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Abstract 

Free and forced transverse oscillations of a drilling rig tower are considered. The computational model is 

represented as a Timoshenko beam with variable bending stiffness, running mass, and longitudinal force along 

the length. It is assumed that the tower is mounted on a rigid platform supported by an elastic base. Additionally, 

the tower is connected to the base by means of elastic braces. The crown block and rig service platforms 

attached to the tower are treated as rigid bodies. For the case of harmonic oscillations of a Timoshenko beam 

with variable parameters along its length, the differential equations of the amplitude functions are obtained and 

reduced to Volterra integral equations. Oscillations of a multi-span structure are calculated using the matrix 

method of initial parameters. An analysis of the results of calculations of transverse oscillations of a drill tower 

is presented. 
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1. INTRODUCTION 

 

Modern drilling rigs are complex sets of 

equipment and structures that differ significantly in 

both design and technical characteristics. By 

functional purpose, the following main drilling rig 

systems can be distinguished: lifting, which is used 

to lower a pipe string into the well and raise it; rotary 

(rotor system), which drives the actuator in the 

process of deepening the well; circulation, which is 

used to flush the well from drilled rock by forcing 

the solution to circulate. Drilling towers or masts are 

used to install hoist mechanisms, devices for 

mechanizing downhole operations and placing drill 

spark plugs. 

Tower drilling towers and A-shaped drilling 

masts are widely used. Tower towers have relatively 

high rigidity and high strength. These structures are 

usually made in the form of a tetrahedral pyramid, 

the edges of which are made of pipes or rolled 

sections and connected to each other in the planes of 

the edges by rod elements. Mast-type structures are 

characterized by reduced metal consumption, good 

transportability and relative ease of installation. 

They consist of two composite rods made in the form 

of spatial trusses, which are interconnected in several 

places by transverse beams. The A-shaped masts are 

mounted on support hinges and additionally secured 
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in a vertical position with struts. For drilling wells to 

a depth of up to 3000 m, A-shaped masts are mainly 

used; if the drilling depth is 3000-5000 m, both masts 

and towers are used; for drilling to a depth of more 

than 5000 m, tower drilling towers are used.  

When performing dynamic calculations, it is 

advisable to consider the legs of drilling masts and 

steel structures of towers as solid bars (composite 

rods). The transverse oscillations of composite rods 

can be described with sufficient accuracy for 

practice by partial differential equations that take 

into account, according to the Timoshenko beam 

theory, bending and shear deformations and inertia 

of translational and rotational motion of elementary 

segments of the composite rod. 

The peculiarity of calculating a tower drilling 

tower for transverse oscillations is that it has a 

variable bending stiffness, distributed mass, and 

longitudinal force along its length. In addition, it is 

necessary to take into account the additional 

fastening of the structure to the ground by means of 

braces, as well as the presence of structures 

connected to the tower in the form of pronounced 

solids, for example, platforms for servicing the 

drilling rig, crown block, etc. All of this greatly 

complicates the study of dynamic phenomena that 

occur during the operation of drilling towers. 
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Paper [1] briefly presents a variational 

formulation of the theory of spatial nonlinear 

classical beams of constant cross-section, followed 

by consideration of the plane case. The term 

"classical beams" here refers to generalized one-

dimensional continuous media that model the 

mechanical behavior of three-dimensional beam 

objects. If the one-dimensional continuum 

corresponds to a deformable curve in space 

parameterized by a single material coordinate and 

time, then the generalized continuum is 

supplemented by additional kinematic quantities that 

depend on the same parameters. The authors 

introduce three nonlinear spatial beams: the 

Timoshenko beam, the Euler-Bernoulli beam, and 

the inextensible Euler-Bernoulli beam. In the spatial 

theory, the Euler-Bernoulli beam and its inextensible 

variant are considered as bounded theories. In the 

plane case, both constrained theories are further 

described by means of alternative kinematics that 

satisfy the basic constraints of these theories.  

In [2], the governing equations of oscillation of a 

beam with a moderately large deflection and an 

arbitrary cross section were obtained using the first-

order theory of shear deformation. The beam is 

homogeneous, isotropic, and subjected to axial 

loads. The kinematics of the problem is described by 

the von-Karman displacement dependence of 

deformations, and the governing equations are based 

on Hooke's law. The system of partial differential 

equations describing the axial and transverse 

oscillations of homogeneous beams contains four 

coupled nonlinear equations with variable 

coefficients obtained by applying the Hamilton's 

principle. The Galerkin method in combination with 

the perturbation method was used to determine the 

linear natural frequencies. To confirm the validity of 

the oscillation analysis, the analytical results are 

compared with the corresponding numerical results 

obtained by finite element analysis.  

Based on Timoshenko's theory of beams, a model 

of a transverse asymmetric cantilever beam was 

developed in [3], taking into account its shear 

deformations and special boundary conditions. The 

analytical and numerical solution of the problem in 

the form of the amplitude function and the circular 

frequency of oscillations of the cantilever beam was 

obtained using the method of transfer matrices and 

the Newton-Raphson iterative method. The accuracy 

and efficiency of the method are verified by 

comparing theoretical results with experimental data 

and known analytical and numerical solutions.  

In [4], free transverse oscillations of a rod of 

constant cross-section with regard to its own weight 

are considered. The corresponding partial 

differential equation of transverse oscillations of the 

rod is reduced to two ordinary differential equations 

with respect to the time function and the amplitude 

function of deflections. As a result, an exact solution 

of the original differential equation of transverse 

oscillations of the rod expressed in dimensionless 

fundamental functions and initial parameters is 

obtained. The proposed approach makes it possible 

to study free oscillations of a rod with different types 

of boundary conditions.  

To establish the relationship between sound 

generation and oscillation of the walls of composite 

pipes of variable cross-section, a set of composite 

cones made of different materials with walls of 

different thicknesses was manufactured, 

theoretically studied, and experimentally tested [5]. 

The main purpose of the experimental studies was to 

develop such composite cones, excite standing 

waves in them at certain frequencies, and record 

acoustic radiation and corresponding wall 

oscillations for each of them. A variation of the 

Webster's wave equation was used as the basis for 

theoretical studies.  

Paper [6] considers a one-dimensional finite 

element model of the nonlinear dynamic behavior of 

thin-walled composite beams with an open variable 

cross-section under an arbitrary external dynamic 

load. The model takes into account torsion or 

bending with torsion without any assumptions about 

the deformation amplitudes. The algorithm for 

solving the problem is a special case of an efficient 

family of high-order implicit algorithms based on 

time discretization of unknown functions, 

introduction of an artificial parameter, and use of an 

asymptotic numerical method.  

Study [7] proposes a complex model of a 

mechanical system formed by a Timoshenko beam 

and a Vlasov base with arbitrary boundary 

conditions provided by the introduction of 

restraining springs in the translational and rotational 

directions. The solutions to the problem in the form 

of beam responses to arbitrarily distributed loads are 

strictly derived taking into account spatial changes 

in soil parameters. The reliability of the theoretical 

results is confirmed by experimental data and by 

comparing the analytical closed-form solutions with 

the results of numerical modeling. The results show 

that the proposed analytical model can be applied not 

only to homogeneous reservoirs and common 

boundary conditions, but also to heterogeneous 

reservoirs and arbitrary boundary conditions. The 

Vlasov-Timoshenko model is quite versatile, as it 

can be degenerated into the Vlasov-Euler-Bernoulli 

model, the Winkler-Timoshenko model, and the 

Winkler-Euler-Bernoulli model. The proposed 

model is applied to evaluate the longitudinal 

response of a panel tunnel caused by adjacent 

excavations.  

Paper [8] investigated the forced longitudinal 

oscillations of a fractional-type rheological rod with 

a variable cross section. A fractional partial 

differential equation and its individual solutions for 

forced longitudinal oscillations of the rod were 

obtained. For the main cases of boundary conditions 

and different forms of oscillations, the eigen 

amplitude functions are obtained. The Laplace 

transform and the properties of the three functions 

under convolution are used to solve the fractional 

order differential equations. The energy analysis of 
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the fractional-order system is carried out. The rate of 

dissipation of mechanical energy of longitudinal 

oscillations of the rod is determined.  

The study [9] consists in analyzing the free 

oscillations of beams consisting of functionally 

graded porous materials and characterized by a 

variable cross-section along the length. A wide range 

of beams is studied, including conical 

configurations, various profiles, and porosity 

characteristics of beam materials. The equations of 

motion are derived on the basis of Hamilton's 

principle within the framework of Timoshenko's 

beam theory. They are solved using differential 

transformations by an analytical and numerical 

method that has been adapted to take into account 

various boundary conditions. To validate the 

proposed solution technique, the calculated 

eigenfrequencies are compared with the available 

literature results for conical inhomogeneous beams 

and homogeneous porous beams. New results are 

obtained for conical porous beams with a variable 

cross section. 

Article [10] is devoted to the study of oscillations 

of a nonlinear beam under the action of a moving 

load, and the dissipation of mechanical energy of the 

system is described by means of the fractional 

Caputo derivative. The nonlinearities arise from the 

assumption of moderately large displacements of the 

beam. In accordance with the procedure for solving 

the problem using the Galerkin method, deflections 

are presented in the form of linear waveforms and 

generalized time-dependent coordinates. Numerical 

results are presented to evaluate the accuracy of the 

proposed calculation method, as well as to study the 

influence of the order and coefficient of the 

fractional derivative on nonlinear oscillations of the 

beam.  

Paper [11] investigates the nonlinear deflection 

of an infinite beam with a variable cross-section, 

mounted on a nonlinear elastic base. The authors 

apply a new analytical and numerical method of 

pseudo-parametric iteration, suitable for solving 

both ordinary differential equations and partial 

differential equations. Six types of infinite beams 

under static loading are considered. The Bernoulli-

Euler beam equation is used to calculate the 

nonlinear deflection of an infinite beam with a 

variable cross section. The high efficiency of the 

method is illustrated.  

An effective approach to obtaining exact 

solutions to the problem of free oscillations of 

functionally gradient beams with variable cross-

sections resting on a Pasternak elastic base is 

considered in [12]. Using the method of separation 

of variables and the Laplace transform based on two-

dimensional elasticity theory, general expressions of 

displacements and stresses are obtained that fully 

follow from the dynamic differential equations and 

boundary conditions for functionally gradient beams 

with arbitrarily variable cross-sections. The 

frequency equations of free oscillation of the beams 

are obtained by expanding the solutions into a 

Fourier series with consideration of the boundary 

conditions. The validity of the developed approach, 

as well as its efficiency and accuracy, are confirmed 

by analyzing several typical examples.  

Paper [13] investigates the dynamic responses of 

a beam whose cross-sectional area and moment of 

inertia are varied by power functions. The 

eigenfrequencies and oscillation modes of the beam 

were calculated using a semi-analytical method. To 

verify the accuracy of the calculation, the analytical 

solutions are compared with those found by the finite 

element method. Taking into account the convective 

inertial force, relative inertial force, Coriolis force, 

and centrifugal inertial force, the equation of 

transverse bending oscillations of a beam under the 

action of a moving body is obtained and solved by 

the Newmark's numerical method. The dynamic 

response of a cantilevered beam with variable cross-

section and moment of inertia is analyzed by an 

example.  

Paper [14] considers a nonlinear mathematical 

model of transverse oscillations of an aboveground 

pipeline section during the movement of a diagnostic 

device. The dynamic analysis is performed by the 

method of generalized displacements. The pipeline 

is considered as a link with distributed parameters 

and the diagnostic device as a solid body. The 

equations of motion of the mechanical system are 

derived using Lagrange's equations of the second 

kind. The influence of mechanical system 

parameters and device speed on pipeline deflections 

and bending moments in the pipe is illustrated. 

A large number of rails with a curved axis and 

variable cross-section are used in railway switches, 

which necessitates modeling the stress-strain state 

and oscillations of curved rods. Paper [15] presents 

a general formulation of the problem of analyzing 

free and forced oscillations of a curved Timoshenko 

beam of variable cross section and its 

implementation in application to the dynamic 

interaction of a train and a turnout. First, by finding 

the eigenvalues, the eigenfrequencies and shapes of 

the beam oscillations are calculated. Then, the 

solution to the problem of forced oscillations is 

obtained using modal superposition and 

orthogonality. A comparative analysis of the results 

obtained with those obtained using the finite element 

method is carried out.  

Paper [16] investigated the influence of nonlinear 

relations on the behavior of the electromechanical 

coupling in inhomogeneous piezoelectric 

semiconductor rods. Based on the three-dimensional 

theory of a piezoelectric semiconductor and the 

double energy series, a one-dimensional bending 

model was developed. An iterative procedure based 

on the differential-quadrature method is proposed to 

solve the nonlinear problem. The calculation results 

are compared with the results of the finite element 

method. It is shown that the proposed method has 

good convergence and high accuracy. The effects of 

nonlinearity and inhomogeneity in a piezoelectric 
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semiconductor are thoroughly discussed in the 

paper.  

Paper [17] analyzes the transverse oscillations of 

a transmission line pylon with a variable cross-

section along its length. Such structures are 

subjected to the simultaneous effects of internal and 

external loads, which leads to the occurrence of 

transverse and longitudinal oscillations. These 

oscillations are described by two partial differential 

equations that include two unknown functions. If the 

oscillations are small, then the terms that connect the 

equations of transverse and longitudinal oscillations 

can be neglected, considering each type of 

oscillation separately.  

The drill tower is an important element of the 

drilling rig that ensures the reliability of the drilling 

complex during the construction of both exploration 

and production wells. Particularly dangerous is the 

loss of fatigue strength of parts and assemblies of 

load-bearing structures due to their intense 

oscillations. In [18], a finite element model of the 

JJ60/38-W drilling tower was developed and its 

oscillations were investigated, taking into account 

axial, bending, and torsional deformations. Free and 

harmonic forced oscillations of the drill tower 

components are investigated. The ANSYS software 

was used in the work, and the results obtained are of 

practical interest for studying real processes of well 

deepening.  

Paper [19] notes that the hook load, the dead 

weight of the rig elements, and the wind load have a 

decisive influence on the strength and reliability of 

drilling towers in offshore conditions. During the 

design of drilling towers, their static calculations for 

strength and reliability are mostly carried out, taking 

into account the laws of load distribution as random 

variables, using the methods of mathematical 

statistics. In this paper, a spatial model of a typical 

drilling tower is built using APDL (ANSYS 

Parametric Design Language), and its reliability is 

investigated using Python and APDL code. The 

influence of each load on the strength and reliability 

of the structure is determined. This study provides a 

thorough explanation of the law of distribution of 

strength and reliability of drilling towers under 

complex loads.  

Paper [20] considers unsteady processes in the 

lifting system of a drilling rig and their impact on the 

durability of structural elements. The mechanical 

system includes links with both concentrated and 

distributed parameters. The drillpipe string is 

considered as a stepped rod with longitudinal 

oscillations.  The nonlinear mathematical model of 

dynamic phenomena takes into account the 

interconnection of electromagnetic processes in 

induction motors with mechanical oscillations. The 

durability of structural elements is estimated using 

the NASGRO equation to determine the crack 

growth rate.  

Paper [21] proposes a method for assessing the 

fatigue strength of steel truss suspension bridges 

under unsteady and non-Gaussian loading under the 

action of mountain wind.  The normal wind speed 

was obtained by synthesizing harmonic waves with 

consideration of their nonstationary characteristics. 

Using the Palmgren-Miner rule, the influence of 

mechanical system reactions on fatigue damage of 

suspension bridges is studied. The research results 

show that fatigue damage to the main cable of a 

suspension bridge is greatest in the middle part of the 

span. Under the influence of unsteady wind flow, the 

level of damage to the elements of the truss wind 

structure increases.  

Paper [22] investigates the dynamic behavior of 

a periodic structure consisting of rods with a variable 

cross-sectional area. The cells of the structure have 

two rods each. In one case, the cross-sectional area 

of the rods varies exponentially, and in the other, 

linearly. The results of numerical modeling of 

dynamic processes are in good agreement with the 

experimental results. However, a peculiarity was 

found: experimental studies revealed bending 

oscillations that were not taken into account in the 

theoretical model. It was found that asymmetric cells 

perform better and have a wider attenuation band 

compared to symmetric cells.  

Paper [23] is devoted to the study of the elastic 

stability of double conical microbeams embedded in 

a Winkler-type elastic base. It is assumed that the 

cross-section of the beams varies in the longitudinal 

direction according to a linear law. The theory of 

nonlocal stress pairs and the Bernoulli-Euler theory 

are used to obtain the beam size-dependent stress-

strain equation. The minimum eigenvalue of the 

characteristic equation and, accordingly, the critical 

load of a conical microbeam are determined by the 

Rayleigh-Ritz method. The influence of the taper 

coefficient, nonlocal parameters, microbeam length 

scale parameters, and foundation characteristics on 

the stability of the elastic system is comprehensively 

investigated. Prefabricated prestressed frame beams 

with variable cross-section equipped with anchor 

cables are used as new support systems for slope 

reinforcement. The design and construction of such 

systems encounters certain difficulties due to the 

complex nature of the distribution of internal forces 

between system elements, as well as within elements 

with variable characteristics.  

Paper [24] proposes a method for calculating 

internal forces and displacements of prestressed 

beams with a variable cross section mounted on a 

Pasternak elastic base. The calculation was 

performed using the finite difference theory. The 

bending moments obtained by the analytical method, 

field tests, and numerical modeling are in general 

agreement, which proves the feasibility of practical 

application of the obtained calculation method.  

In [25], using the variational principle and the 

method of transition matrices, analytical and 

numerical solutions were obtained for the 

displacements and internal forces of a Timoshenko 

beam of variable cross section mounted on a 

Pasternak elastic base. The obtained solution is 

compared with the results of finite-difference 
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analysis, which confirms the accuracy and reliability 

of the proposed theory. The results of the theoretical 

calculations are in good agreement with the results 

of monitoring the technical facility under 

construction. The model degenerates into the 

Winkler-Timoshenko model when the stiffness of 

the shear layer of the foundation tends to zero.  

Paper [26] investigates the nonlinear dynamic 

behavior of a functionally graded Euler-Bernoulli 

beam supported on a fractional viscoelastic 

Pasternak base subjected to harmonic loads. The von 

Karman strain-displacement relation is used to 

describe the nonlinear geometric behavior of the 

beam. To represent the deformation of the material 

in the thickness direction of a functionally graded 

beam, a step model is used. First, the basic equation 

of motion is derived using Hamilton's principle and 

then reduced to a nonlinear differential equation of 

fractional order using the single-mode Galerkin 

approximation. The methodology for determining 

the stationary amplitude-frequency characteristics 

using the harmonic balance method and the 

continuation technique is presented. 

The analysis of free and steady-state forced 

oscillations of drilling towers can be performed 

using the method of initial parameters. In this case, 

the most difficult task is to construct a transition 

matrix for a long-dimensional structure with variable 

parameters along its length, which is associated with 

the integration of the differential equation of 

amplitude functions with variable coefficients. This 

article is devoted to solving this equation, forming a 

transition matrix, and applying the results to 

determine the frequencies and shapes of free 

oscillations and amplitudes of forced harmonic 

oscillations of a drill tower. The proposed method of 

mathematical modeling of long-dimensional metal 

structures can also be used in studies of the dynamics 

of drill masts 

 

2. EQUATION OF TRANSVERSE 

OSCILLATIONS OF THE DRILLING 

TOWER AND EQUATIONS OF 

AMPLITUDE FUNCTIONS 

 

The design scheme of a high-rise building is 

shown in Fig. 1. The drill tower consists of n-1 spans 

with lengths equal to l1, l2, ..., ln-1, respectively. At the 

boundaries of the runs, it is assumed that there are 

rigid elements with masses m1, m2, ..., mn and central 

moments of inertia J1, J2, ..., Jn, as well as elastic 

supports with stiffness coefficients in the horizontal 

and rotational directions cw1, cw2, ..., cwn; cφ1, cφ2, ..., 

cφn, and the coefficients of viscous friction are νw1, 

νw2, ..., νwn; νφ1, νφ2, ..., νφn. In the absence of a 

particular elastic element of the support, the values 

of its elastic-dissipative parameters should be 

assumed equal to zero. 

The equations of oscillation of a structure follow 

from the conditions of dynamic equilibrium of an 

elementary segment of a high-rise structure, which is 

considered as a S. Timoshenko beam. The derivation  

 
Fig. 1. Design schema of the drilling tower 

 

of such equations for rods of constant cross-section, 

taking into account the action of axial forces, is given 

in [27, 28]. A more detailed analysis of the forces 

acting on an infinitesimal element is given in [29]. In 

accordance with this methodology, we develop the 

equations of transverse oscillations of the structure, 

taking into account that the moment of inertia of the 

tower cross section, its distributed mass, and axial 

force are continuous functions of the longitudinal 

coordinate, 

𝜕

𝜕𝑥𝑖

(𝐸𝐼𝑖
𝜕𝜑𝑖

𝜕𝑥𝑖

) + 𝜅𝑖𝐺А𝑖 (
𝜕𝑤𝑖

𝜕𝑥𝑖

− 𝜑𝑖)) − 𝐼𝑖𝜌𝑖

𝜕2𝜑𝑖

𝜕𝑡2

= 0 ; 

𝜌𝑖А𝑖

𝜕2𝑤𝑖

𝜕𝑡2
− 𝜅𝑖𝐺А𝑖 (

𝜕2𝑤𝑖

𝜕𝑥𝑖
2

−
𝜕𝜑𝑖

𝜕𝑥𝑖

) + 𝑁𝑖

𝜕2𝑤𝑖

𝜕𝑥𝑖
2

= 0  

(𝑖 = 1,  2, … ,  𝑛 − 1), (1) 

where E and G are the elastic moduli of the first and 

second kind; Ii and Ai are the axial moment of inertia 

and the cross-sectional area of the rod span; ρi is the 

average density of the material; κi the coefficient 

characterizing the effect of shear deformation; Ni is 

the longitudinal force; wi the deflection; φi the angle 

of inclination of the tangent to the bent axis of the 

rod under the action of bending moments; xi is the 

longitudinal coordinate; t is time. 

The integrals of the differential equations (1) are 

written in the form 

𝑤𝑖(𝑥𝑖 ,  𝑡) = 𝑊𝑖(𝑥𝑖) 𝑒𝑥𝑝(𝜆𝑡) ;  

𝜑𝑖(𝑥𝑖 ,  𝑡) = 𝛷𝑖(𝑥𝑖) 𝑒𝑥𝑝(𝜆𝑡),               (2) 

where Wi (xi) and Φi (xi) are amplitude functions; λ is 

the eigenvalue. A similar form of writing the 

unknown functions of S. Tymoshenko's equations 

was used in [31]. In this case, it is the most 

convenient and makes it possible to simplify the 

solution of the problem. 
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Substituting expressions (2) into equations (1), 

we obtain 
𝑑

𝑑𝑥𝑖

(𝐸𝐼𝑖𝛷𝑖
′) + 𝜅𝑖𝐺А𝑖(𝑊𝑖

′ − 𝛷𝑖) − 𝐼𝑖𝜌𝑖𝜆
2𝛷𝑖 = 0; 

𝜌𝑖А𝑖𝜆
2𝑊𝑖 − 𝜅𝑖𝐺А𝑖(𝑊𝑖

′′ − 𝛷𝑖
′) + 𝑁𝑖𝑊𝑖

′′ = 0 

(𝑖 = 1,  2, … ,  𝑛 − 1).                 (3) 

Excluding from the last relations one of the 

unknown functions Φi, we write the equations of the 

amplitude functions as 

∑ 𝑊𝑖
(IV−𝑗)4

𝑗=0 ∑ 𝜆2𝑘3
𝑘=0 𝑓𝑖𝑗𝑘(𝑥𝑖) = 0,          (4) 

where 

𝑓𝑖00 = 1;  𝑓𝑖01 =
𝐼𝑖𝜌𝑖

𝑠𝑖

;  𝑓𝑖02 = 0;  𝑓𝑖03 = 0; 

𝑓𝑖10 =
2𝐼𝑖

′

𝐼𝑖
−

2𝑁𝑖
′

𝑟𝑖
;  𝑓𝑖11 =

𝑞𝑖

𝑠𝑖

−
2𝑁𝑖

′𝐼𝑖𝜌𝑖

𝑠𝑖
2𝑟𝑖

; 

𝑓𝑖12 = 0;  𝑓𝑖13 = 0; 

𝑓𝑖20 =
𝐼𝑖
′′

𝐼𝑖
−

𝑠𝑖
2

𝐸𝐼𝑖
+

𝑠𝑖
4

𝐸𝐼𝑖𝑟𝑖
−

2𝐼𝑖
′𝑁𝑖

′

𝐼𝑖𝑟𝑖
−

𝑁𝑖
′′

𝑟𝑖
; 

𝑓𝑖21 =
𝜌𝑖𝑠𝑖

2

𝐸𝑟𝑖
+

𝐼𝑖
′′𝜌𝑖

𝑠𝑖
2 −

2𝜌𝑖

𝐸
−

𝐼𝑖
′𝜗𝑖

𝐼𝑖𝑠𝑖
2 −

2𝐼𝑖
′𝜌𝑖𝑁𝑖

′

𝑟𝑖𝑠𝑖
2 +

ℎ𝑖

𝑟𝑖𝑠𝑖
2 ; 

𝑓𝑖22 = −
𝐼𝑖𝜌𝑖

2

𝐸𝑠𝑖
2 −

𝐼𝑖𝜌𝑖
2А𝑖

𝑟𝑖𝑠𝑖
2 ;  𝑓𝑖23 = 0; 

𝑓𝑖30 = 0;  𝑓𝑖31 = −
𝜗𝑖(2𝐸𝐴𝑖 + 𝑠𝑖

2)

𝐸𝐼𝑖𝑟𝑖
; 

𝑓𝑖32 = −
𝜗𝑖𝜌𝑖𝐴𝑖

𝑟𝑖𝑠𝑖
2 ;  𝑓𝑖33 = 0; 

𝑓𝑖40 = 0;  𝑓𝑖41 =
𝜌𝑖А𝑖𝑠𝑖

2 − 𝐸А𝑖𝜗𝑖
′

𝐸𝐼𝑖𝑟𝑖
; 

𝑓𝑖42 =
2А𝑖𝜌𝑖

2

𝐸𝑟𝑖
+
А𝑖𝜗𝑖

2 − А𝑖𝐼𝑖𝜌𝑖𝜗𝑖
′

𝐼𝑖𝑟𝑖𝑠𝑖
2 ;  𝑓𝑖43 =

А𝑖𝐼𝑖𝜌𝑖
3

𝐸𝑟𝑖𝑠𝑖
2 . 

Here: 

𝑠𝑖
2 = 𝜅𝑖𝐺𝐴𝑖;  𝑟𝑖 = 𝑠𝑖

2 − 𝑁𝑖;  𝜗𝑖 = 𝐼𝑖
′𝜌𝑖 + 𝐼𝑖𝜌𝑖

′ ; 

𝑞𝑖 = 𝐼𝑖
′𝜌𝑖 − 𝐼𝑖𝜌𝑖

′ ;  ℎ𝑖 = 𝜗𝑖𝑁𝑖
′ − 𝑠𝑖

2𝜌𝑖𝐴𝑖 − 𝐼𝑖𝜌𝑖𝑁𝑖
′′. 

 

3. REDUCTION OF DIFFERENTIAL 

EQUATIONS OF AMPLITUDE FUNCTIONS 

TO INTEGRAL EQUATIONS AND THEIR 

SOLUTION 

 

Taking ui(xi) = Wi
IV(xi), we reduce the differential 

equation (4) to a normal integral equation: 

∫ 𝐾𝑖(𝑥𝑖 ,  𝜉,  𝜆)𝑢𝑖(𝜉)𝑑𝜉 + 𝑢𝑖(𝑥𝑖) ∑𝜆2𝑗𝑓𝑖0𝑗(𝑥𝑖)

3

𝑖=0

𝑥𝑖

0

= 

= − ∑ 𝑊𝑖0
(𝑘)3

𝑘=0 ∑ 𝜆2𝑙3
𝑙=0 ∑ 𝑓𝑖, 4−𝑗, 𝑙

𝑘
𝑗=0 (𝑥𝑖)

𝑥𝑖
3−𝑗

(3−𝑗)!
    

(5) 

with kernel 

𝐾𝑖(𝑥𝑖 ,  𝜉,  𝜆) = ∑ 𝜆2𝑗𝐾𝑖𝑗(𝑥𝑖 ,  𝜉),

3

𝑗=0

 

where 

𝐾𝑖𝑗(𝑥𝑖 ,  𝜉) = ∑ 𝑓𝑖𝑘𝑗(𝑥𝑖)
(𝑥𝑖 − 𝜉)𝑘−1

(𝑘 − 1)!

4

𝑘=1

 . 

The value of Wi0
(k) in Equation (5) is the 

derivative of order k of the function Wi (xi) in the 

initial (xi = 0) cross-section of the run; ξ is the 

integration variable. The solution of the integral 

equation (5) is found in the form of a power series 

with respect to the parameter λ, 

𝑢𝑖(𝜆, 𝑥𝑖) = 𝑢𝑖0(𝑥𝑖) + 𝜆2𝑢𝑖1(𝑥𝑖) + 𝜆4𝑢𝑖2(𝑥𝑖) +
⋯  . (6) 

Substituting expression (6) into equation (5) and 

equating the coefficients at the same powers of the 

parameter λ of the left and right sides of the resulting 

equality, we arrive at the sequence of integral 

relations 

𝑢𝑖𝑗(𝑥𝑖) + ∫ 𝐾𝑖0
𝑥𝑖

0
(𝑥𝑖 ,  𝜉)𝑢𝑖𝑗(𝜉)𝑑𝜉 + 𝑅𝑖𝑗 = 0    (7) 

(j = 0, 1, ...), 

where 

𝑅𝑖0 = 𝛩𝑖0; 

𝑅𝑖𝑗 = ∑ 𝑓𝑖0𝑘(𝑥𝑖)𝑢𝑗−𝑘(𝑥𝑖) +

𝑗

𝑘=1

 

+∑ ∫ 𝐾𝑖𝑘
𝑥𝑖

0

𝑗
𝑘=1 (𝑥𝑖 ,  𝜉)𝑢𝑗−𝑘(𝜉) + 𝛩𝑖𝑗     (j = 1, 2, 3);  

𝑅𝑖𝑗 = ∑ 𝑓𝑖0𝑘(𝑥𝑖)𝑢𝑗−𝑘(𝑥𝑖) +

𝑗

𝑘=1

 

+∑ ∫ 𝐾𝑖𝑘
𝑥𝑖

0

𝑗
𝑘=1 (𝑥𝑖 ,  𝜉)𝑢𝑗−𝑘(𝜉)𝑑𝜉    (j = 4, 5, ...). 

Here 

𝛩𝑖𝑙 = ∑ 𝑊𝑖0
(𝑘)

𝜆2𝑙 ∑𝑓𝑖, 4−𝑗, 𝑙

𝑘

𝑗=0

3

𝑘=0

(𝑥𝑖)
𝑥𝑖

3−𝑗

(3 − 𝑗)!
 

(l = 0, 1, 2, 3).          (8) 

Relationships (7) are Volterra equations of the 

second kind, in the process of solving which we 

determine the functions ui0, ui1, ui2, ... . 

To find the responses of the function ui(λ, xi) to 

unit jumps in Wi0
(k) (k = 0, 1, 2, 3), when solving 

equations (7), only the term of expression (8) 

containing the derivative of the function Wi(xi) of the 

corresponding order at the point with coordinate xi = 

0 should be taken into account. 

Analyzing the process of sequential 

determination of the functions ui0, ui1, ui2, ... using 

equations (7), we can see that the series (6) does not 

always converge. For certain values of the functions 

fijk (j = 1, 2, 3, 4; k = 0, 1, 2, 3) and a sufficiently large 

value of the modulus of the parameter λ, the terms of 

this series increase with the increase of the ordinal 

number. 

Let us determine the conditions under which the 

infinite sum (6) has a limit. Suppose that for 0 ≤ xi ≤  
li there exist the following limits on the absolute 

values of the functions: 

|𝑓𝑖01| ≤ 𝛼𝑖;       |𝐾𝑖𝑗| ≤ 𝛽𝑖𝑗 ;      |𝑢𝑖𝑗| ≤ 𝛾𝑖𝑗; 

|𝑓𝑖, 𝑘, 𝑗+1
∗ | ≤ 𝛿𝑖, 𝑘, 𝑗+1     (j = 0, 1, 2, 3).     (9) 

Here 

𝑓𝑖, 𝑘, 𝑗+1
∗ = ∑ 𝑓𝑖, 4−𝑙, 𝑗−2(𝑥𝑖)

𝑥𝑖
3−𝑙

(3 − 𝑙)!

𝑘

𝑙=0

 

(k = 0, 1, 2, 3).  

Applying equation (7) and ratio (9), we obtain: 

𝛾𝑖0 ≤ 𝜁𝑖𝛿𝑖𝑘1; 

𝛾𝑖1 ≤ 𝜁𝑖[𝛾𝑖0(𝛼𝑖 + 𝛽𝑖1𝑙𝑖) + 𝛿𝑖𝑘2]; 
𝛾𝑖2 ≤ 𝜁𝑖[𝛾𝑖1(𝛼𝑖 + 𝛽𝑖1𝑙𝑖) + 𝛾𝑖0𝛽𝑖2𝑙𝑖 + 𝛿𝑖𝑘3]; 
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𝛾𝑖3 ≤ 𝜁𝑖[𝛾𝑖2(𝛼𝑖 + 𝛽𝑖1𝑙𝑖) + 𝛾𝑖1𝛽𝑖2𝑙𝑖 + 𝛾𝑖0𝛽𝑖3𝑙𝑖
+ 𝛿𝑖𝑘4]; 

𝛾𝑖𝑛 ≤ 𝜁𝑖[𝛾𝑖, 𝑛−1(𝛼𝑖 + 𝛽𝑖1𝑙𝑖) + 𝛾𝑖, 𝑛−2𝛽𝑖2𝑙𝑖
+ 𝛾𝑖, 𝑛−3𝛽𝑖3𝑙𝑖] 

(𝑛 = 4, 5,   … ), 

where 

𝜁𝑖 =
1

|1−𝛽𝑖0𝑙𝑖|
 . 

Consider the auxiliary number series 

𝑠0 + 𝜆2𝑠1 + 𝜆4𝑠2 + 𝜆6𝑠3 + ⋯  ,        (10) 

whose members are defined by the relations 

𝑠𝑖0 = 𝜁𝑖𝛿𝑖𝑘1; 

𝑠𝑖1 = 𝜁𝑖[𝑠𝑖0(𝛼𝑖 + 𝛽𝑖1𝑙𝑖) + 𝛿𝑖𝑘2]; 
𝑠𝑖2 = 𝜁𝑖[𝑠𝑖1(𝛼𝑖 + 𝛽𝑖1𝑙𝑖) + 𝑠𝑖0𝛽𝑖2 + 𝛿𝑖𝑘3]; 

𝑠𝑖3 = 𝜁𝑖[𝑠𝑖2(𝛼𝑖 + 𝛽𝑖1𝑙𝑖) + 𝑠𝑖1𝛽𝑖2 + 𝑠𝑖0𝛽𝑖3 + 𝛿𝑖𝑘4]; 

𝑠𝑖𝑛 = 𝜁𝑖[𝑠𝑖, 𝑛−1(𝛼𝑖 + 𝛽𝑖1𝑙𝑖) + 𝑠𝑖, 𝑛−2𝛽𝑖2

+ 𝑠𝑖, 𝑛−3𝛽𝑖3] 
(𝑛 = 4,  5,   … ). 

As can be seen from the last expressions, if the 

following conditions are met 

𝛿𝑖𝑘1 >
|𝜆2|

1−𝜁𝑖𝛼𝑖|𝜆
2|

(𝜁𝑖𝛽𝑖1𝛿𝑖𝑘1𝑙𝑖 + 𝛿𝑖𝑘2); 

𝛿𝑖𝑘2 > (𝑙𝑖𝛾𝑖0𝛽𝑖2 + 𝛿𝑖𝑘3)|𝜆
2|; 

𝛿𝑖𝑘3 > (𝛾𝑖0𝛽𝑖3 + 𝛿𝑖𝑘4)|𝜆
2|               (11) 

inequality is satisfied 

𝑠𝑛+1𝜆
2 < 𝑠𝑛  (𝑛 = 1,  2, … ). 

Taking into account the third criterion of series 

convergence and d'Alembert's criterion, the 

condition for the convergence of series (10) is given 

as 

𝜁𝑖[(𝛼𝑖 + 𝑙𝑖𝛽𝑖1) + 𝑙𝑖𝛽𝑖2𝜆
2 + 𝑙𝑖𝛽𝑖3𝜆

4] ⋅ |𝜆2| < 1. (12) 

Since there is a correlation between 

|𝑢𝑖𝑗| ≤ 𝛾𝑖𝑗 ≤ 𝑠𝑖𝑗     (𝑗 = 0,  1,  2,  3, … ), 

then, in the case of convergence of series (10), series 

(6) is major for any value of the parameter λ that 

satisfies relations (11), (12). 

The need to meet these conditions limits the 

value of the oscillation frequency at which this 

calculation method can be used in practice. 

However, it can be successfully used to analyze low-

frequency oscillations of the system, which are 

usually of the greatest practical interest. When 

studying free oscillations, relations (11), (12) mostly 

make it possible to determine several lower natural 

frequencies and shapes of a mechanical system. 

Thus, the function ui(λ, xi) can be represented as 

𝑢𝑖(𝜆, 𝑥𝑖) = 𝑊𝑖0𝑢𝑖1
∗ + 𝑊𝑖0

′ 𝑢𝑖2
∗ + 𝑊𝑖0

′′ 𝑢𝑖3
∗ + 𝑊𝑖0

′′′𝑢𝑖4
∗  , 

(13) 

where uik
* (λ, xi) (k = 1, 2, 3, 4) are solutions of 

equations (5) obtained with respect to relation (8). 

Determining the functions Wi
k(xi) (k = 0, 1, 2, 3) 

by successive integration of expression (13) makes it 

possible to construct the fundamental matrix for 

equation (4). 

 

4. BOUNDARY CONDITIONS. 

APPLICATION OF THE MATRIX 

METHOD OF INITIAL PARAMETERS 

 

The amplitude values of the bending moment and 

transverse force are defined as 

𝑀̄𝑖 = −𝐸𝐼𝑖𝛷𝑖
′;𝑄̄𝑖 = 𝜅𝑖𝐺𝐴𝑖(𝑊𝑖

′ − 𝛷𝑖)  . (14) 

In accordance with [29], the amplitude value of 

the horizontal component of the internal force will 

be 

𝑉̄𝑖 = 𝑄̄𝑖 − 𝑁̄𝑖𝑊𝑖
′ .                 (15) 

Applying the fundamental Cauchy system 

obtained for the differential equation (4), as well as 

relations (3), (14), (15), we obtain the relationship 

between displacements and internal forces at the 

ends of the structure span 

𝑌𝑖(𝑙𝑖) = 𝐹𝑖
∗(𝑙𝑖)𝑌𝑖(0) (𝑖 = 1,  2, … ,  𝑛 − 1),    

(16) 

where 

𝐹𝑖
∗(𝑙𝑖) = 𝐴1𝑖𝐹

∗∗(𝑙𝑖)𝐴2𝑖;                (17) 

𝑌𝑖(𝑥𝑖) = col[𝑊𝑖(𝑥𝑖), 𝛷𝑖(𝑥𝑖), 𝑀̄𝑖(𝑥𝑖), 𝑉̄𝑖(𝑥𝑖)] 
(𝑥𝑖 = 0, 𝑙𝑖).                        (18) 

Here, Fi
(**) is the fundamental matrix; A1i and A2i 

are the matrices of the connection of Wi
(k) (k = 1, 2, 

3, 4) with the elements of the column matrix (18). 

The square matrices A1i and A2i are defined by the 

expressions 

𝐴1𝑖 =

[
 
 
 
 
 

1 0 0 0

−
𝛹1𝑖

𝛺𝑖
∗ −

𝛹4𝑖

𝛺𝑖
∗

𝛹5𝑖

𝛺𝑖
∗

𝐸𝐼𝑖𝑟𝑖

𝛺𝑖
∗

𝛹2𝑖

𝑠𝑖
2 0 −

𝐸𝐼𝑖𝑟𝑖

𝑠𝑖
2 0

𝛹1𝑖

𝛺𝑖

𝛹6𝑖

𝛺𝑖
−

𝛹5𝑖

𝛺𝑖
−

𝐸𝐼𝑖𝑟𝑖

𝛺𝑖 ]
 
 
 
 
 

; (19) 

 

𝐴2𝑖 =

[
 
 
 

1 0 0 0
0 𝑠𝑖

2𝑟𝑖
−1 0 𝑟𝑖

−1

𝜌𝑖𝐴𝑖𝑟𝑖
−1𝜆2 0 −𝑠𝑖

2𝜂𝑖 0

𝛹7𝑖𝑟𝑖
−2 𝛹8𝑖𝑟𝑖

−1 𝛹9𝑖𝐼𝑖
−1𝑟𝑖

−1 𝛹4𝑖𝑟𝑖
−1𝜂𝑖]

 
 
 

, (20) 

where 

𝛺𝑖 = 𝑠𝑖
2 + 𝐼𝑖𝜌𝑖𝜆

2;  𝛺1𝑖
∗ = 𝑠𝑖

2𝛺𝑖;  𝜂𝑖 = (𝐸𝐼𝑖𝑟𝑖)
−1; 

𝛹1𝑖 = 𝐸𝐴𝑖𝜗𝑖𝜆
2;  𝛹2𝑖 = 𝐸𝐼𝑖𝜌𝑖𝐴𝑖𝜆

2; 
𝛹3𝑖 = 𝐼𝑖𝜌𝑖𝑠𝑖

2𝜆2;  𝛹4𝑖 = 𝛹2𝑖 − 𝑠𝑖
4; 

𝛹5𝑖 = 𝐸(𝑟𝑖𝐼𝑖
′ − 𝑁𝑖

′𝐼𝑖);  𝛹6𝑖 = 𝛹2𝑖 + 𝛹3𝑖 − 𝑁𝑖𝛺𝑖; 

𝛹7𝑖 = (𝜌𝑖𝑁𝑖
−1 + 𝑟𝑖𝜌𝑖

′)𝐴𝑖𝜆
2;  𝛹8𝑖

= 𝜂𝑖𝑠𝑖
2(𝑟𝑖𝛺𝑖 + 𝛹4𝑖); 

𝛹9𝑖 = 𝜂𝑖𝑠𝑖
2(𝑟𝑖𝐼𝑖

′ − 𝑁𝑖
′𝐼𝑖). 

Imaginatively extending the structure by one 

span down and one span up, we write down the 

conditions of conjugation of adjacent spans of the 

tower and the boundary conditions at its ends in the 

form 

𝑊𝑖(0) = 𝑊𝑖−1(𝑙𝑖−1);  𝛷𝑖(0) = 𝛷𝑖−1(𝑙𝑖−1); 

𝑀̄𝑖(0) = 𝑀̄𝑖−1(𝑙𝑖−1) − (𝐽𝑖𝜆
2 + 𝜈𝜑𝑖𝜆 + 𝑐𝜑𝑖)𝛷𝑖(0); 

𝑉̄𝑖(0) = 𝑉̄𝑖−1(𝑙𝑖−1) + (𝑚𝑖𝜆
2 + 𝜈𝑤𝑖𝜆 + 𝑐𝑤𝑖)𝑊𝑖(0);  

(21)  

𝑖 = 1,  2, … ,  𝑛; 
𝑀̄0(𝑙0) = 0; 𝑉̄0(𝑙0) = 0; 

𝑀̄𝑛(0) = 0; 𝑉̄𝑛(0) = 0.              (22) 

Here, W0(l0), Φ0(l0), M̅0(l0), V̅0(l0) and Wn(0), 

Φn(0), M̅n(0), V̅n(0) are the values of deflection, the 

angle of inclination of the tangent to the bent axis of 

the structure under the action of bending moments, 

bending moment and horizontal force at the lower 

and upper ends of the structure, respectively. 
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From relations (16), (21), we obtain the 

following dependence: 

𝑌𝑛(0) = 𝛹𝑌0(𝑙0),                   (23) 

where Yn(0) and Y0(l0) are column matrices defined 

according to expression (18); Ψ is the matrix 

𝛹 = 𝐵𝑛 ∏ 𝐹𝑗
∗𝐵𝑗

1
𝑗=𝑛−1 .                  (24)  

The matrices Bi (i = 1, 2, ..., n) included in 

formula (24) have the form 

 𝐵𝑖 = [

1 0 0 0
0 1 0 0
0 𝑏𝑖 1 0
𝑎𝑖 0 0 1

],                   (25) 

where 

𝑎𝑖 = 𝑚𝑖𝜆
2 + 𝜈wi𝜆 + 𝑐wi, .     𝑏𝑖 = 𝐽𝑖𝜆

2 − 𝜈𝜑𝑖𝜆 − с𝜑𝑖 

Fi
* (i = 1, 2, ..., n) are matrices determined by formula 

(17), taking into account relations (19), (20). 

 

5. ALGORITHM OF MODAL ANALYSIS OF 

THE DRILL TOWER 

 

The natural frequencies of the mechanical system 

are determined in the following sequence. First, we 

form matrices (17) and (25). When determining the 

series that are the elements of matrix (17), it is 

advisable to calculate a certain number of their initial 

terms and present the constant coefficients in 

numerical form. Then we find matrix (24), whose 

elements will also be power series. According to the 

boundary conditions (22) and expression (23), the 

frequency equation is obtained by equating to zero 

the determinant composed of the elements of the 

third and fourth rows, the first and second columns 

of matrix (24). The coefficients of the characteristic 

polynomial are real numbers. Therefore, in general, 

its roots will be pairs of conjugate complex 

quantities, the imaginary parts of which will 

determine the cyclic frequencies of free oscillations 

of the system. 

It should be noted that if the structure is pinched 

at the base, expression (24) retains its previous form. 

In this case, the coefficients a1 and b1 included in 

matrix (25) should be assumed to be zero. The 

boundary conditions for the anchoring of the lower 

end are determined by the relations 

𝑊0(𝑙0) = 0; 𝛷0(𝑙0) = 0. 

In this case, we use the elements of the third and 

fourth rows, third and fourth columns of the square 

matrix (24) to create the frequency equation. 

The amplitude functions of the composite rod 

runs will be the first lines of the matrix relations 

𝑌𝑖(𝑥𝑖) = 𝐹𝑖
∗(𝑥𝑖)𝑌𝑖(0)    (𝑖 = 1,  2, … ,  𝑛 − 1 ).  

(26) 

The initial parameters for each of the runs are 

found using expressions (16), (21). First, we 

determine the complex quantities W0(l0) and Φ0(l0) 

with an accuracy of a constant factor. To do this, we 

use the equation obtained by equating the real and 

imaginary parts of the third and fourth lines of matrix 

equality (23) to zero. To find each of the forms of 

oscillations, it is necessary to simultaneously take 

into account the amplitude functions corresponding 

to two conjugate complex eigenvalues. 

As can be seen from expression (6), the values of 

the function ui(λ,xi) for the specified pair of roots of 

the characteristic equation are also conjugate 

complex values. Consequently, the corresponding 

values of the functions Wi(xi), Φi(xi), M̅i(xi), V̅i(xi) 

will also be conjugate. The free oscillation forms are 

real functions of the longitudinal coordinate. 

The presented method of analyzing dynamic 

phenomena is oriented to the use of modern 

computers. In the course of calculations, it becomes 

necessary to repeatedly solve identical integral 

equations (7), perform numerous operations with 

matrices, solve linear algebra problems, find 

complex roots of characteristic equations, etc. This 

requires the creation of efficient algorithms for 

computing processes. The authors of this article have 

developed software for performing calculations of 

multi-span drill towers for free and harmonic forced 

oscillations. The computer program is compiled in a 

general form and can be used to determine the 

natural frequencies and forms of free oscillations, as 

well as the amplitudes of forced oscillations of tower 

drilling towers with an arbitrary number of spans. 

The Volterra integral equations of the second kind 

are solved by the method of successive 

approximations. Studies have shown that the 

iterative processes performed in this case have good 

convergence. 

The following section presents the results of 

calculating the free oscillation frequencies and 

amplitudes of forced oscillations of a tower-type 

drilling tower. A significant part of the developed 

program, designed to generate transition matrices for 

longitudinal spans with variable parameters along 

the length, can be used in studies of the dynamics of 

more complex structures of high-rise structures. 

 

6. INFLUENCE OF STRUCTURE 

PARAMETERS ON FREE OSCILLATION 

CHARACTERISTICS 

 

When designing drilling towers, there is a need 

to conduct a comprehensive analysis of the impact of 

the inertial and stiffness parameters of the composite 

structure on the frequencies and shapes of its free 

oscillations. Determining the characteristics of the 

frequency spectrum makes it possible to avoid 

resonance phenomena during the operation of 

drilling rigs. Finding the eigenforms facilitates the 

study of forced harmonic oscillations of the system 

by decomposing the waveforms into eigenfunctions. 

The characteristics of dynamic processes are also 

useful for calculating the endurance of structural 

elements. 

As an example of the practical application of the 

proposed method for analyzing transverse 

oscillations of high-rise structures with variable 

parameters along their length, consider the results of 

determining the natural frequencies and oscillation 

forms of the drilling tower VB 53 × 300.  
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First, let's consider the simplest case, when the 

structure is installed on an elastic base and fixed with 

braces attached to the upper section of the tower. In 

this case, the design scheme of the structure can be 

represented as a single-span rod. The initial data for 

the calculation in the previously adopted notation are 

given in Table 1. The values of some of these 

quantities varied within the specified limits.  The 

moment of inertia of the tower cross section was 

determined by the formula 

𝐼1 = (0.738 − 2.217 ⋅ 10−2𝑥1 + 1.664
⋅ 10−4𝑥1

2) 𝑚4. 
 

Table 1 Parameters of the drill tower with one tier of braces 

Param

eter 

Units of 

measure

ment 

Numerical 

value 

Param

eter 

Units of 

measurem

ent 

Numeri

cal 

value 

E MPa 2.1·105 J2 kg·m2 2.2·103 

G MPa 8.1·104 cw1 N/m 1.2·109 

L1 M 53.29 cw2 N/m 8.2·105 

x1 - 0.35 cφ1 N·m/rad 2.6·109 

F1 m2 2.95·10-2 cφ2 N·m/rad 6.6·105 

ρ1 kg/m3 2.04·104 νw1 N·s/m 5.1·105 

m1 kg 5.5·104 νw2 N·s/m 0 

m2 kg 2.0·103 νφ1 N·m·s/rad 9.4·106 

J1 kg·m2 8.5·104 νφ2 N·m·s/rad 0 

 

Fig. 2 shows the graphs of the first (1), second 

(2), and third (3) natural frequencies of the drill 

tower obtained in the absence of longitudinal load on 

the structure. The dependences show that transverse 

forces have little effect on the value of the first free 

oscillation frequency. As the frequency number 

increases, the influence of shear deformations 

increases significantly. Thus, when the coefficient 

κ1, which takes into account these deformations, 

changes from 0.1 to 1, the first free oscillation 

frequency increases by 5.6%, the second by 39.5%, 

and the third by 79.3%. 

 
Fig. 2. Dependence of oscillation frequencies on the 

coefficient characterizing the effect of shear strain 

 

The graphs in Figs. 3 and 4, illustrate the effect 

of the longitudinal force and stiffness of the braces 

on the first (curves 1) and second (curves 2) natural 

frequencies of the tower. The dependences in Fig. 3 

are obtained under the assumption of constant axial 

force along the length of the structure. They show 

that the static longitudinal loads to which the drill 

tower is subjected in the operating state have 

virtually no effect on the natural frequencies of the 

mechanical system. The dependences in Fig. 4, 

calculated for P1 = 0 and cφ2 = 0, indicate that the 

stiffness of the braces largely determines the first 

frequency of free oscillations. The value of this 

parameter at higher frequencies is reflected less 

significantly. 

 
Fig. 3. Dependence of free oscillation frequencies on the 

function of axial force 

 
Fig. 4.  Dependence of free oscillation frequencies on the 

stiffness of the braces 

 

To evaluate the effect of the base stiffness on the 

frequency characteristics of the system, the results of 

the calculations performed earlier were compared 

with the results obtained after replacing the elastic 

base with a сlamping base (Table 2).  

 
Table 2 Free oscillation frequencies of the drill tower 

The value 

of the 

coefficient 

κ1 

Method of fixing the tower to the 

base 

Elastic support Clamping 

Oscillation frequency, Hz 

1 2 1 2 

0.20 1.615 6.521 2.304 7.129 

0.35 1.637 7.093 2.421 8.271 

0.50 1.646 7.352 2.474 8.899 

1.00 1.657 7.769 2.541 9.820 

 

It was assumed that there was no static 

longitudinal loading of the tower. As can be seen 

from the above results, a change in the stiffness of 

the base has a greater effect on the lower frequency 
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value and a less significant effect on the higher 

frequency value. As the stiffness of the foundation 

increases, the effect of shear deformation on the free 

oscillation frequencies of the structure increases. 

Here is an example of a modal analysis of a high-

rise structure considered as a two-bay rod of the 

Timoshenko beam type. We come to this design 

scheme when determining the natural frequencies 

and oscillation shapes of a tower with two tiers of 

bracing. Table 3 shows the mechanical 

characteristics of the structure, which serve as the 

initial data for the calculation. 

 
Table 3 Parameters of the drill tower with two tiers of braces 

P
ar

am
et

er
 

Units 

of 

measurem

ent 

Numerical 

value 

P
ar

am
et

er
 

Units of 

measurem

ent 

Numeric

al value 

E MPa 2.1·105 J2 kg·m2 5000 

G MPa 8.1·104 J3 kg·m2 2000 

l1 m 35.06 cw2 N/m 8.2·105 

l2 M 18.23 cw3 N/m 8.2·105 

κ1 - 0.35 cφ2 N·m/rad 6.6·105 

κ2 - 0.35 cφ3 N·m/rad 6.6·105 

A1 m2 2.952·10-2 νw2 N·s/m 0 

A2 m2 2.952·10-2 νw3 N·s/m 0 

ρ1 kg/m3 2.038·104 νφ2 N·m·s/rad 0 

ρ2 kg/m3 2.038·104 νφ3 N·m·s/rad 0 

m3 kg 2008    

 

We solve the problem taking into account the 

mass of the drill string candles installed in the 

candlestick. The mass distributed along the length of 

the candle package is reduced to the junction of the 

adjacent tower spans. We do not take into account 

the yielding of the foundation during the calculation. 

We also assume that the longitudinal force on each 

of the spans is zero. The expressions of the moments 

of inertia of the cross-section of the structure for the 

first and second spans are written in the form 

𝐼1 = (0.738 − 2.217 ⋅ 10−2𝑥1 + 1.664

⋅ 10−4𝑥1
2)𝑚4; 

𝐼2 = (0.165 − 1.05 ⋅ 10−2𝑥2 + 1.164

⋅ 10−4𝑥2
2)𝑚4. 

The results of determining the two lowest natural 

frequencies of the structure in the form of graphical 

dependences of these frequencies on the combined 

mass of the candle package are shown in Fig. 5. As 

can be seen from the results, the mass of the candles 

installed in the candlestick significantly affects the 

natural frequencies of the mechanical system. 

The most intense loads that excite transverse 

oscillations of the tower during well deepening 

include the forces of interaction between the bent 

drillpipe string and the rotor table. The frequency of 

the first harmonic of these loads coincides with the 

rotation frequency of the string; the frequency of the 

second harmonic is a multiple of the first frequency 

and the number of bit cutters. In many cases, high-

rise structures of this type are equipped with drilling 

rigs, the rotor table rotation frequency of which 

varies in the range of 0.33...3.87 s-1 or 0.33...2.7 s-1. 

Comparison of these frequency ranges with the 

results of determining the tower's natural frequencies 

presented in Figs. 2-4 and Table 2 shows that in the 

process of deepening the well, the possibility of 

resonance phenomena at the main natural frequency 

of the mechanical system is not excluded. 

 
Fig. 5. Dependence of free oscillation frequencies  

on the combined weight of drillpipes 

 

The conducted studies confirm the need to 

perform dynamic calculations of drilling towers at 

the stages of their design and operation. Varying the 

inertial and rigid characteristics of drill towers 

makes it possible to change the values of the natural 

frequencies of the bearing system within a wide 

range. This contributes to the creation of support 

structures with optimal parameters, ensuring 

increased reliability and durability of drilling rigs. 

 

7. OSCILLATIONS OF A HIGH-RISE 

BUILDING UNDER THE INFLUENCE OF 

DYNAMIC LOADS ON THE BASE 

 

When performing various technological 

operations related to well deepening, dynamic forces 

from the winch, rotor, and other mechanisms are 

transmitted to the tower base elements. Under the 

influence of these loads, the base and the tower 

perform joint oscillations. The analysis of these 

phenomena during the design of drilling rigs helps to 

select the rational parameters of support structures. 

Consider the stationary oscillations of a structure 

that includes a tower-type structure. Let us assume 

that the rotor is subjected to horizontal forces from a 

curved drill string, the upper end of which rotates 

with some eccentricity. These loads act in the plane 

of the platform and do not cause significant 

deformations of the upper part of the base. To a first 

approximation, the platform and the associated base 

elements can be treated as a solid body. This 

example will illustrate the main features of 

calculating the forced transverse oscillations of a 

drilling tower. 

The design scheme of the mechanical system of 

the structure is shown in Fig. 1. The transverse 



DIAGNOSTYKA, Vol. 26, No. 2 (2025) 

Kharchenko Y, Bilovus A.: Analysis of transverse oscillations of drilling rig derrick as Timoshenko beam... 

 

11 

oscillations of the structure are described by partial 

differential equations (1). 

The horizontal force acting on the base platform 

during well deepening is represented by a harmonic 

function 

𝑇(𝑡) = 𝑇0 𝑐𝑜𝑠 𝜔 𝑡, 

where T0 is the amplitude value of the force; ω is the 

circular frequency; t is time. 

We find a partial solution to the problem using 

the method of complex amplitudes. To do this, we 

express the dependence of the excitation force on 

time in a complex form 

𝑇(𝑡) = 𝑇0𝑒
𝜆𝑡 

Here e is the base of the natural logarithm; λ is 

the value defined by the expression 

𝜆 = 𝑖𝜔 

where i is an imaginary unit. 

As before, the integrals of equations (1) are found 

in the form (2). The equations of the amplitude 

functions (4) are obtained by separating the variables 

in expressions (1), which leads to the integral 

equations (5). If the value of λ is known, equation (5) 

is a Volterra equation of the second kind, which can 

be solved by the method of successive 

approximations. However, in order to analyze the 

amplitude-frequency characteristics of the system, it 

is advisable to find the solutions of this equation in 

the form of a dependence on the parameter λ. To do 

this, we can use the representation of the unknown 

function ui(λ,xi) in the form (6). Then the 

fundamental Cauchy system can be easily 

determined by the method discussed earlier. The 

relationship between the geometric and force 

parameters at the ends of the structure span is 

expressed by the relation (16). 

The conditions for conjugation of neighboring 

runs, taking into account the reduction of time-

dependent terms, are written in the form 

𝑊𝑖(0) = 𝑊𝑖−1(𝑙𝑖−1); 𝛷𝑖(0) = 𝛷𝑖−1(𝑙𝑖−1); 

𝑀𝑖(0) = 𝑀𝑖−1(𝑙𝑖−1) − (𝐽𝑖𝜆
2 + 𝜈𝜑𝑖𝜆 + 𝑐𝜑𝑖)𝛷𝑖(0) 

(i = 1, 2, ..., n); 

𝑄1
(0) = 𝑄0

(𝑙0) + (𝑚1𝜆
2 + 𝜈𝑤1𝜆 + 𝑐𝑤1)𝑊1(0) −

𝑇0; 

𝑄𝑗
(0) = 𝑄𝑗−1(𝑙𝑗−1) + (𝑚𝑗𝜆

2 + 𝜈𝑤𝑗𝜆 + 𝑐𝑤𝑗)𝑊𝑗(0) 

(j = 2, 3, ..., n).                      (27) 

In this case, the boundary conditions at the ends 

of the structure are determined by relations (22). 

Applying expressions (16) and relation (27), we 

obtain the matrix dependence 

𝑌(0) = 𝛹1𝑌0(𝑙0) + 𝛹2𝑇
∗,             (28) 

where Y0(l0) and Yn(0) are column matrices of the 

form (18); Т* is a column matrix 

𝑇∗ = col(0,0,0; 𝑇0); 

Ψ1 and Ψ2 are square matrices 

  𝛹1 = 𝛹2𝐵1;  𝛹2 = 𝐵𝑛(∏ 𝐹𝑗
∗𝐵𝑗

2
𝑗=𝑛−1 )𝐹1

∗ . (29) 

 The matrices Fj
* (j = 1, 2, ..., n - 1) and B(j) (j = 

1, 2, ..., n) included in expressions (29) are defined 

by relations (17) and (25). 

Dependence (28), taking into account the 

boundary conditions (22), forms a heterogeneous 

system of algebraic equations with unknowns W0(l0), 

Φ0(l0), Wn(0), Φn(0). Having found the solution to 

this system, we determine the matrix-columns (18). 

Using the vector Y0(l0), we calculate the initial 

parameters of each span of the structure using 

expressions (16) and (27). 

The amplitude functions of deflection, cross-

sectional angle of rotation, bending moment, and 

transverse force are determined by matrix equality 

(26). To find the real values of displacements and 

internal forces at an arbitrary moment in time, the 

corresponding amplitude functions should be 

multiplied by the expression exp(λt). The real parts 

of the obtained values are the corresponding physical 

quantities. 

From the above, it can be seen that the algorithms 

for calculating free and stationary forced transverse 

oscillations of a structure largely coincide. This 

feature of the proposed calculation method facilitates 

its use in engineering practice. 

 

8. CONCLUSIONS 

 

1. A mathematical model of free and forced 

harmonic oscillations of a drill tower as a multi-

span Timoshenko beam with bending stiffness, 

running mass, and axial force variable along the 

length is developed. Variable parameters may 

include the elastic moduli of the material and a 

coefficient that takes into account the beam's 

shear flexibility. After separating the variables in 

the equation with partial derivatives and variable 

coefficients that describe the motion of the high-

rise structure, a differential equation of amplitude 

functions is obtained, which is reduced to an 

integral equation, the solutions of which are 

obtained numerically in the form of a power 

series with respect to the frequency parameter. 

Sufficient conditions for the convergence of the 

mentioned series are obtained. 

2. Using the matrix initial parameters method, 

algorithms for calculating free and forced 

transverse oscillations of a tower are constructed. 

The influence of shear deformations on the 

values of the three lower natural frequencies of 

the mechanical system is investigated. It was 

found that transverse forces have little effect on 

the value of the first natural frequency. With the 

increase of the frequency number, the effect of 

shear deformations on the frequency value 

increases significantly. In the considered 

example, due to the increase in the coefficient κ1 

from 0.1 to 1, the first, second, and third natural 

frequencies of the structure increase by 5.6%, 

39.5%, and 79.3%, respectively. 

Studies have shown that the static axial load 

acting on the drill tower during well drilling has 

virtually no effect on the values of several lower 

natural frequencies, which indicates that the 

bending stiffness of the high-rise structure is 

sufficient. An increase in the stiffness of the 

braces causes an increase in the values of the free 
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frequencies of the drill tower. Moreover, the 

latter factor has a greater impact on the lowest 

natural frequency of the structure. With an 

increase in the frequency number, this influence 

decreases. 

3. In the process of performing the technical 

operation of deepening a well, the drill tower not 

only holds the drill pipe string that drives the 

drilling tool in rotation, but also supports the 

package of drill pipe candles installed in the 

candlestick. This significantly increases the 

inertia of the elastic mechanical system, which 

has a significant impact on its own frequency 

spectrum. 

The most intense loads that excite transverse 

oscillations of the drill tower include the forces 

of interaction between the bent drill pipe string 

and the rotor table. The frequency of the first 

harmonic of these loads coincides with the 

rotation frequency of the pipe string, and the 

second harmonic is a multiple of the specified 

frequency and the number of bit cutters. 

Comparison of the excitation frequencies of 

oscillations with the natural frequency ranges of 

the drill tower indicates that resonance 

phenomena may occur during the process of 

deepening the well, the elimination of which is a 

necessary condition for ensuring the fatigue 

strength of the drill pipe string and the fasteners 

connecting the rotor to the drill tower. 

The solution of the problem formulated in the 

article, as well as the established physical 

relations, are of significant importance in the 

field of technical diagnostics of drilling towers. 
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