
Article citation info:  
Badeli M, Kara D. Spectral feature - based neural classification for efficient bearing aging assessment in electric motors. Diagnostyka. 

2025;26(2):2026212. https://doi.org/10.29354/diag/205303.  

1 

1 

  

DIAGNOSTYKA, 2025, Vol. 26, No. 2 
e-ISSN 2449-5220 

DOI: 10.29354/diag/205303  

 

 

SPECTRAL FEATURE - BASED NEURAL CLASSIFICATION FOR EFFICIENT 

BEARING AGING ASSESSMENT IN ELECTRIC MOTORS 
 

Mina Ghorban Zadeh Badeli , Duygu BAYRAM KARA *  

1 Istanbul Technical University, Electrical and Electronics Fac., Electrical Eng. 34469, Maslak/Istanbul, Turkey 
* Corresponding author, e-mail: bayramd@itu.edu.tr  

 

Abstract  

This study proposes a novel methodology for classifying bearing aging stages in induction motors by 

leveraging a compact and effective set of spectral features. Two advanced neural network classifiers - a Pattern 

Recognition Neural Network (PRNN) trained with the Levenberg-Marquardt algorithm and a Feedforward 

Neural Network (FFNN) optimized with the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 

algorithm - were compared. Experimental results demonstrate the FFNN's superior accuracy and robustness in 

classifying eight distinct aging grades. 

The primary innovation of this study lies in the use of five key spectral features extracted from the critical 

2-4 kHz frequency band. This feature set significantly reduces dimensionality while preserving the descriptive 

features needed to characterize the aging process, enabling efficient and precise diagnostics. By employing this 

approach, the methodology not only enhances computational efficiency but also facilitates seamless integration 

into real-world fault detection and maintenance systems. 

Beyond fault detection, this work establishes a foundation for accurately determining bearing aging stages, 

creating opportunities to estimate bearing lifespan more precisely. By providing actionable insights into the 

aging process, it enables proactive maintenance strategies that reduce downtime and operational costs while 

enhancing machinery reliability. Future applications may extend this methodology to broader predictive 

maintenance frameworks and condition assessment tasks across various industrial domains.  
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1. INTRODUCTION 

 

Bearing faults are prevalent and often 

unavoidable in electric motors, particularly in IMs, 

which dominate the industrial sector [1,2]. 

Approximately 40% to 50% of the faults that occur 

in IMs are attributed to bearing defects [3]. To 

extract critical features related to bearing faults from 

vibration signals, various signal-based techniques 

have been developed [4–6]. Among them, recent 

approaches such as stochastic resonance-based 

noise-enhanced filtering have also been proposed to 

highlight weak fault signatures in vibration signals 

[7]. Since bearing faults are located in higher 

frequency ranges of the vibration spectrum, multi-

resolution wavelet analysis (MRWA) plays a crucial 

role in condition monitoring (CM) and fault 

detection (FD) applications due to its function as a 

digital filter [8,9]. Furthermore, the aging severity of 

an IM can also be determined through vibration 

signal analysis and bearing health monitoring. Two 

methods for estimating aging grade: first is 

predicting the remaining useful lifetime with a large 

https://doi.org/10.29354/diag/205303
mailto:bayramd@itu.edu.tr
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1855-9278
https://orcid.org/0000-0001-8184-8510


DIAGNOSTYKA, Vol. 26, No. 2 (2025)  

Badeli M, Kara D. Spectral feature - based neural classification for efficient bearing aging assessment… 

2 

dataset, second is estimating system age with well-

organized dataset and classification algorithm [10]. 

Over time, advanced methods like artificial 

neural networks have outperformed traditional 

techniques for evaluating aging in machines. 

Artificial Neural Netwotks (ANNs) are commonly 

used for fault classification in IMs, trained on 

statistical features from normal and faulty conditions 

to detect changes in vibration signals [11–13]. 

Research has explored both shallow and deep neural 

networks for bearing FD in IM [14–20]. 

In recent decades, the focus has shifted toward 

deeper networks to evaluate their performance and 

compare their results with classical applications 

[21]. According to the reference, [22], Deep Neural 

Netwotks (DNNs) have proven to be more effective 

in various applications due to advanced training 

algorithms that enhance training processes for faster 

speeds, better convergence, and improved 

generalization. For instance, Convolutional Neural 

Networks (CNNs) have been successfully used to 

classify bearing faults in machinery, outperforming 

traditional classifiers by learning multiple nonlinear 

transformations through hidden layers to identify 

key variations in industrial datasets [14,16,23], [24]. 

Feature selection is essential for classification 

problems, optimizing performance, and reducing 

computational effort to shorten learning time in 

classifiers [25]. Various methods are available, with 

statistical parameters commonly used for vibration 

signal analysis [13,26–32]  Spectral features, 

however, are more effective at detecting bearing 

faults in higher frequency ranges [33–36]. Also, 

recent studies have shown that time-frequency 

domain features improve classifier performance, but 

also increase dimensionality. Spectral-based 

features are preferred for bearing monitoring over 

time and time-frequency domain features [37,38].  

Furthermore, as shown in Table 1, it is 

noteworthy that most published studies in the 

literature are limited to detecting or classifying 

various bearing faults in IMs. Relatively few studies 

have applied classification algorithms for bearing 

aging. While, none of those have focused on the 

grading of the aging level of the system. 

This study aims to classify an IM’s aging 

condition based on bearing fault information 

extracted from experimental vibration data. The 

ultimate goal is to enable precise motor performance 

assessment and to recommend life-extending 

precautions before any irreversible damage occurs. 

Two different neural classifiers are compared in 

terms of their reliability and performance in grading 

bearing degradation in an IM. The first classifier is a 

pattern recognition neural network (PRNN) trained 

by the Levenberg-Marquardt (LM) algorithm, and 

the second is a fully connected Feedforward Neural 

Network (FFNN) optimized using the Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) algorithm. To enhance the performance of 

both networks and clearly distinguish bearing fault 

features, Wavelet Decomposition (WD) is applied to 

the experimental vibration data. The focus is on the 

fault-related part of the vibration spectra, with five 

spectral features proposed as inputs for the designed 

classifiers. The results of this study suggest that 

extracting spectral features of a specific frequency 

band is a suitable method for an accurate evaluation 

of bearing condition. Therefore, certain significant 

spectral features, essential for classification 

applications, were employed as a novel combination 

of spectral-based input parameters [39]. This 

approach aims to select discriminative features 

associated with bearing degradation in each aging 

grade. 

 
Table 1. An overview of recent bearing CM, FD, and 

FC studies based on time (TD), frequency (FD), and 

time-frequency domain (TFD) features 

 

 
Concept Method TD FD TFD 

[26] FD 
HMM & 

ANFIS 
+ - - 

[37] CM & FD 
NNC & 

WT  
- - + 

[38] CM & FD MLP - - + 

[27] FD & FC 
MLP & 

ANFIS. 
+ - - 

[28] CM & FD DNNs + - - 

[13] FC 

CNN, 

RF, 

SVM, 

KNN, 

LR 

+ - + 

[32] FD CNN + - - 

[29] FD CNN + - - 

[30] FC 

CNN, 

RF, 

MLP, 

SVM, 

KNN, 

LR 

+ - + 

[31] FD 

DCFS, 

CNN, 

KNN, 

MLP  

+ - - 

 

1.1 Motivation for the study 

This study introduces a novel approach to 

distinguish bearing aging grades using just five 

spectral features, deviating from prior studies 

focusing on fault detection. By utilizing WD, the 

analysis hones in on the bearing fault-related region 

of the spectrum. The streamlined process 

emphasizes spectral characteristics, aiding in the 

early identification of deteriorating bearings for 

improved asset management. The paper outlines the 

methodology, including PRNN and FFNN models 

trained with specific algorithms, experimental 

vibration data analysis with WD, and feature 

selection.  

The LM algorithm, typically utilized to train 

PRNNs, combines speed and convergence in 

training PRNNs. It blends the Gauss-Newton 

algorithm's speed with the steepest descent method's 

stability [40,41].  
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A fully connected FFNN model, utilizing the L-

BFGS algorithm, was used as the second 

classification model in the study. L-BFGS is a 

variant of BFGS that uses recent gradients to 

approximate the inverse Hessian matrix, efficient for 

high-dimensional optimization with reduced 

memory usages [42]. 

 Results show that the FFNN outperforms the 

PRNN in testing accuracy, showcasing the 

effectiveness of the proposed neural classifiers. The 

study's unique contribution lies in its focus on aging 

grading, offering valuable insights for smart 

manufacturing and predictive maintenance strategies 

to enhance machinery efficiency and longevity. 

Compared to previous studies, which primarily 

targeted fault detection using statistical or broad-

spectrum features, the proposed approach introduces 

a focused set of spectral features derived from the 

aging-sensitive 2–4 kHz frequency band. This 

strategy enables accurate bearing aging grading into 

multiple classes using relatively shallow neural 

networks, without requiring large feature sets or 

deep learning architectures. A previous work using 

the same experimental dataset focused on general 

motor condition monitoring based on statistical  [43] 

and hybrid features [44]. In contrast, the current 

study concentrates specifically on bearing aging 

assessment, introducing a reduced and targeted 

spectral feature set to enhance aging sensitivity and 

reduce input redundancy. 

 Thus, the study provides an efficient, 

interpretable, and computationally lightweight 

methodology, filling a significant gap in the 

literature regarding practical bearing aging 

assessment. 

 

2. EXPERIMENTAL DATA & WD-BASED 

FEATURE SELECTION 

 

In this study, experimental data from an 

accelerated aging process was used to collect 

vibration signals from a 5 HP, three-phase, four-pole 

IM. The motor underwent EDM and thermal-

chemical aging operations multiple 

times. References [35,45] offer insight into the 

processes. Data from eight vibration signals 

spanning seven aging cycles and an initial cycle were 

obtained. The IM ran at 1742 rpm with a 60Hz 

supply. Vibration data was recorded for 10 seconds 

at 12 kHz, using a 4 kHz anti-aliasing filter.  

Table 2 shows statistical parameters for healthy 

(Cycle #1) and aged cycles. Table 2 shows the 

maximum value, standard deviation, and variance 

increased as bearings degraded.  

Figure 1 displays time and frequency domain 

representations of initial, fourth, and eighth cycles.  

Vibration spectrum consists of three main areas: 

below rotational frequency (sub-synchronous), up to 

10x rotational frequency (mechanical faults), and 

above 10x frequency (bearing/gear faults) [46]. For 

this experiment, the frequency components for the 

aged cases were significantly amplified between 2 

kHz and 4 kHz, indicating bearing problems [34]. As 

expected, the vibration amplitude also increased 

noticeably with aging in the time-domain analysis. 

These results are consistent and meaningful for both 

time and frequency domain characteristics. 

 
Table 2. Statistical features of all aging cycles 

Aging Cycles Mean Max Std Dev Var 

Cycle #1 0.0016 0.6009 0.1135 0.0129 

Cycle #2 0.0014 0.7988 0.1553 0.0241 

Cycle #3 0.0012 0.9991 0.2082 0.0433 

Cycle #4 0.0013 1.1970 0.2894 0.0837 

Cycle #5 0.0009 1.3240 0.3275 0.1073 

Cycle #6 0.0010 1.5658 0.3548 0.1259 

Cycle #7 0.0005 1.8516 0.4147 0.1720 

 
Fig. 1. Time and frequency domain representations  

for selected cycles 

 

2.1. WD aided Preprocessing and Feature 

Selection 

In order to focus 2-4 kHz region of the spectra 

and efficiently extract the features related to bearing 

aging, one-level Wavelet Decomposition (WD) with 

Daubechies 16 is applied to the acquired vibration 

signals [34,47]. Figure 2 displays detail coefficients 

for relevant cycles, showing an increase in bearing 

fault frequency components (2-4 kHz) as aging 

grade rises.  

 
Fig. 2. The time and frequency-domain representations of 

the detail for selected cycles 

 

The five selected spectral-based features for 

decomposed signals are Shannon entropy, power of 

the signal, mean frequency, normalized power of the 

spectrum, and the percentage for the power of the 

first detail of recorded data. These features for a 
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signal, 𝑥[𝑛], are defined in Table 3, while 𝑥[𝑛] is 

defined in Eq. (1) for a recorded vibration signal 

𝑦[𝑛] with a signal length 𝑀 and the complex 

conjugate of the wavelet function (𝛹1,𝑘
∗ [𝑛]) designed 

to obtain the first detail. 

𝑥[𝑛] = ∑ 𝑦[𝑛].  𝛹1,𝑘
∗ [𝑛] 

𝑀

𝑛=1

 (1) 

The selected spectral features play a crucial role 

in effectively capturing the underlying 

characteristics of bearing aging in IMs. Each feature 

is designed to emphasize a specific aspect of the 

vibration signals, with a particular focus on the 

critical 2-4 kHz frequency interval, which is 

identified as the primary range where bearing aging 

manifests. The Shannon entropy offers a measure of 

the signal's complexity, providing insight into the 

randomness and disorder within the vibration data. 

The power and the normalized power of the 

spectrum within the 2-4 kHz band allow for an 

assessment of the signal’s energy, crucial for 

understanding the overall intensity and specific 

contributions within the aging-sensitive frequency 

range. The mean normalized frequency gives a 

weighted average of the spectral content, reflecting 

shifts in the frequency distribution as the bearing 

degrades. Lastly, the percentage for the power of the 

band’s (2-4 kHz) spectrum quantifies the 

concentration of energy in this critical band, 

highlighting its significance relative to the recorded 

signal. Together, these features provide a 

comprehensive spectral analysis, enabling the neural 

classifiers to accurately differentiate between 

various stages of bearing aging with enhanced 

precision. The integration of these spectral features 

not only enhances the precision of the neural 

classifiers but also makes this study unique in its 

comprehensive approach to bearing aging 

classification, providing a robust framework that 

effectively captures and utilizes the most critical 

aspects of the vibration signals.  

 

3. NEURAL CLASSIFIERS TRAINED BY 

SPECTRAL FEATURES 

 

To determine the optimal classifier, accuracy rate, 

the Recall, Precision, and F1-score metrics were 

calculated for each aging grade. To minimize the risk 

of overfitting and to better support generalization, 5-

fold cross-validation was applied with randomized 

and balanced folds. In addition, slight random 

perturbations were introduced into the training data 

during learning to increase the model’s robustness 

and reduce memorization possibility. 

 
3.1. PRNN trained by the Levenberg-Marquardt 

algorithm to grade bearing degradation 

To create a training dataset, eight vibration 

datasets were split into 40 sections and labeled by 

aging grades. The dataset was then divided into three 

 

Table 3. The mathematical definitions of the five 

selected spectral features of vibration signals 

Spectral 

Feature 
Definition 

Shannon 

entropy 

The Shannon entropy H(x) of a signal 

x[n] can be defined as follows where 

P(x[n]) is the probability distribution 

of the signal x[n] which can be 

calculated as the normalized 

magnitude of the signal or the relative 

frequency of occurrence of each value 

in x[n] and N is the total number of 

samples in the signal. 

H(x) =  − ∑ P(x[n]). log2 P(x[n])

N

n=1

 

Power 

The power of the signal quantifies the 

average energy contained within the 

time-domain signal, providing insight 

into the signal's overall intensity. It is a 

crucial measure for understanding the 

signal's strength and its potential 

impact on system behavior. 

Px =
1

N
∑|x[n]|2

N

n=1

 

The 

normalized 

power of 

the 

spectrum 

The normalized power of the spectrum 

(PS) represents how the power of a 

signal is distributed across different 

frequency components. PS is essential 

for identifying dominant frequencies 

and understanding the signal's spectral 

characteristics. 

PS (x) =
1

N
∑ |x[n].  e−j

2π
N

kn|
2N

k=1

 

The mean 

frequency 

The mean normalized frequency of the 

power spectrum, derived from the 

vibration signal, where fk represents 

each frequency bin, and M denotes the 

total number of frequency bins. 

fmean =
∑ fk . |X[k]|2M−1

k=0

∑  |X[k]|2M−1
k=0

 

The 

percentage 

for the 

power of 

the band’s 

spectrum 

This percentage (P% ) helps in 

identifying the spectral significance of 

the 2-4 kHz frequency range in the 

recorded signal. 

P% =
PS(x) 

PS(y)
× 100 

 
subsets for training, validation, and testing, with 

ratios of 70%, 15%, and 15% respectively. After 

training, the performance of the classifier was 

evaluated through testing. A PRNN trained with the 

LM algorithm with a single hidden layer was 

used. Accuracy rates for different hidden layer 

transfer functions were compared, with the highest 

testing accuracy rate of 97. 9% achieved by a 

network with 9 hidden neurons (HN) and a logistic-

sigmoid function. Confusion matrix (Fig 3. a) and 

ROC (Fig 3. b) plot validated the optimal network, 

showing minimal misclassifications, as seen in 

Figure 4. Overall, the proposed PRNN showed 

strong performance in classifying vibration data. 

 



DIAGNOSTYKA, Vol. 26, No. 2 (2025)  

Badeli M, Kara D. Spectral feature - based neural classification for efficient bearing aging assessment… 

5 

Table 4. The accuracy rates for the PRNN trained with 

LM algorithm 

# 

of 

HN 

TF 
Accuracy Rates (%) 

Train Val Test Total 

10 log-sig 97.3 97.9 89.6 96.2 

9 log-sig 95.1 95.8 97.9 95.6 

8 log-sig 97.3 97.9 89.6 96.2 

7 log-sig 97.8 97.9 93.8 97.2 

6 log-sig 96.9 95.8 91.7 95.9 

5 log-sig 97.3 93.8 89.6 95.6 

4 log-sig 98.2 97.9 91.7 97.2 

3 log-sig 96 95.8 89.6 95 

2 log-sig 87.5 89.6 93.8 88.8 

1 log-sig 74.6 77.1 72.9 74.7 

10 tan-sig 99.1 97.9 89.6 97.5 

9 tan-sig 92.4 97.9 97.9 94.1 

8 tan-sig 97.3 97.9 89.6 96.2 

7 tan-sig 97.8 95.8 95.8 97.2 

6 tan-sig 96.9 95.8 91.7 95.9 

5 tan-sig 98.7 93.8 87.5 96.2 

4 tan-sig 97.3 93.8 89.6 95.6 

3 tan-sig 95.5 95.8 89.6 94.7 

2 tan-sig 93.3 89.6 97.9 93.4 

1 tan-sig 75.9 75 70.8 75 

 

Table 5 presents Recall, Precision, and F1-score 

metrics for each class in the testing of the optimal 

structure. Class 5 has a Recall value of 0. 8, while 

Class 6 has a Precision value of 0. 75, with other 

classes showing perfect performance. Only one 

misclassification occurred, with Class 5 predicted as 

Class 6. F1-score metrics for Class 5 and Class 6 are 

0. 88 and 0. 85, and overall testing accuracy for the 

optimal classifier is 0. 979.  

ROC plots in Figure 4(b) show slight decrease in 

area under curves for Classes 5, 6, and 7. Validation 

process saw reduction in Classes 5 and 6. Testing 

showed high performance of WD pre-processed 

classifier.  

Table 5. Recall, Precision, and F1-score values for the 

testing process of the optimum PRNN structure 

# Classes Recall Precision F1-score 

Class 1 1 1 1 

Class 2 1 1 1 

Class 3 1 1 1 

Class 4 1 1 1 

Class 5 0.8 1 0.88 

Class 6 1 0.75 0.85 

Class 7 1 1 1 

Class 8 1 1 1 

Micro 

Average 
0.979 0.979 0.979 

 

 

3.2. Multi-Layered FFNN solved by the L-BFGS 

algorithm to grade the bearing degradation  

In this part of the study, a complex FFNN with 

two hidden layers and ReLU and Sigmoid activation 

functions was optimized using the L-BFGS 

algorithm. The dataset was split into training (70%), 

testing (15%), and unused (15%) subsets. Four 

specific network structures (#5, #8, #9, and #17) 

achieved a 100% testing accuracy rate, marking 

them as the most successful models in this 

application. 

The optimal structure was chosen based on the 

training cross-entropy loss, with Network #9 having 

the lowest loss value at 0. 0142018, outperforming 

other structures. This network showed better 

reliability and performance in classifying bearing 

degradation levels compared to PRNN. Despite 

concerns of potential overfitting due to the small 

vibration dataset, the L-BFGS-based FFNN 

performed well, with training and testing accuracy 

rates of 94. 64% and 100% respectively. The 

proposed structure, developed using the L-BFGS 

 
Fig. 3. Performance plots for the training, validation & testing of the optimal PRNN structure (a) Confusion matrices,  

(b) ROC plots 
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Table 6. The testing accuracy rates for the FFNN 

solved by the L-BFGS algorithm 

 
# of 

HNs 

TF for L1 and 

L2 

Testing 

Accuracy (%) 

#1 3  -  5 
Sigmoid - 

Sigmoid 
97.91 

#2 4  -  4 
Sigmoid - 

Sigmoid 
95.83 

#3 4  -  6 
Sigmoid - 

Sigmoid 
95.83 

#4 4  -  10 
Sigmoid - 

Sigmoid 
93.75 

#5 7  -  6 
Sigmoid - 

Sigmoid 
100 

#6 7  -  10 
Sigmoid - 

Sigmoid 
97.91 

#7 8  -  9 
Sigmoid - 

Sigmoid 
93.75 

#8 9  -  7 
Sigmoid - 

Sigmoid 
100 

#9 10 -  9 
Sigmoid - 

Sigmoid 
100 

#10 10 - 10 
Sigmoid - 

Sigmoid 
95.83 

#11 4  -  7 ReLU - ReLU 95.83 

#12 4  -  9 ReLU - ReLU 97.91 

#13 6  -  3 ReLU - ReLU 97.91 

#14 6  -  8 ReLU - ReLU 95.83 

#15 6  -  9 ReLU - ReLU 97.91 

#16 8  -  9 ReLU - ReLU 95.83 

#17 9  -  6 ReLU - ReLU 100 

#18 10 - 10 ReLU - ReLU 95.83 

 

algorithm, is ideal for bearing aging 

classification. Testing revealed no misclassified 

samples, confirming the network's flawless 

performance. The ROC curve demonstrated the high 

performance of the classifier, with equal allocation 

of samples in cross-validation testing datasets, 

ensuring consistency across classes unlike the PRNN 

model. 

 

4. DISCUSSION 

 

The PRNN and FFNN models have unique 

advantages and limitations for bearing aging 

grading. PRNN's simple architecture and LM 

algorithm offer quick convergence and ease of 

implementation, making it suitable for limited 

computational resources and rapid 

deployment. However, its shallow structure may 

limit its ability to capture complex patterns in 

data. Meanwhile, FFNN, optimized with the L-

BFGS algorithm, shows superior performance in 

high-dimensional data and complex classification 

tasks due to its deeper architecture. Despite its 

increased computational requirements and potential 

overfitting risks, FFNN excels in precision and 

robustness applications. Ultimately, PRNN is ideal 

for simplicity and speed, while FFNN is better for 

accuracy and reliability. These findings suggest that 

the method can be effectively implemented in real-

time vibration control systems, enabling proactive 

adjustments and minimizing the risk of mechanical 

failure. 

In addition, although deep learning models such 

as CNNs or GANs are widely used in fault 

diagnostics, they typically require extensive training 

data, longer training durations, and high 

computational capacity. In this study, the choice of 

PRNN and FFNN was intentional—to ensure high 

performance with manageable complexity, enabling 

practical choice even in resource-constrained 

environments. 

 

5. CONCLUSION 

 

This study introduces an innovative approach for 

classifying aging conditions in induction motor (IM) 

bearings using advanced neural network classifiers 

trained on spectral-based features. Two models were 

developed: a PRNN trained with the LM algorithm 

and a FFNN optimized with the L-BFGS algorithm. 

Both models successfully classified eight bearing 

aging grades, with experimental results showing that 

the FFNN outperformed the PRNN in terms of 

testing accuracy and robustness against overfitting. 

A key advantage of this study is the use of 

spectral-based feature selection, which focuses on 

specific frequency bands, particularly the critical 2-

4 kHz interval where bearing faults typically occur. 

These selected features, including power and 

entropy, provide an efficient representation of the 

bearing's condition, ensuring precise classification 

of aging grades. By reducing dimensionality while 

preserving the descriptive power, this method 

enhances the precision and computational efficiency 

of the classification process. 

Beyond fault diagnostics, this study opens new 

pathways for accurately determining bearing aging 

stages, providing a foundation for estimating bearing 

lifespan with enhanced precision. This capability 

enables proactive maintenance strategies, reducing 

downtime and operational costs while improving 

system reliability. Future applications could adapt 

this methodology to other types of rotating 

machinery, refining feature sets for broader adoption 

in industrial condition monitoring and predictive 

maintenance frameworks. 

Unlike many previous studies that primarily 

focused on bearing fault detection through statistical 

or broad-spectrum features, the methodology 

presented here addresses the relatively unexplored 

area of bearing aging stage grading. By suggesting a 

compact set of spectral features concentrated in the 

2–4 kHz band, the proposed approach achieves high 

classification performance with relatively shallow 

neural networks. This contributes not only to 

diagnostic precision but also to computational 

efficiency, offering a practical solution for real-

world predictive maintenance applications. 
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