble learning accuracy curves in D3 

change with the number of iterations 

 

Test outcomes indicate that the integrated metric 

generally stabilizes with the number of iterations. 

The unified measure curve and the ensemble 

learning precision curve exhibit good alignment. 

Hence, the integrated measure can serve as an 

alternative performance indicator to assess collective 

learning effectiveness without correct data. It is 

fitting to use unified metrics as rewards for 

enhancement learning models to achieve multi-

origin and multi-paradigm integration. Nevertheless, 

the final integrated measure and ensemble learning 

effectiveness determined through reinforced 

learning models are occasionally not globally 

optimal. This signifies an inherent limitation of 

reinforced learning. Not all cycle values of the 

integrated measure accurately correspond to the 

ensemble learning performance metrics. The reason 

is that the label information from the destination 

region is not employed in crafting the integrated 

measure, and the relationship between the diversity 

indicator and ensemble learning outcomes is not 

entirely accurate. 

 

3.3. Model comparison analysis 

MFD-REDTLN is contrasted with several 

traditional single transfer education techniques, 

encompassing CNN, DDC, D-CORAL, DANN, 

TCA and JDA. CNN is a genuine profound network 

with identical structure and hyperparameters as 

singular DTLN, yet does not employ MMD. DDC is 

a realm adaptation network akin to DTLN2, but 

solely utilizes Gaussian kernel MMD to adapt to the 

characteristics of FC2. D-CORAL also possesses an 

identical structure as DTLN but employs CORAL 

loss to adapt the characteristics of FC1 and FC2. 

DANN has an identical structure as DTLN, but 

includes an additional realm classifier for realm 

adaptation; the characteristics of FC are fed into the 

realm classifier. TCA and JDA are shallow realm 

adaptation methods that utilize Gaussian kernel 

MMD. The experimental outcomes are exhibited in 

Table 1, Table 2 and Table 3. 

 
Table 1. Comparison of MFD-REDTLN and other 

models in different scenarios in target domain D1 

Model 

Source 

domain - 

target domain 

Accuracy±standard 

deviation/% 

DTLN1 D2-D1 61.18±1.07 

CNN D2-D1 59.24±5.28 

DDC D2-D1 52.54±4.16 

D-CORAL D2-D1 53.15±4.02 

DANN D2-D1 57.62±5.95 

TCA D2-D1 32.54 

JDA D2-D1 48.75 

DTLN8 D2-D1 84.67±1.05 

CNN D3-D1 78.21±3.78 

DDC D3-D1 69.54±4.68 

D-CORAL D3-D1 72.14±5.76 

DANN D3-D1 68.76±4.23 

TCA D3-D1 38.21 

JDA D3-D1 39.54 

MFD-
REDTLN 

(D2,D3)-D1 95.21±0.48 

 

Profound transfer education models DDC, D-

CORAL, and DANN generally exhibit superior 

performance compared to shallow models TCA and 

JDA, and within these experiments, MFD-REDTLN 

on average achieves higher precision outcomes than 

existing classical transfer education models. 

Specifically, for the destination realm D1, the 

accuracy of DTLN1 utilizing origin realm data D2 is 

61.18%, and the accuracy of DTLN8 utilizing origin 

realm data D3 is 84.67%, both of which are the 

highest relative to the single model, when using 

origin realm data D2 the variability of DDC, D-

CORAL and DANN all exceed 3.5%. The 

variabilities of DDC, D-CORAL and DANN using 

origin realm data D3 are 3.78%, 4.68%, 5.76% and 

4.23% respectively, indicating their stability. The 

accuracy is inadequate. The accuracy of MFD-

REDTLN is 95.21%, the variability is merely 4.77%, 

and the effect is consistent when the destination 

realm is D2 and D3. This demonstrates that it not 

only identifies failure patterns more accurately but 

also exhibits greater stability. 

Therefore, MFD-REDTLN performs superiorly. 

Within these experiments, the proposed MFD-

REDTLN not only identifies malfunctions more 
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accurately but also exhibits greater robustness 

compared to the individual transfer education model. 

This further illustrates the superiority of MFD-

REDTLN. 
 

Table 2. Comparison between MFD-REDTLN and 

other models in different scenarios in target domain D2 

Model 

Source 

domain - 

target 

domain 

Accuracy±standard 

deviation/% 

DTLN1 D1-D2 82.67±1.21 

CNN D1-D2 75.12±4.21 

DDC D1-D2 76.25±3.98 

D-CORAL D1-D2 58.24±5.67 

DANN D1-D2 68.36±4.68 

TCA D1-D2 48.21 

JDA D1-D2 57.36 

DTLN7 D1-D2 84.83±1.09 

CNN D3-D2 72.65±2.98 

DDC D3-D2 57.24±3.45 

D-CORAL D3-D2 69.78±3.65 

DANN D3-D2 65.32±2.98 

TCA D3-D2 43.26 

JDA D3-D2 59.34 

MFD-

REDTLN 
(D1, D3)-D2 94.83±0.59 

 

Table 3. Comparison between MFD-REDTLN and 

other models in different scenarios in target domain D3 

Model 

Source 

domain - 

target 

domain 

Accuracy±standard 

deviation/% 

DTLN3 D1-D3 82.00±1.49 

CNN D1-D3 68.42±2.69 

DDC D1-D3 75.62±7.85 

D-CORAL D1-D3 65.32±4.63 

DANN D1-D3 70.14±5.36 

TCA D1-D3 42.12 

JDA D1-D3 57.36 

DTLN11 D1-D3 91.16±1.36 

CNN D2-D3 57.62±2.98 

DDC D2-D3 68.24±3.47 

D-CORAL D2-D3 78.21±2.89 

DANN D2-D3 65.47±3.36 

TCA D2-D3 45.36 

JDA D2-D3 52.14 

MFD-
REDTLN 

(D1, D2)-D3 94.67±0.75 

 

4. CONCLUSIONS 

 

This document presents MFD-REDTLNfor 

fault-diverse area voiceprint recognition. Its core 

concepts include three primary components: origin-

focused goal-oriented area adjustment, unified 

metric design for unsupervised collective learning, 

and diversified framework-reinforced integration. 

Initially, various novel kMMD are employed to 

construct several DTLN for origin-specific 

destination-oriented area modification, which can 

render the DTLN transferable attributes with diverse 

traits. Next, a novel unified unsupervised group 

learning is crafted based on MMD and diversity 

indicators, and by employing this unified metric as 

incentive, a reinforcement education technique is 

applied constructed to search for effective 

combinations of these DTLNs Rules to achieve 

enhanced integration of multi-source deep transfer 

learning networks. Improved accuracy and 

robustness in dynamic noise environments and 

complex operating conditions. Test results indicate 

that the proposed framework can quickly identify the 

fault operating status of the transformer and 

diagnose six typical faults of the transformer in 

different noise environments. The diagnosis 

accuracy reaches more than 95%, which improves 

the model's general performance under different 

working conditions. ization ability. And compared 

with the classic individual transfer learning methods 

of DTLN, DDC, D-CORAL, DANN, TCA and JDA, 

the results show that MFD-REDTLN performs better 

and the recognition accuracy is above 95%. 

Experimental results show that the MFD-REDTLN 

model can not only identify faults more accurately 

and improve the accuracy of fault diagnosis, but is 

also more robust than other transfer learning models. 
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