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Abstract 

In power systems, the normal functioning of gas-insulated switchgear (GIS) is essential for the security of 

the electrical grid. However, when a single signal is used for discharge detection and diagnosis, it will be 

interfered. Through joint analysis of different signals, fault diagnosis can be more accurately performed. 

Therefore, to address this problem, this paper proposes a dynamically enhanced weighted network model 

(AMB-DEWNM) based on the attention mechanism. The model first extracts fault features from the PRPD 

spectra of UHF, optical and ultrasonic signals through a multi-scale convolutional neural grid. Furthermore, a 

two-tier focus module is introduced to enhance fault characteristics that are insensitive to changes in operating 

conditions. Finally, a new dynamic enhanced weighted voting strategy (DEWVS) is designed. This strategy 

constructs a diagnostic performance index matrix by considering the diagnostic accuracy and misclassification 

rate of the base model to dynamically adjust the voting weight of each base model. distribution to obtain more 

reliable collaborative diagnostic results. Test outcomes demonstrate that the error detection precision of the 

AMB-DEWNM system is notably enhanced. Compared with other advanced network models, the diagnosis 

accuracy is as high as 95.28%. It has high stability and robustness, and provides fault detection and maintenance 

for GIS. strong support. 

 

Keywords: power transformer; photoacoustic spectroscopy; domain adaptive intermediate class distribution alignment 

network; AdaSoftmax; fault diagnosis 

 
1. INTRODUCTION 

 

Power gas insulated switchgear (GIS) possesses 

the benefits of minimal upkeep expense and compact 

size, and is broadly applied in the sector of high-

voltage power transmission. However, during the 

manufacturing, transportation, and assembly 

processes of GIS, internal insulation defects may 

occur, causing equipment failure [1, 2]. Partial 

discharge is an important basis for equipment status 

assessment and fault warning. Therefore, the 

detection and identification of partial discharge in 

GIS can promptly detect its internal insulation 

defects and ensure the safe operation of the 

equipment [3, 4]. 

When partial discharge occurs inside the 

equipment, electrical, magnetic, acoustic, light and 

other signals will be radiated outward. Based on the 

electromagnetic waves and acoustic vibrations 

caused by discharge, researchers have proposed 

ultra-high frequency (UHF) and acoustic emission 
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online detection methods [5, 6, 7]. However, there 

are complex and uncertain noises in the field, and 

both detection methods have certain challenges in 

collecting partial discharge signals [8]. Photometry 

is a new detection method for measuring and 

analyzing discharge signals. It has strong anti-

interference and high detection confidence, and has 

broad development prospects and application value 

[9, 10, 11]. 

As optical fiber and photovoltaic transformation 

technologies advance, fluorescent optical fiber 

detectors, optical fiber acoustic sensors, and others 

have surfaced, enhancing the responsiveness of 

optical sensing techniques. Reference [9] introduced 

an interferometric partial discharge optical fiber 

acoustic detector, which improves GIS partial 

discharge detection sensitivity and maximum 

response amplitude compared with piezoelectric 

ceramic sensors. However, this article is an optical 

fiber sensing technique relying on sound release, that 

is fundamentally about measuring partial discharge 
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optical signals. Literature [12, 13] conducted 

experimental research and comparison on the 

characteristics of three fluorescent optical fiber 

sensors, which improved the reliability of motor 

stator insulation status monitoring. Literature [14, 15, 

16] uses fluorescent optical fibers to obtain partial 

discharge light information in GIS, and proposes a 

multifractal spectral probability algorithm for 

calculating grayscale images of optical signals. 

Literature [17, 18, 19] used corona discharge in the 

air as the experimental object to study the 

wavelength alignment, connection extent, and 

positional relationship of luminescent light guides. 

In terms of partial discharge fault diagnosis, scholars 

have conducted extensive investigation and attained 

notable outcomes. 

In order to solve the problem of incomplete 

single-source information, researchers use multi-

source information composed of multiple sensor 

signals to obtain more complete equipment health 

status information, and build a multi-source 

information fusion model to obtain more stable and 

reliable diagnostic results. In the current fault 

diagnosis research based on multi-source 

information fusion, Deng et al. and Li et al. [20, 21] 

proposed a new intelligent diagnosis method based 

on multiple different sensor signal fusion and CNN; 

Bacha et al. [22] used vibration and acoustic signals 

to Features are extracted from the system and one-

dimensional CNN is used to fuse features to achieve 

higher diagnostic accuracy; Liu et al. [23] proposed 

a one-dimensional CNN that fuses vibration, voltage 

and acoustic signals. fault diagnosis method, and 

used the Mahalanobis distance criterion to remove 

outliers in multi-source data; Wang et al., Rosenberg 

and Hirschberg, Hardoon et al. [24, 25, 26] applied 

wavelet packet decomposition to extract the time-

frequency characteristics of current and vibration 

signals. Test outcomes indicate that the integrated 

characteristics yield Superior error detection 

precision. 

In summary, this paper proposes a dynamically 

enhanced weighted network model (AMB-DEWNM) 

based on the attention mechanism. The model first 

extracts fault features from the PRPD spectra of 

UHF, optical and ultrasonic signals through a multi-

scale convolutional neural grid. Additionally, a two-

tier focus component is introduced to enhance fault 

characteristics that are insensitive to changes in 

operating conditions. Finally, a new dynamic 

enhanced weighted voting strategy (DEWVS) is 

designed. This strategy constructs a diagnostic 

performance index matrix by considering the 

diagnostic accuracy and misclassification rate of the 

base model to dynamically adjust the voting weight 

of each base model. distribution to obtain more 

reliable collaborative diagnostic results. 

It can not only effectively handle partial 

discharge fault diagnosis tasks of GIS equipment, 

but also maintain high diagnostic accuracy and good 

generalization performance under complex and 

changeable actual working conditions. This 

achievement provides strong technical support for 

GIS health management and fault warning, and is 

expected to further promote the intelligent operation 

and maintenance level of the power system. 

 

2. AMB-DEWNM MODEL 

 

2.1 Multi-scale feature extraction module 

The architecture of the multi-level characteristic 

retrieval component is illustrated in Figure 1. 

 
Fig. 1. Multi-level characteristic retrieval 

component 

 

First, a wide convolution kernel is utilized to 

retrieve characteristics from the initial signal. The 

broad kernel acts as a low-pass filter. The convolved 

features can effectively reduce high-frequency noise 

and suppress data overfitting. The specific 

computation equation of the kernel operation is: 

𝐹(1) = [𝑓1(𝑘1 ∗ 𝑥 + 𝑏); . . . ; 𝑓𝑐1
(𝑘1 ∗ 𝑥 + 𝑏)] (1) 

Within the equation: 𝑘1is the kernel matrix in the 

pathway; * is the kernel operator; x is the input data; 

b is the offset term of the kernel matrix; f() is the 

ReLU activation mechanism; 𝑐1  is the count of 

output pathways, and 𝑐1each pathway generates the 

output characteristic 𝐹(1). 

The output length in each channel after 

convolution is 𝐿1, and the feature 𝐹(1)size is (𝑐1,𝐿1). 

Then, kernel layers with kernel matrices of varying 

dimensions are utilized to execute parallel 

processing on the output features of the previous 

layer, that is, N one-dimensional convolution layers 

convolve the features 𝐹(1) at the same time. Each 

convolution layer will output a channel 𝑐2, and the 

convolution layer will the convolution step size of 

the product layer is set to 1, and then activated by the 

ReLU activation function and then spliced along the 

channel axis. The total count of pathways in the 

ultimate output characteristic 𝑐3 =N× 𝑐2 . Utilizing 

kernel matrices of diverse dimensions to retrieve 

characteristics across distinct temporal scales greatly 

enriches fault feature information. Zero element 

padding is used during the convolution process to 

ensure that different convolution layers have the 

same output length 𝐿2, so that the output features of 

different channels can be successfully spliced in the 

splicing layer. The calculation expression of the 

entire splicing process is: 

𝐹𝑖
(2)

= 𝑓(𝑘2𝑖 ∗ 𝐹(1) + 𝑏) (2) 

𝐹(2) = 𝑐𝑜𝑛𝑖
𝑁[𝐹𝑖

(2)
] (3) 

In the formula: 𝑘2𝑖is the kernel matrix applied in 

the i-th (i=1,2,...N) dimension; 𝐹(1) is the input 

characteristic; b is the offset term of the kernel 

matrix; 𝑓()is the ReLU activation mechanism, con is 
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the splicing function; 𝐹𝑖
(2)

is the th features of i 

(i=1,2,...N) scales, the size of the feature 𝐹(2) is (𝑐3, 

𝐿2). 

 

2.2 Dual-stage attention module 

After each sensor signal passes through the 

multi-level characteristic retrieval component, the 

multi-level characteristics are weighted and adjusted 

from the pathway and spatial aspects by the two-tier 

focus component. The dual-stage attention module is 

shown in Figure 4. The dual-stage attention module 

is a key module to improve the model's adaptability 

to working conditions. It can enhance channel 

features that are more sensitive to bearing health 

status in the channel dimension and suppress channel 

features that are sensitive to changes in working 

conditions. It can enhance each channel feature in 

the spatial dimension. Features within the channel 

are more fault-discriminating and useless features 

are suppressed. 

The detailed structure of the channel stage of the 

two-tier focus module is shown in Figure 2. 

 
Fig. 2. Channel stage attention 

 

The operation process of the channel stage: The 

difference from the classic SENet is that it does not 

use maximum pooling and average pooling to 

compress features, but uses a distributed one-

dimensional convolution layer to cover all the 

features in each channel in order to achieve global 

convolution. The detailed description is shown in 

Figure 3. 

 
Fig. 3. Distributed 1D convolution 

 

This process convolves the features within each 

channel into a single value in a vector, ultimately 

resulting in a single one-dimensional vector 𝑉(1) . 

Then, a one-dimensional weight vector 𝑉(1)  is 

generated through the compression and excitation 

process, and the weight vector is multiplied element 

by element with the input features, that is, different 

weights are given to different channels to achieve the 

enhancement or suppression of different channel 

features. Its specific mathematical expression is: 

𝑉(2) = 𝜎(𝑤1𝑓(𝑤0(𝑉(1)) + 𝑏0) + 𝑏1) (4) 

𝐹∧ = 𝑉(2) ⊙ 𝐹(2) (5) 

Among them, 𝜎()is the sigmoid function; 𝑓()is 

the ReLU function; 𝑤0 , 𝑤1is the coefficient of the 

densely linked level; 𝑏0, 𝑏1is the bias term; ⊙is the 

element-wise multiplication; 𝐹∧ is the output feature 

of the channel stage attention. 

The detailed structure of the spatial stage of the 

dual-stage attention module is shown in Figure 4. 

 
Fig. 4. Spatial stage attention 

 

The operation process of the positional phase: 

initially execute max sampling and mean sampling 

procedures along the pathway axis, subsequently 

merge the two pathways, and apply a planar kernel 

operation with a kernel matrix dimension of 3 to 

calculate the spatial weight for weight distribution 

matrix 𝑉(3), this weight matrix encodes the position 

of the spatial feature to be enhanced or suppressed; 

finally, the feature 𝐹∧ and the generated spatial 

weight matrix 𝑉(3)are multiplied element by element 

along the channel axis to achieve spatial feature 

weighting. Its specific mathematical expression is: 
𝑉(3) = 𝜎(𝑐𝑜𝑛𝑣3([𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐹𝛬); 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐹𝛬)])) (6) 

𝐹(𝑠) = 𝑉(3) ⊙ 𝐹𝛬 (7) 

In the formula: 𝑐𝑜𝑛𝑣3  represents the kernel 

operation featuring a kernel matrix dimension of 3; 

Maxpool is the max sampling operation; Avgpool is 

the mean sampling operation and 𝐹(𝑠)is the output 

feature of the spatial stage attention. 

Finally, the weighted features are further 

extracted through planar kernel operation featuring a 

kernel matrix dimension of (𝑘31,𝑘32) to mine deeper 

features as a whole; secondly, the batch 

normalization layer, pooling layer and Dropout layer 

are connected to improve the model. The purpose of 

generalization performance, reducing parameters 

and avoiding model overfitting; finally, the output 

features with size (𝑐4 ,ℎ2,𝑤2) will be flattened and 

then fully connected layers and softmax layers will 

be used to output the classification results. 

 

2.3 Dynamically enhanced weighted voting 

strategy 

In order to integrate all diagnostic results to 

provide more accurate and reliable collaborative 

diagnostic results. This paper uses a weighted voting 

method to achieve decision-making fusion. Since the 

distribution of weights is the key to weighted voting 

fusion, in order to obtain more accurate and reliable 

collaborative diagnosis results, a new dynamically 

enhanced weighted voting strategy is proposed, and 

its framework is shown in Figure 5. 

Contrasted with alternative voting combination 

approaches, this strategy not only considers the 

diagnostic accuracy of each base model but also 

considers the misclassification rate of each base 

model when allocating weights. The details are as 

follows. 
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Fig. 5. Dynamic enhanced weighted voting 

strategy 

 

Suppose data are collected from K sensors and 

there are C fault types to be identified. 𝑝𝑖𝑗
(𝑘)

 represent 

the probability that the k-th basic model determines 

the j-th fault type as the i-th fault type in the 

validation set. Then, 𝑝𝑖𝑗
(𝑘)

 will be calculated as 

𝑝𝑖𝑗
(𝑘)

=
𝐹𝑖𝑗

(𝑘)

𝑁𝑗

 (8) 

where 𝑁𝑗 represents the overall count of 

instances of the j-th fault type in the validation set, 

and is the type of sample diagnosed as type i by the 

k-th basic model in the validation set j Number of 

samples. When i = j, 𝑝𝑖𝑗
(𝑘)

 indicates the recognition 

accuracy from the k-th fundamental system for the j-

th fault type. When i ≠ j, 𝑝𝑖𝑗
(𝑘) 

 is the probability that 

from the k-th fundamental system misjudges the j-th 

fault type as the i-th fault type in the validation set. 

For the test data 𝑥𝑡𝑒𝑠𝑡 , it is assumed that the 

diagnostic results of the base model corresponding 

to K sensors are 𝑟1, 𝑟2, ⋯ , 𝑟𝐾, forming a set 𝑅𝑡𝑒𝑠𝑡. If 

the number of elements in the R test exceeds 1, it 

indicates that at least two of the underlying 

diagnostic models provide inconsistent diagnostic 

results. When assigning the weights of the k-th base 

model, the probability that the model is accurate and 

does not misclassify other fault types𝑟𝐾  used as an 

important indicator, and the weights are assigned as 

follows: 
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(9) 

The denominator plays the role of normalized 

weight. 

For convenience, the matrix form of this process 

is given. First, construct a matrix 𝐴(𝑘)to record the 

diagnostic performance of the k-th basic model, 

expressed as a diagnostic performance index matrix, 

as follows: 

𝐴(𝑘) = (𝑎𝑖𝑗)𝑖,𝑗−1
𝐶 = [

𝑎11 ⋯ 𝑎1𝐶

⋮ ⋱ ⋮
𝑎𝐾1 ⋯ 𝑎𝐾𝐶

] (10) 

𝑎𝑖𝑗 = {
𝑝𝑖𝑗

(𝑘)
, 𝑖 = 𝑗

1 − 𝑝𝑖𝑗
(𝑘)

, 𝑖 ≠ 𝑗
 (11) 

Then, calculate the diagnostic performance index 

matrix of the k-th basic model required for the test 

data as follows: 

𝐴𝑡𝑒𝑠𝑡 = [𝑟(1)𝑇𝐴(1); ⋯ ; 𝑟(𝐶)𝑇𝐴(𝐶)] (12) 

Where r(k) is the one-hot vector of the 

prediagnosis results of the k-th basic model. 

Therefore, the weight matrix is calculated as follows: 

𝑊 = [𝑤1, 𝑤2, … , 𝑤𝐾]𝑇 =
𝐴𝑡𝑒𝑠𝑡𝑟

||𝐴𝑡𝑒𝑠𝑡𝑟||1

 (13) 

Here, r is the sign function result of the one-hot 

vector of all basic model pre-diagnosis results, that 

is: 

𝑟 = 𝑠𝑔𝑛 (∑

𝐾

𝑖=1

𝑟(𝑖)) (14) 

where || ⋅ ||1 represents the norm 𝑙1 and sgn 

represents the symbolic function. After obtaining the 

weights of a series of basic diagnostic models, the 

score for each fault type is calculated by combining 

the diagnostic results of multiple sensors, as follows: 

𝑆𝑐 = ∑

𝐾

𝑖=1

𝑤𝑘𝐼(𝑟𝑘 , 𝑐), 𝑐 = 1,2, … , 𝐶 

𝐼(𝑟𝑘 , 𝑐) = {
1, 𝑟𝑘 = 𝑐
0, 𝑟𝑘 ≠ 𝑐

 

(15) 

Finally, the fault type with the highest score is 

selected as collaborative fault diagnosis: 

𝐶𝑥𝑡𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑆𝑐 . (16) 

 
3. EXPERIMENTAL ANALYSIS 

 

3.1 AMB-DEWNM model verification analysis 

To demonstrate the excellence of the AMB-

DEWNM system, experimentswere conducted. GIS 

PRPD patterns collected by UHF, ultrasonic, and 

optical sensors under four working conditions (C1-

C4) were selected. In the experiment, GIS 

experienced various fault states, including free metal 

particle discharge (FP), suspended potential body 

discharge (FB), insulator surface discharge (SD), 

and metal tip discharge (MT). Each failure mode 

contains 409,600 PRPD patterns, which are 

organized into 100 samples; each sample contains 

4,096 PRPD patterns. In the data set, each sample 

consists of 4096 PRPD patterns containing sufficient 

fault information, and the number of samples 

obtained under each fault is 1000. The dataset is split 

into learning set and validation set based on the 

proportion of 7:3. 

Throughout learning, the iteration count is 

configured to 500. Considering that parameter 

settings have a significant impact on the model 

diagnosis results, the starting learning speed is {0.1, 

0.2, 0.3, 0.4, 0.5}, and the learning rate attenuation 

value range is {0.001, 0.002 0.003, 0.004, 0.005}, as 

shown in Figure 6, which depicts the impact of the 
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starting education speed and education speed decay 

factor on the system precision. Observations show 

that setting the initial education velocity to 0.1, and 

the education velocity reduction factor to 0.003, 

yields the optimal accuracy for the dataset. Therefore, 

this set of parameter configurations was selected. 

 

Fig. 6. 3D Bar Chart of initial learning rate 

and learning rate decay 

 

To confirm the effectiveness of the system, 

compare it with the performance of the following 

neural network: DenseNet enhances the reusability 

of features and reduces the number of parameters 

through dense connections, but it consumes large 

memory and has high computational complexity. 

ResNet addresses the fading gradient issue in deep 

architectures via residual links and improves the 

training effect of the model. However, as the 

network deepens, the amount of parameters and 

computational complexity increase, making the 

model difficult to deploy in resource-constrained 

environments. Inception improves the expressive 

capacity of the system through multi-scale 

convolution and feature map splicing, but its 

structure is complex and difficult to implement, 

which is not conducive to rapid development and 

debugging. MobileNet significantly reduces the 

count of parameters and computations of the system 

via depthwise-separable kernel, and is particularly 

suitable for deployment on mobile devices and 

embedded systems, but the performance may not be 

as good as more complex models in some complex 

tasks. ShuffleNet enhances the diversity of features 

through channel shuffle operations, improves the 

representation ability of the model, and maintains 

low computational complexity. However, it has 

certain requirements for hardware optimization, and 

its effect is limited when processing multi-source 

information fusion. 

Figure 7 shows the training time, training 

accuracy and error corresponding to each neural 

network model under each task. Figure 8 shows the 

average training accuracy of each network under 

each task.  

Experimental results show that DenseNet 

consumes a lot of memory and has high 

computational complexity, resulting in poor 

performance in real-time diagnosis tasks, especially 

in resource-constrained environments where it is 

difficult to deploy. In contrast, the AMB-DEWNM 

model uses multi-scale feature extraction and 

employs kernel matrices of various dimensions to 

retrieve characteristics across distinct temporal 

scales, which significantly improves the richness and 

robustness of features, while reducing computational 

complexity and is suitable for Real-time diagnostic 

tasks. ResNet As the network deepens, the number 

of parameters and computational complexity 

continue to increase. Deep networks are prone to 

overfitting problems, that influences the adaptability 

of the system. 

The AMB-DEWNM model uses a dual-stage 

attention mechanism to weightedly modulate across 

the two aspects of pathway and spatial, enhances 

fault-sensitive features, significantly decreases the 

quantity of parameters and computational intricacy, 

and enhances the system's adaptability and 

robustness. Inception has a complex structure and 

high implementation difficulty, which is not 

conducive to rapid development and debugging. 

Multi-scale convolution and feature map splicing 

increase the complexity and computational burden of 

the    model.    AMB-DEWNM     improves    model  
 

 
Fig. 7. Comparison of Diagnosis Accuracy and Training Time for Different Networks. 
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Fig. 8. Average Training Accuracy for 

Different Networks across Various Tasks 

 

implementation and debugging efficiency by 

simplifying the structure while maintaining high 

performance. Although MobileNet greatly reduces 

the amount of parameters and calculations through 

depth-separable convolution, its performance is poor 

in certain complex tasks, especially multi-source 

information fusion and fault diagnosis tasks under 

complex working conditions. The AMB-DEWNM 

model passed, and the new dynamically enhanced 

weighted voting strategy dynamically allocated the 

voting weights of each base model to further 

improve the accuracy and stability of diagnosis. 

ShuffleNet enhances the diversity of features and has 

limited effect when processing multi-source 

information fusion, especially its weak adaptive 

ability under different working conditions. AMB-

DEWNM realizes the effective fusion of multi-

source information, further improving the accuracy 

and stability of diagnosis without the need for 

complex optimization of hardware. 

In order to study and understand the 

classification ability of the model in each category, 

the classification matrix for each system as depicted 

in Figure 9 was made based on experiments. 

The confusion matrix shows the diagnostic 

accuracy of each model in different fault categories. 

It can be seen that AMB-DEWNM performs well in 

the diagnosis of most fault categories, especially in 

the diagnosis of SD and MT faults, achieving high 

accuracy. In contrast, other models perform poorly 

in diagnosing certain fault categories. ResNet has 

many errors in diagnosing FP faults, while Inception 

performs poorly in diagnosing FP faults. This 

suggests that these models may be inadequate in 

handling certain types of failures. 

  
(a) DenseNet Confusion Matrices (b) ResNet Confusion Matrices 

  
(c) Inception Confusion Matrices (d) MobileNet Confusion Matrices 

  
(e) ShuffleNet Confusion Matrices (f) AMB-DEWNM Confusion Matrices 

Fig. 9. Confusion Matrices for Different Networks 
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Through the confusion matrix, we can clearly see 

the advantages of AMB-DEWNM in diagnostic 

accuracy. It performs very well in the diagnosis of 

fault categories, which shows that AMB-DEWNM is 

an effective fault diagnosis tool. 

 

4. CONCLUSIONS 

 

This paper proposes a dynamically enhanced 

weighted network model (AMB-DEWNM) based on 

the attention mechanism. The model first extracts 

fault features from the PRPD spectra of UHF, optical 

and ultrasonic signals through a multi-scale 

convolutional neural grid. Furthermore, a two-tier 

focus component is proposed to enhance fault 

characteristics that are insensitive to changes in 

operating conditions. Finally, a new dynamic 

enhanced weighted voting strategy (DEWVS) is 

designed. This strategy constructs a diagnostic 

performance index matrix by considering the 

diagnostic accuracy and misclassification rate of the 

base model to dynamically adjust the voting weight 

of each base model. distribution to obtain more 

reliable collaborative diagnostic results. 

It can not only effectively handle partial 

discharge fault diagnosis tasks of GIS equipment, 

but also maintain high diagnostic accuracy and good 

generalization performance under complex and 

changeable actual working conditions. This 

achievement provides strong technical support for 

GIS health manage.ment and fault warning, and is 

expected to further promote the intelligent operation 

and maintenance level of the power system. 
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