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Abstract 

To enhance the effectiveness of predictive maintenance for industrial production equipment, this work 

explores a cloud platform-based predictive maintenance system. Moreover, it designs an equipment fault 

diagnosis model using the One Dimensional Deep Residual Shrinkage Network (1DDRSN). The performance 

of the 1DDRSN-based equipment fault diagnosis model and the proposed predictive maintenance system is 

validated through bearing fault detection experiments. The results demonstrate that the 1DDRSN model 

significantly outperforms other models in equipment fault diagnosis, achieving an accuracy, precision, recall, 

and F1 score of 0.9886, 0.9796, 0.9684, and 0.974, respectively. Compared to other models, these metrics 

represent improvements of at least 0.66%, 0.56%, 0.76%, and 0.62%, respectively. This indicates that the 

1DDRSN model offers higher robustness and better predictive performance for complex industrial equipment 

fault diagnosis tasks. Additionally, performance testing of the cloud platform-based predictive maintenance 

system demonstrates superior response time, system throughput, and data processing efficiency compared to 

traditional systems. This suggests the proposed system’s ability to better support real-time maintenance needs 

in complex industrial environments. The findings of this work provide technical support for intelligent 

maintenance in industrial production and lay the foundation for future developments in the field of smart 

manufacturing. 

 

Keywords: predictive maintenance; equipment fault diagnosis; deep learning; cloud platform; deep residual shrinkage 

network 

 

1. INTRODUCTION 

 

As industrialization continues to advance, the 

role of equipment in production and manufacturing 

becomes increasingly important. Equipment failures 

not only cause production stoppages and increase 

maintenance costs but can also lead to more serious 

safety accidents. Therefore, effectively predicting 

equipment failures and ensuring timely maintenance 

has become a critical issue in industrial production. 

Traditional maintenance models often rely on 

experience-based repairs or regular inspections. This 

passive maintenance approach not only fails to 

detect potential faults in a timely manner but also 

tends to increase maintenance costs and production 

downtime [1, 2]. As a result, predictive maintenance 

has emerged as a solution. Predictive maintenance 

leverages technologies such as sensor data, machine 

learning, and deep learning to predict equipment 

failures and take preventive actions in advance. It 

has become a key technology for improving 

production efficiency and equipment reliability in 

modern industry [3]. 

With the development of cloud computing, cloud 

platforms now offer powerful computational 
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capabilities and flexible resource scheduling, 

making equipment fault diagnosis and prediction 

both possible and more efficient [4]. How to 

combine the cloud platform's strong computational 

power with equipment fault diagnosis models to 

optimize performance, improve prediction accuracy, 

and enhance system efficiency remains a hot 

research topic and challenge. Meanwhile, various 

deep learning-based models have been widely 

applied in fault detection and diagnosis tasks. These 

models can automatically extract features from vast 

amounts of sensor data, significantly improving the 

ability to identify and predict equipment failures. 

However, existing models still face challenges 

related to training efficiency, robustness, and 

adaptability in complex industrial environments [5, 

6]. 

Based on this background, this work aims to 

study predictive maintenance technology for 

industrial production equipment supported by cloud 

platforms, focusing on the effectiveness of using 

deep learning models for equipment fault prediction. 

Specifically, this work constructs a cloud platform-

based predictive maintenance system and designs 

and implements an equipment fault diagnosis model 
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on the basis of a Deep Residual Shrinkage Network. 

Finally, the model's performance is validated 

through experiments. This work provides technical 

support for intelligent maintenance in industrial 

production, significantly reduces maintenance costs, 

improves production efficiency, and lays the 

foundation for the widespread utilization of 

intelligent manufacturing in the future. The main 

innovations of this work are as follows: 

(1) A cloud-based predictive maintenance system for 

equipment is developed. This system fully 

leverages the efficient data processing 

capabilities of cloud computing to achieve real-

time monitoring and prediction of equipment 

operating conditions, enhancing system 

reliability and scalability.   

(2) A one-dimensional deep residual shrinkage 

network (1DDRSN) model for equipment fault 

diagnosis is proposed. This model integrates 

residual learning and a soft-thresholding 

shrinkage mechanism. It enhances feature 

extraction for complex industrial fault signals 

through adaptive denoising, and improves fault 

detection accuracy and robustness.   

(3) Experimental and comparative studies validate 

the effectiveness of the proposed approach. The 

results indicate that the 1DDRSN model 

outperforms existing methods in fault diagnosis, 

while the cloud-based predictive maintenance 

system surpasses traditional systems across 

multiple performance metrics, providing support 

for practical industrial applications.   

This work presents a novel technological 

solution for intelligent maintenance in industrial 

production. It contributes to reduced maintenance 

costs, improved equipment utilization, and laying 

the foundation for the deep integration of smart 

manufacturing and the Industrial Internet of Things 

(IoT). 

 

2. RELATED WORK 

 

2.1. Research status of predictive maintenance 

and fault diagnosis for equipment 

With the advancement of the Industrial IoT, 

predictive maintenance systems that integrate cloud 

computing, big data analytics, and artificial 

intelligence (AI) have become a key direction for 

enhancing the intelligence of equipment 

management. The combination of the powerful 

computational capabilities of cloud platforms with 

the real-time data acquisition capabilities of IoT 

sensors offers new solutions for equipment fault 

diagnosis and maintenance. Maurya et al. (2024) 

explored the importance of fault diagnosis in rotating 

machinery, and emphasized how the integration of 

IoT, cloud computing, and AI technologies has 

driven the rapid development of intelligent fault 

diagnosis and condition monitoring systems. These 

technologies effectively enable predictive 

maintenance for mechanical equipment [7]. 

Similarly, Kannammal et al. (2023) proposed a 

predictive maintenance system for pumpjacks by 

integrating IoT and deep learning. By monitoring 

telemetry data from pumpjacks, the system detects 

anomalies in real time, prevents faults, and reduces 

downtime [8]. Sharma and Gurung (2024) provided 

practical guidance on collecting and integrating 

industrial asset data, applying machine learning 

algorithms, and deploying predictive maintenance 

systems. They highlighted that real-time sensor 

monitoring combined with deep learning 

technologies optimized maintenance processes, 

reduced unplanned downtime and costs, and 

enhanced overall equipment efficiency [9].  

Complementing research on intelligent 

maintenance, significant progress has also been 

made in developing equipment fault diagnosis 

models in recent years. For instance, Raparthy et al. 

(2023) combined time-series analysis and deep 

learning to propose a predictive maintenance 

framework for fault prediction for IoT devices. By 

leveraging sensor data, fault logs, and maintenance 

records, the framework employed recurrent neural 

network (RNN) and long short-term memory 

(LSTM) networks for predictions. Experimental 

results demonstrated its superior accuracy and 

efficiency [10]. Qureshi et al. (2024) reviewed the 

application of machine learning in solar power plants, 

particularly its role in improving equipment 

reliability, reducing maintenance costs, and 

maximizing energy production. They summarized 

the application of machine learning algorithms such 

as logistic regression, decision trees, and support 

vector machines (SVM), in predictive maintenance, 

and emphasized the importance of model 

interpretability and scalability [11]. Ghasemkhani et 

al. (2023) introduced a novel interpretable machine 

learning method, "Balanced K-Star," to address data 

imbalance issues in manufacturing equipment 

predictive maintenance. The experimental results 

showed that this method outperformed standard 

approaches in classification accuracy, achieving 

98.75%, significantly higher than the current state-

of-the-art method, which had an accuracy of 91.74% 

[12]. 

Despite these notable advancements in predictive 

maintenance and fault diagnosis, certain challenges 

remain. First, most existing methods rely on 

traditional machine learning models and lack deep 

modeling of complex equipment fault patterns. 

Second, while the application of cloud platforms has 

gained attention, leveraging the full potential of 

cloud computing resources to enhance real-time 

responsiveness in large-scale equipment 

environments remains an area requiring further 

research. To address these challenges, this work 

proposes a cloud-based predictive maintenance 

system that integrates the 1DDRSN for fault 

diagnosis. The system aims to improve maintenance 

efficiency and diagnostic accuracy, addressing 

current limitations in the prediction of faults in large-

scale and complex equipment. 
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2.2. Classification and comparative analysis of 

predictive maintenance technologies 

In recent years, predictive maintenance 

technologies have been extensively studied and 

applied in industrial production. Based on different 

technical approaches, existing predictive 

maintenance technologies can be broadly 

categorized into the following types: rule-based 

maintenance, statistical model-driven maintenance, 

machine learning-based maintenance, and deep 

learning-based maintenance. Each approach has its 

applicable scenarios and limitations. Fig. 1 

illustrates the specific classification structure. 

Predictive 

Maintenance 

Technologies

Machine Learning-

Based 

Maintenance

Rule-Based 

Maintenance

Deep Learning-

Based 

Maintenance

Statistical Model-

Based 

Maintenance

Expert Rules

Threshold 

Settings

HMM

ARIMA

Markov Chain

SVM

RF

KNN

DT

CNN

LSTM

GAN

Transformer

 
Fig. 1. Classification of predictive 

maintenance technologies 

 

(1) Rule-based approaches primarily rely on expert 

knowledge, heuristic rules, or simple threshold 

settings to determine maintenance needs by 

analyzing equipment operating data such as 

temperature, vibration, and pressure. While easy 

to implement, these methods are prone to 

misjudgments or omissions when dealing with 

complex and dynamically changing equipment 

failures. 

(2) Statistical models establish relationships 

between equipment operating conditions and 

failures using probabilistic statistics, time series 

analysis, and regression models. Examples 

include the AutoRegressive Integrated Moving 

Average (ARIMA) model, Markov chains, and 

the Hidden Markov Model (HMM). These 

methods are suitable for equipment data with 

stable patterns but may have limited predictive 

capability when dealing with complex conditions 

or external environmental influences.   

(3) Machine learning approaches leverage data-

driven learning capabilities to achieve more 

precise predictive maintenance through feature 

extraction and model training. Techniques such 

as SVM, Random Forest (RF), K-Nearest 

Neighbors (KNN), and Decision Trees (DT) 

have shown promising results in fault diagnosis 

and prediction. However, their performance 

depends on the quality of feature engineering, 

and computational overhead can be high when 

handling large-scale data. 

(4) In recent years, deep learning has made 

significant advancements in predictive 

maintenance. Models such as the Convolutional 

Neural Network (CNN), LSTM, Generative 

Adversarial Network (GAN), and Transformer 

architectures can automatically learn data 

features, making them particularly suitable for 

multimodal data analysis of complex equipment. 

However, conventional deep learning models 

still face challenges such as high noise levels and 

data imbalance. To address these limitations, this 

work proposes a fault diagnosis model based on 

the 1DDRSN. This model incorporates residual 

learning, soft-thresholding shrinkage, and 

attention mechanisms to enhance robustness and 

accuracy in fault detection.   

(5) Table 1 presents a comparative analysis of 

different predictive maintenance methods. 

3. DESIGN OF AN EQUIPMENT FAULT 

DIAGNOSIS AND PREDICTIVE MAINTE-

NANCE SYSTEM BASED ON A CLOUD 

PLATFORM AND DEEP LEARNING 

 

3.1. Cloud platform-based predictive 

maintenance system for equipment 

In the context of Industry 4.0, cloud platform-

based predictive maintenance systems provide the 

manufacturing industry with a new approach to 

maintenance strategies. This system is primarily 

composed of five core modules: terminal devices, 

cloud computing services, equipment fault 

prediction, equipment remaining life prediction, and 

intelligent application services. These modules work 

in synergy to enable real-time monitoring and 

intelligent maintenance of industrial equipment, as 

illustrated in Fig. 2. 

Terminal 

equipment module

Cloud computing 

service module

Equipment 

residual life 

prediction module

Intelligent 

application service 

module

Equipment fault 

prediction module

Data acquisition
Instruction 

issuing

Prediction result

Data processing

 
Fig. 2. The structure of a cloud platform-

based predictive maintenance system for 

industrial equipment 
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Table 1. Comparison of different predictive maintenance methods 

Method Category Representative Methods Applicable Scenarios Advantages Limitations 

Rule-Based 

Maintenance 
Heuristic rules, threshold setting 

Simple equipment, 

traditional industrial 

systems 

Easy to implement, low 

computational cost 

Relies on human experience, 

poor generalization ability 

Statistical Model-

Driven 

Maintenance 

ARIMA, HMM, Markov Chains 
Linear systems, time 

series forecasting 

Strong mathematical 

interpretability, can model certain 

fault patterns 

Struggles with nonlinear, 

multivariate problems 

Machine Learning SVM, RF, KNN, DT 
Complex equipment 

data analysis 

Can automatically learn data 

features, strong predictive 

capability 

Dependent on manual feature 

engineering, high 

computational cost 

Deep Learning CNN, LSTM, GAN, Transformer 
Multimodal complex 

fault data 

Suitable for large-scale data, can 

automatically extract features 

High computational resource 

demand, some methods 

difficult to interpret 

Proposed Method 1DDRSN 
High noise, complex 

fault patterns 

High robustness, strong feature 

extraction ability, automatic 

denoising 

Needs optimization for 

computational efficiency and 

generalization capability 
 
 
 

In the system depicted in Fig. 2, terminal devices 

form the foundational data acquisition layer, 

responsible for real-time monitoring of industrial 

equipment's operational  status. Critical  operational 

parameters, such as vibration, temperature, current, 

and rotational speed of devices are collected using 

sensors. To ensure data accuracy and completeness, 

terminal devices typically include high-precision 

sensors, data collectors, and embedded systems. 

These devices are capable of performing preliminary 

data processing and filtering locally, and they can 

also transmit the data to the cloud in real-time 

through IoT technology. 

The cloud computing service acts as the core 

processing layer of the entire system, handling the 

reception and storage of massive amounts of data 

from terminal devices. Using the strong 

computational capabilities of cloud computing, this 

service can quickly process and analyze large 

volumes of equipment data to recognize potential 

fault patterns and trends [13]. This module consists 

of sub-modules for data storage, data cleaning, 

feature extraction, and data analysis. By employing 

distributed computing technology, the cloud 

computing service maintains efficiency during large-

scale data processing and uses big data analysis 

techniques to uncover hidden patterns in the 

equipment's operational data. This provides the 

necessary support for subsequent fault prediction 

and remaining useful life estimation. Additionally, 

the elastic scalability of the cloud allows the system 

to dynamically adjust resource allocation in response 

to changes in data volume and computational 

demand, ensuring efficient operation. 

The equipment fault prediction module utilizes 

the processed data from the cloud computing service 

to predict the operational status of equipment using 

advanced deep learning models. This module 

integrates deep learning algorithms capable of 

capturing complex temporal and spatial features in 

the equipment data. Through model training, it can 

anticipate potential equipment failures and provide 

corresponding fault categories and estimated time of 

occurrence [14]. This module not only delivers 

highly accurate predictions but also dynamically 

updates the prediction models to adapt to changes in 

the operating environment and conditions of the 

equipment. 

The equipment's remaining life prediction 

module aims to estimate the remaining useful life of 

equipment under current operating conditions. 

Relying on data from the cloud computing service, 

this module employs deep learning models, 

combining historical operational data with real-time 

monitoring data, to predict trends in the equipment's 

health status [15]. The equipment remaining life 

prediction module assists enterprises in planning 

maintenance and replacement schedules more 

effectively, maximizing equipment utilization, and 

extending its service life [16, 17]. 

Finally, the intelligent application services 

module functions as the decision support layer of the 

system. By integrating the results of the fault 

prediction and remaining life prediction, it provides 

enterprises with intelligent maintenance 

recommendations and decision support. This module 

can generate detailed equipment health reports, 

highlight potential risks, and suggest optimal 

maintenance strategies. Additionally, it includes 

sub-modules for alarm management, maintenance 

record management, and decision support, offering 

comprehensive support for equipment management. 

Seamlessly integrated with the enterprise's existing 

production management systems, this module 

ensures effective coordination between equipment 

maintenance and production planning, thereby 

enhancing overall productivity. 

Through the collaborative operation of these 

modules, the cloud platform-based predictive 

maintenance system enables comprehensive 

lifecycle management of industrial equipment, 

offering enterprises a reliable and efficient 

maintenance solution. This system not only 

significantly reduces equipment failure rates and 

maintenance costs but also boosts production 

efficiency, helping enterprises maintain a 

competitive edge. 

 

3.2. Deep learning-based equipment fault 

diagnosis model 

In the cloud-based predictive maintenance 

system, fault diagnosis plays a crucial role in 

enabling predictive maintenance. With the purpose 

of enhancing the accuracy and robustness of fault 

diagnosis, this work proposes a model that combines 

residual networks, soft thresholding, and attention 
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mechanisms-namely, the One Dimensional Deep 

Residual Shrinkage Network (1DDRSN) model [18, 

19]. This model is designed to effectively extract and 

compress key features from industrial equipment 

operational data, thereby improving the ability to 

identify equipment faults. 

Noise interference is a common issue in 

equipment fault diagnosis, so the model needs to 

minimize the impact of noise while maximizing the 

use of valid information. To address this challenge, 

an attention mechanism is incorporated into the deep 

residual shrinkage network. The attention 

mechanism, through a small subnetwork, 

automatically learns and assigns a set of weights to 

the feature maps, weighting each channel. This 

process enhances the useful feature channels and 

suppresses redundant ones [20]. By doing so, the 

model focuses on critical information, improving the 

detection capability of equipment faults. 

The deep residual shrinkage network is an 

improved model based on the Squeeze-and-

Excitation Network (SENet). It assigns appropriate 

weights to each feature channel through a weighting 

mechanism, where these weights are derived using 

soft thresholding. During the training process for 

each sample, the model learns adaptive thresholds, 

thereby enhancing training efficiency. The deep 

residual network introduces residual modules, 

effectively mitigating the gradient vanishing 

problem in deep learning, which improves the 

stability and performance of the model [21, 22]. In 

deep learning models like the CNN, the 

backpropagation algorithm often encounters 

gradient vanishing or explosion issues, making 

training difficult. The residual network addresses 

this issue by introducing skip connections, 

significantly improving model training. The process 

within the deep residual shrinkage network includes 

convolution operations, compression operations, and 

excitation operations, specifically: 

Convolution Operation 𝐹𝑐𝑜𝑛 : 𝑈 =
[𝑢1, 𝑢2, ⋯ , 𝑢𝑐]  represents the set of learned filter 

kernels, where 𝑢𝑐 denotes the parameters of the c-th 

filter. The output feature map after the convolution 

operation is 𝑍 = [𝑧1, 𝑧2, ⋯ , 𝑧𝑐]. 

𝐴 → 𝑍, 𝐴 ∈ ℝ𝑊′∗𝐻′∗𝐶′, 𝑧 ∈ ℝ𝑊∗𝐻∗𝐶  (1) 

𝑧𝑐 = 𝑢𝑐 ∘ 𝐴 = ∑ 𝑢𝑐
𝑠 ∘ 𝑎𝑠𝑐′

𝑠=1  (2) 

𝐴 represents the input feature map, ∘ denotes the 

convolution operation, and 𝑢𝑐
𝑠  is a convolution 

kernel with s channels. W and H represent the width 

and height of the input feature map, respectively, 

while C represents the number of channels in the 

input feature map. 𝑊′  and 𝐻′  represent the width 

and height of the output feature map after the 

convolution operation, which is typically calculated 

based on the kernel size, stride, and padding. 𝐶′ 

represents the number of channels in the output 

feature map after convolution, which is usually equal 

to the number of filters. 

Compression operation 𝐹𝑡𝑒: By applying global 

average pooling, the c channels are ultimately 

reduced to a real number sequence of size 1*1*c. 

The c-th channel of the output feature map q after the 

compression operation is calculated as follows: 

𝑞𝑐 = 𝐹𝑡𝑒(𝑧𝑐) =
1

𝐻∗𝑊
∑ ∑ 𝑧𝑐(𝑖, 𝑗), 𝑞 ∈ ℝ𝐶𝑊

𝑗=1
𝐻
𝑖=1  (3) 

H and W refer to the height and width of the input 

feature map, respectively. 

Excitation operation 𝐹𝑒𝑛 : By using gating to 

reduce the number of channels, the computational 

load is decreased, allowing the model to learn the 

nonlinear relationships between different channels. 

𝑠 = 𝐹𝑒𝑛(𝑞, 𝑤) = 𝜎(𝑔(𝑞, 𝑤)) = 𝜎(𝑤2(𝑤1𝑞)) (4) 

𝑤 is the weight matrix, while 𝑤1 and 𝑤2 are the 

weight matrices used for the excitation operation. 𝜎 

refers to the sigmoid activation function, and 

𝑔(𝑞, 𝑤) is the gating function used to calculate the 

weights. 

Weighted features 𝐹𝑠 : The sigmoid activation 

function is adopted to process the input features 𝑍 to 

obtain activation values that range from 0 to 1. 

Subsequently, the activation value for each channel 

is multiplied by the original features 𝑍, resulting in 

the weighted features for each channel. 

�̃�𝐶 = 𝐹𝑠(𝑧𝑐 , 𝑠𝑐) = 𝑠𝑐 ∙ 𝑧𝑐  (5) 

�̃�𝐶  represents the weighted features, 𝑠𝑐  is the 

excitation value for the c-th channel, and 𝑧𝑐  is the 

feature map for the c-th channel.  

Additionally, in the residual network, the 

threshold is obtained through the embedded small 

network. The nonlinear processing of signals is also 

crucial for improving model performance. To further 

denoise the input bearing vibration signals, soft 

thresholding is introduced and embedded into the 

improved residual block [23]. Currently, soft 

thresholding serves as a fundamental step in 

numerous denoising algorithms, as it can eliminate 

features with absolute values below the threshold 

and shrink features with absolute values above the 

threshold down to zero. Soft thresholding is a 

commonly used nonlinear processing method aimed 

at reducing noise interference by appropriately 

compressing and thresholding the signal, thereby 

enhancing signal quality. Specifically, the soft 

thresholding function is defined as: 

𝑦 = {

𝑥 − 𝜑, 𝑥 > 𝜑
0,−𝜑 ≤ 𝑥 ≤ 𝜑
𝑥 + 𝜑, 𝑥 < −𝜑

  (6) 

x and y represent the input and output, 

respectively, while 𝜑 is the threshold. The threshold 

setting must satisfy two conditions: first, the 

threshold must be positive, and second, the threshold 

cannot exceed the maximum value of the input. 

Additionally, it is preferable to determine 

corresponding independent thresholds based on the 

input noise. The derivative of the soft thresholding 

function can be expressed as follows: 

𝜕𝑦

𝜕𝑥
= {

1, 𝑥 > 𝜑
0,−𝜑 ≤ 𝑥 ≤ 𝜑
1, 𝑥 < −𝜑

  (7) 

Equation (7) suggests that the function can only 

take values of 1 or 0, exhibiting the same properties 

as ReLU. Thus, soft thresholding not only mitigates 



DIAGNOSTYKA, Vol. 26, No. 2 (2025)  

Ma D.: Predictive maintenance technology for industrial production equipment using cloud platform … 

 

6 

noise interference but also aids in preventing the 

vanishing gradient problem within the model. 

In summary, Fig. 3 reveals the network structure 

of the 1DDRSN. 

By integrating the 1DDRSN into the cloud 

computing service, the cloud-based predictive 

maintenance system for equipment can analyze vast 

amounts of data in real time. It enables accurate 

predictions of equipment failures and provides 

reliable data support and a decision-making basis for 

the intelligent application service module. 

 

3.3. Experimental design for performance 

validation of the equipment fault diagnosis 

model 

This work focuses on bearing failures in industrial 

manufacturing equipment to validate the 

performance of the equipment fault diagnosis model 

based on the 1DDRSN. The Case Western Reserve 

University (CWRU) bearing dataset is utilized as the 

raw dataset for this experiment. The CWRU bearing 

dataset contains vibration data for bearings under 

various operating conditions, including normal 

states and various kinds of faults, like inner race 

faults, outer race faults, and rolling element faults 

[24]. Data collection is conducted using different 

load and speed settings to guarantee the data 

diversity and representativeness. Specifically, the 

CWRU dataset provides standardized vibration 

signal data, divided into training and testing sets to 

facilitate model training and validation. Specifically, 

the CWRU dataset includes multiple types of fault 

modes, with multiple sets of vibration signal data for 

each fault mode. For this experiment, the training set 

consists of vibration data from 10 different bearings, 

totaling approximately 6,000 sample data points. 

The test set includes data from 5 other bearings, with 

about 2,000 sample data points. All sample data are 

labeled as either normal or different fault types (such 

as inner race fault, outer race fault, and rolling 

element fault). These fault modes are combined with 

different operating conditions to ensure the diversity 

of the dataset. Specifically, the training set contains 

4,000 normal samples and 2,000 fault samples, while 

the test set includes 1,500 normal samples and 500 

fault samples. This data partitioning ensures that the 

model can fully learn the differences between fault 

patterns and normal states during training and 

effectively evaluate the model's diagnostic and 

generalization capabilities in real-world conditions 

during testing. 

In the experiment utilizing the 1DDRSN for 

bearing fault diagnosis, the model training process 

includes the following steps: First, parameter 

settings are established for each layer; next, 

threshold determination is performed by calculating 

the product of the average absolute value of each 

feature channel and 0.01 to determine the threshold. 

Values exceeding the threshold undergo a threshold 

subtraction process, while values below the 

threshold are set to zero; then, classifier training is 

conducted, setting the number of classifier neurons 

according to the fault categories and fine-tuning the 

softmax classifier parameters using the gradient 

descent algorithm; finally, model parameter training 

is completed within the maximum training iterations. 

The model validation phase evaluates the 

performance of the trained model using the testing 

set to assess its applicability in real-world scenarios. 

In this experiment, Fig. 4 shows the pseudocode for 

the specific process of the 1DDRSN algorithm. 

To validate the effectiveness of the equipment fault 

diagnosis model based on the 1DDRSN, 

comparative experiments are designed. The 

effectiveness of the 1DDRSN-based equipment fault 

diagnosis model is compared with that of some other 

models on the same CWRU bearing dataset to 

evaluate their performance. These models include 

SVM, CNN, Multiple Empirical Wavelet Transform 
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Fig. 3. Network structure of 1DDRSN 
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-CNN (MEWT-CNN), RNN, and One Dimensional 

CNN-LSTM (1DCNN-LSTM). Additionally, the 

performance of the cloud-based predictive 

maintenance system is assessed and compared with 

traditional systems, focusing on response time, 

system throughput, and data processing efficiency as 

the main evaluation metrics. 

Input: Low-resolution signal (input_signal)

1. Input Processing:

        processed_signal = Preprocess(input_signal)

2. Feature Extraction:

        feature_map = Convolution_Layers(processed_signal)

        feature_map = Activation_Functions(feature_map)

3. Feature Shrinkage:

        shrunk_feature_map = Shrinkage_Layers(feature_map)

4. Feature Expansion:

        expanded_feature_map =Expansion_Layers(shrunk_feature_map)

5. Residual Connection:

        high_resolution_signal = Residual_Connection(processed_signal, expanded_feature_map)

6. Activation Function:

        activated_signal = Activation_Function(high_resolution_signal)

7. Output Processing:

        final_output = Postprocess(activated_signal)

Return: final_output  

Fig. 4. Pseudocode for the specific process of 

the 1DDRSN algorithm 

 

To ensure the effectiveness of model training and 

the reliability of optimization results, 

hyperparameter optimization is performed. Initially, 

a grid search and cross-validation tests are conducted 

to select the best hyperparameter combination. To 

avoid model overfitting and improve generalization, 

cross-validation is applied on the training set using 

K-fold cross-validation (K=5) to select the optimal 

hyperparameters for each model. Through grid 

search, an appropriate learning rate is chosen, 

ranging from 0.001 to 0.1, with 0.01 selected as the 

optimal learning rate. Different batch sizes are tested, 

namely 32, 64, and 128, with 128 chosen as the 

optimal batch size. The regularization coefficient is 

adjusted within the range of 0.0001 to 0.01, with 

0.001 selected as the optimal value. Experiments are 

also conducted to adjust the convolution kernel 

width to 64 and the stride to 1, as these two 

parameters significantly influence the performance 

of the 1DDRSN model. Table 2 shows the 

experimental environment and parameter settings. 

 
Table 2. Experimental environment and parameter 

settings 

Hardware/Parameter Name Parameter/Value 

Operating System Windows10 

Central Processing Unit 

(CPU) 
AMD R7-5800H 

Clock Speed 3.2GHz 

Graphics Processing Unit 

(GPU) 
RTX3060 

Memory 16GB 

Storage 512G SSD 

Learning Rate 0.01 

Number of Epochs  100 

Batch Size  128 

Regularization Coefficient 0.001 

Convolution Kernel Width 64 

Convolution Kernel Stride 1 

 

Furthermore, accuracy, precision, recall, as well 

as F1-score are used as evaluation metrics for the 

equipment fault diagnosis model. Accuracy is 

defined as the proportion of correctly predicted 

samples to the total number of samples: 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (8) 

TP represents the number of true positives. TN 

indicates the number of true negatives. FP refers to 

the number of false positives. FN denotes the 

number of false negatives. Precision refers to the 

proportion of actual positives among all samples 

predicted as positives by the model. 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (9) 

Recall suggests the ratio of actual positives that 

are correctly predicted as positives by the model 

among all samples that are actually positive. 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (10) 

The F1 score is the harmonic mean of precision 

and recall, offering a single metric that takes into 

account both precision and recall. The equation for 

calculating the F1 score is as follows:  

𝐹1 = 2 ∗
𝑃𝑟𝑒∗𝑅𝑒𝑐

𝑃𝑟𝑒+𝑅𝑒𝑐
  (11) 

During the experiment, several practical issues 

are encountered regarding the application of the 

1DDRSN-based equipment fault diagnosis model. 

One major challenge is the data imbalance problem. 

In the CWRU bearing dataset, there is an imbalance 

in the number of samples across different fault 

categories, which leads to poor recognition of 

minority classes during training. To address this 

issue, over-sampling and under-sampling techniques 

are employed to either increase the number of 

minority class samples or reduce the number of 

majority class samples, thus balancing the dataset. 

Additionally, a weighted loss function is applied, 

assigning different weights to different classes, 

further enhancing the model's sensitivity to the 

minority classes. Another challenge is the 

computational resource issue during model training. 

Due to the complex network structure and the 

computational demands of deep learning, the 

1DDRSN model consumes significant hardware 

resources, particularly during multiple iterations, 

leading to longer training time. To overcome this, 

GPU acceleration is used to speed up the training 

process via parallel computing. Moreover, model 

pruning is implemented to remove redundant 

parameters in the network, reduce the computational 

load and maintain model performance. The data 

noise issue also impacts the model’s diagnostic 

accuracy. In real-world equipment operations, 

varying degrees of vibration interference lead to 

noisy data, which affects the model's training 

effectiveness. To tackle this, data preprocessing 

methods such as denoising filters, standardization, 

and normalization are applied to ensure data quality 

and the stability of the model. Through these 

measures, the issues encountered during the 

experiment are effectively addressed, improving the 
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accuracy, efficiency, and applicability of the 

1DDRSN-based equipment fault diagnosis model. 

Furthermore, to ensure the reliability of the 

experimental results and the model’s stability, the 

impact of initialization weights on training results is 

considered during the training of the 1DDRSN 

model. Since the training results of neural networks 

are often influenced by initial weights, multiple 

experiments are conducted to verify the stability and 

reproducibility of the model's results. In the 

comparative experiments, five independent trials are 

performed, with random initialization of weights in 

each experiment. The training and testing sets 

remain the same across all trials, and the same 

parameter settings are used for the training process. 

By comparing the results of different experiments, 

the stability of the model performance and the 

influence of initial weights on the results are 

assessed. In all five experiments, the variations in the 

model's accuracy, precision, recall, and F1-score are 

minimal, ranging from 0.9850 to 0.9886, with a 

change of less than 0.5%. This indicates that while 

the randomness of the initial weights may have a 

slight impact on the training results, the model’s 

performance is highly stable, and the differences in 

results across multiple experiments are small, further 

validating the reliability of the model.  

 

4. EXPERIMENTAL RESULTS OF THE 

EQUIPMENT FAULT DIAGNOSIS AND 

PREDICTIVE MAINTENANCE SYSTEM 

BASED ON CLOUD PLATFORM AND 

DEEP LEARNING 

 

4.1. Performance evaluation of the equipment 

fault diagnosis model 

The 1DDRSN, 1DCNN, and ResNet networks 

are each incorporated into the equipment fault 

diagnosis model to compare the number of epochs 

required for each model to achieve an accuracy of 

90%. Fig. 5 shows the results. 

Fig. 5 shows that in the equipment fault diagnosis 

model, the 1DDRSN network demonstrates a 

significant advantage over both 1DCNN and ResNet 

in terms of the number of training epochs required to 

reach 90% accuracy. Specifically, the 1DDRSN 

network achieves 90% accuracy in just 17 epochs, 

which is notably fewer than the 59 epochs required 

by 1DCNN and the 38 epochs required by ResNet. 

This indicates that the 1DDRSN network excels in 

training efficiency, reaching high accuracy more 

quickly and reducing both training time and 

computational resource demands. Furthermore, the 

highest accuracy achieved by the 1DDRSN network 

after reaching 90% accuracy is 98.86%, which is 

higher than 1DCNN's 96.24% and ResNet's 95.68%. 

This result further validates the superior 

performance of the 1DDRSN network in equipment 

fault diagnosis, as it not only reaches high accuracy 

with fewer training epochs but also achieves a final 

accuracy significantly better than the other two 

networks. 
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Fig. 5. Comparison of fault diagnosis results 

of various models 

 

4.2. Comparison of Performance with Other 

Models 

The effectiveness of the 1DDRSN model is 

evaluated against five other models: SVM, CNN, 

MEWT-CNN, RNN, and 1DCNN-LSTM. Fig. 6 

displays the results. 
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Fig. 6. Comparison of fault diagnosis results 

of various models 

 

The experimental results in Fig. 6 indicate that 

the 1DDRSN model significantly outperforms the 

other five models in terms of fault diagnosis 

performance, including SVM, CNN, MEWT-CNN, 

RNN, and 1DCNN-LSTM. Specifically, the 

1DDRSN model achieves an accuracy of 0.9886, 

precision of 0.9796, recall of 0.9684, and an F1 score 

of 0.974, all of which are the best among the models. 

In comparison, the second-ranked 1DCNN-LSTM 

model exhibits metrics that are lower by 0.66%, 

0.56%, 0.76%, and 0.62%, respectively. These 

results suggest that the 1DDRSN model 

demonstrates greater robustness and superior 

predictive performance when handling complex 

industrial equipment fault diagnosis tasks. 

To further evaluate the performance of the 

1DDRSN model in equipment fault diagnosis, its 

training time and resource consumption are 

examined, as shown in Fig. 7. 

Fig. 7 reveals that the 1DDRSN model 

outperforms others in terms of training efficiency 

and resource consumption. The 1DDRSN requires 

only 17 training epochs, with a training time of 45 

minutes, making it the fastest among all models. 

Specifically, compared to the 1DCNN-LSTM model 

(150 minutes), 1DDRSN saves 105 minutes of 
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training time. Additionally, the CPU usage of 

1DDRSN is 39%, GPU usage is 78%, memory 

consumption is 4GB, and GPU memory usage is 

5.6GB. These are significantly lower than other 

more complex models, such as 1DCNN-LSTM 

(GPU usage of 86%, memory of 8 GB, and GPU 

memory usage of 6.5 GB). Therefore, while 

achieving high accuracy, 1DDRSN not only reduces 

training time but also saves computational resources, 

demonstrating higher training efficiency and 

resource utilization. 
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0

20

40

60

80

100

120

140

160

T
ra

in
in

g
 t

im
e 

an
d
 r

es
o
u
rc

e 
co

n
su

m
p
ti

o
n

Model

 Training Epochs

 Training Time (Minutes)

 CPU Usage (%)

 GPU Usage (%)

 Memory Consumption (GB)

 GPU Memory Usage (GB)

 
Fig. 7. Comparison of training time and 

resource consumption across models 

 

4.3. Performance evaluation of the predictive 

maintenance system for equipment 

The performance of the cloud-based predictive 

maintenance system for equipment is evaluated 

under three different loads. Moreover, its response 

time, system throughput, and data processing 

efficiency are compared with those of traditional 

systems. Fig. 8 displays the results. 

The data in Fig. 8 demonstrate that the cloud-

based predictive maintenance system for equipment 

outperforms traditional systems in terms of response 

time, system throughput, and data processing 

efficiency. Under light load conditions, the response 

time of the cloud-based system is 120 milliseconds, 

significantly lower than the 300 milliseconds of the 

traditional system. The system throughput is 1000 

requests per hour, surpassing the 500 requests per 

hour of the traditional system. The system’s data 

processing efficiency is 30 milliseconds per packet, 

which is more efficient than the traditional system's 

50 milliseconds per packet. In heavy load conditions, 

the response time, throughput, and data processing 

efficiency of the cloud-based system are 400 

milliseconds, 400 requests per hour, and 100 

milliseconds per packet, respectively. They 

showcase a clear advantage compared to the 

traditional system’s 1000 milliseconds, 150 requests 

per hour, and 200 milliseconds per packet. These 

results indicate that the cloud-based system is 

superior to the traditional system in performance and 

efficiency, better supporting the real-time 

maintenance needs in complex industrial 

environments. 
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Fig. 8. Performance comparison of the cloud-

based predictive maintenance system and 

traditional systems 

 

4.4. Discussion 

In the field of fault prediction, numerous studies 

in recent years have proposed various machine 

learning and deep learning models to improve the 

accuracy and efficiency of equipment fault 

prediction. The 1DDRSN-based equipment fault 

diagnosis model proposed performs excellently 

across multiple performance metrics. Therefore, it is 

necessary to compare it with other related research 

to highlight its relative advantages. Zamzam et al. 

(2023) developed a machine learning model for 

predicting medical equipment failures, focusing on 

predicting first failure events, failure-to-repair ratios, 

and repair groups. The experiment showed that SVM 

was suitable for first-failure prediction, decision 

trees for failure-to-repair ratio prediction, and 

artificial neural networks for repair group prediction, 

with accuracies of 96.9%, 83.9%, and 76.7%, 

respectively [25]. Although SVM performs well in 

first-failure prediction, its accuracy is lower than the 

results obtained from the 1DDRSN model, 

indicating the advantages of deep learning models in 

complex fault diagnosis tasks. Specifically, the high 

accuracy and robustness of the 1DDRSN model 

provide a significant advantage when dealing with 

multiple fault types. Xu et al. (2023) proposed a 

multi-stage fault prediction model for short-term and 

long-term fault prediction of continuous casting 

rollers. The results showed that the model 

significantly improved short-term fault prediction 

accuracy and effectively predicted future long-term 

fault trends [26]. Although their model achieved 

excellent results in short-term fault prediction, its 

performance under complex and diverse fault types 

was not as universally effective as the 1DDRSN 

model proposed. The 1DDRSN model, by 

combining one-dimensional deep residual networks 

and shrinkage mechanisms, demonstrates higher 

accuracy and lower computational overhead in 

diagnosing multiple fault types, making it more 

suitable for diverse fault diagnosis in industrial 
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equipment. Shaheen et al. (2023) proposed a data-

driven fault prediction method for mechanical 

components' fault prediction and remaining useful 

life estimation by combining artificial neural 

network architecture and an improved training 

algorithm. The results indicated that this method had 

high prediction accuracy and success rates in 

complex manufacturing systems [27]. However, 

although the method performed well in certain 

specific applications, the 1DDRSN model presented 

enhanced fault diagnosis capability in various fault 

scenarios by combining deep residual networks, 

soft-threshold processing, and attention mechanisms. 

It also demonstrated high-accuracy performance, 

especially in low-noise environments, making it 

more advantageous in the widespread application of 

industrial equipment.   

Overall, the 1DDRSN-based equipment fault 

diagnosis model proposed has significant 

advantages over existing models. Whether in terms 

of equipment fault type diversity, diagnostic 

accuracy, or computational efficiency, the 1DDRSN 

model demonstrates strong competitiveness. 

Additionally, by integrating cloud platform 

technology, it realizes efficient fault prediction and 

maintenance, and further enhances real-time 

capabilities and scalability. This highlights the 

potential of the model for application in industrial 

production and smart manufacturing. 

 

5. CONCLUSION 

 

This work proposes an equipment fault diagnosis 

model based on 1DDRSN through the optimization 

of deep learning models. It explores a predictive 

maintenance system that integrates the cloud 

platform with the 1DDRSN model. Through 

experimental evaluations, the following conclusions 

are drawn: (1) In comparison with other models, the 

effectiveness of the 1DDRSN model in equipment 

fault diagnosis significantly surpasses that of five 

other models. It achieves accuracy, precision, recall, 

and F1 score of 0.9886, 0.9796, 0.9684, and 0.974, 

respectively. (2) Compared to the second-ranked 

1DCNN-LSTM model, the 1DDRSN model 

achieves improvements of 0.66%, 0.56%, 0.76%, 

and 0.62% in accuracy, precision, recall, and F1 

score, respectively. Furthermore, while achieving 

high accuracy, 1DDRSN is able to save 

computational resources in less time, offering higher 

training efficiency and resource utilization. (3) 

Under moderate load conditions, the cloud-based 

predictive maintenance system demonstrates 

significant enhancements in response time (260 

milliseconds), system throughput (700 

requests/hour), and data processing efficiency (60 

milliseconds/packet) when compared to traditional 

systems. This suggests the superior effectiveness and 

efficiency of the cloud-based approach. 

Furthermore, the proposed 1DDRSN model and 

cloud platform-based predictive maintenance system 

have broad application prospects in renewable 

energy stations and their energy storage systems. 

Renewable energy devices such as wind turbines and 

photovoltaic inverters often operate under complex 

and changing environmental conditions. Key 

components like bearings, gearboxes, and power 

electronic modules are prone to degradation and 

failure due to factors such as temperature, humidity, 

and mechanical stress. Traditional maintenance 

strategies typically rely on periodic inspections or 

simple threshold-based alarm mechanisms, which 

struggle to achieve precise predictions and efficient 

maintenance. By integrating the 1DDRSN model, 

the accuracy of fault diagnosis can be significantly 

improved, especially in handling complex nonlinear 

signals, where its feature extraction capabilities are 

particularly strong. Meanwhile, the cloud platform-

based predictive maintenance system can collect and 

analyze operational data in real-time from 

distributed energy devices, enabling remote fault 

diagnosis and health status assessment through deep 

learning algorithms. This enhances the operational 

reliability and maintenance efficiency of the 

equipment. Additionally, in energy storage systems 

such as lithium-ion battery packs and 

supercapacitors, predicting the health status and 

remaining useful life of batteries is crucial for 

ensuring the stable operation of energy management 

systems. The 1DDRSN model can more accurately 

identify degradation patterns in energy storage units. 

Combined with the real-time computational power 

of the cloud platform, it can provide optimized 

maintenance strategies and scheduling plans for 

smart grids. Thus, the proposed method is not only 

applicable to predictive maintenance for traditional 

industrial equipment but also provides theoretical 

support and technical insights for the intelligent 

operation and maintenance of renewable energy 

stations and energy storage systems. This further 

promotes the integration of smart manufacturing and 

intelligent energy management. 

Despite significant progress in the field of 

equipment fault diagnosis and predictive 

maintenance, some limitations still exist. First, the 

experimental dataset only used the CWRU-bearing 

data, lacking fault data from other types of industrial 

equipment. This could potentially affect the model's 

generalization ability. To enhance the model's 

applicability, future research will expand the dataset 

to include more data from different types of 

equipment, particularly those covering complex 

operating conditions and various fault types, thereby 

further improving the model's generalization and 

robustness. Next, while the 1DDRSN model has 

shown excellent performance in diagnostic accuracy 

and training efficiency, its performance under more 

complex fault types and extreme operating 

conditions still needs further validation. Future 

studies will test the model's adaptability by 

introducing more diverse fault types and simulating 

extreme working environments. Additionally, as 

industrial equipment continues to evolve, fault 

modes may become more complex. Therefore, 
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further optimization of the 1DDRSN model to 

address unknown fault modes will be an important 

direction for future work. Moreover, the cloud 

platform-based predictive maintenance system has 

demonstrated superior performance. However, in 

order to handle more complex industrial applications, 

future work will focus on integrating more edge 

computing and distributed technologies to enhance 

the system's real-time capability and stability. 

Particularly in large-scale industrial IoT 

environments, where data volumes are massive and 

real-time requirements are high, developing 

distributed architectures with stronger real-time 

processing capabilities and lower latency will be key 

to improving system performance. Finally, with the 

rapid development of AI technologies, future 

research could explore the application of advanced 

techniques like deep reinforcement learning and 

GAN in equipment fault diagnosis to further 

improve fault prediction accuracy and the level of 

intelligent diagnosis. Furthermore, integrating 

equipment fault diagnosis with equipment health 

management systems and promoting the 

comprehensive application of intelligent 

maintenance solutions will provide more 

comprehensive and intelligent support for industrial 

production. 
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APPENDIX 

Table. Experimental parameter settings 

Parameter Name Value 

Learning Rate 0.01 

Number of Epochs 100 

Batch Size 128 

Regularization Coefficient 0.001 

Convolution Kernel Width 64 

Convolution Kernel Stride 1 
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