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Abstract 

This paper introduces in detail the design and implementation process of a real-time monitoring and fault 

diagnosis system for coking waste gas treatment. By constructing a comprehensive data acquisition system, 

combined with distributed sensor layout, the continuous monitoring of key emission parameters in coking 

process was realized. For data processing, feature selection, data cleaning and other preprocessing measures 

are adopted, and the innovative A-LSTM model is introduced. The model enhances the ability of LSTM 

network to capture key information in time series data by introducing attention mechanism, and significantly 

improves prediction accuracy and response speed. In terms of fault diagnosis, CNN-RNN fusion framework is 

developed, which effectively integrates the advantages of two deep learning models and strengthens the 

recognition ability of complex fault modes. In addition, model fusion and optimization strategies, such as 

weighted average and hyper-parameter tuning, are used to further improve the overall system performance. 
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1. INTRODUCTION 

 

Coking industry, as a key link in modern 

industrial system, its core lies in the conversion of 

coal into coke by high temperature distillation 

process, accompanied by a series of valuable 

chemical by-products, such as coke oven gas, coal 

tar and so on. This process is not only the cornerstone 

of steel manufacturing, energy supply and chemical 

raw material production, but also an important 

guarantee for national economic stability and 

development. However, it is followed by severe 

challenges to the natural environment, especially the 

exhaust gas emitted in the coking process, which is 

rich in harmful substances such as sulfides, nitrogen 

oxides and particulate matter, which seriously 

threatens the air quality and ecological balance, 

intensifies the global warming and acid rain 

phenomenon, and poses a direct threat to the human 

living environment. Therefore, how to effectively 

control coking waste gas, which not only meets strict 

environmental protection standards, but also 

promotes industrial upgrading and transformation, 

has become a key problem that the coking industry 

must face and solve [1, 2]. 

In recent years, the rapid development of 

artificial intelligence (AI) technology has brought an 

unprecedented technological innovation to the field 
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of environmental protection. AI, especially its 

branches-machine learning and deep learning, can 

independently discover rules and extract information 

from huge data sets by simulating the learning mode 

of human brain, providing efficient and accurate new 

ways for environmental monitoring, prediction and 

management. In many environmental protection 

fields such as water resources protection, air quality 

prediction, garbage classification, AI technology has 

made remarkable achievements, greatly improving 

work efficiency, reducing treatment costs, showing 

its wide application potential and far-reaching 

impact in the field of environmental protection [3, 4], 

the specific coking exhaust gas treatment process is 

shown in Figure 1.  

At present, the research and practice of coking 

industry waste gas treatment is actively carried out 

on a global scale, and many scholars and technology 

developers are committed to exploring new 

technologies and new methods to improve treatment 

efficiency and environmental friendliness [5]. In 

terms of exhaust gas monitoring technology, some 

enterprises and research institutions have begun to 

try to apply sensor network and remote 

communication technology to realize real-time data 

acquisition and preliminary analysis, but this is still 

in the initial stage, and there is still much room for 

improvement in the adaptability of complex working 
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Fig. 1. Treatment process of coking waste gas 

 

conditions and the depth of data analysis. Machine 

learning algorithms, especially deep learning 

algorithms, have shown great potential in predictive 

model building and anomaly detection, but to 

successfully apply them to the specific practice of 

coking industry, challenges such as uneven data quality 

and insufficient generalization ability of models need 

to be overcome. In the field of fault diagnosis, although 

traditional rule-based expert systems have been able to 

assist in identifying equipment faults to some extent, 

their accuracy and timeliness are often limited in the 

face of complex nonlinear relations and variable 

operating conditions in coking process. In contrast, AI 

technology through automatic feature extraction and 

advanced pattern recognition, can more accurately 

capture failure precursors, to achieve preventive 

maintenance, research in this area is gradually 

increasing, but still need more actual cases to verify its 

effectiveness and stability [6, 7].  

The core goal of this research project is to deeply 

explore and practice the application of artificial 

intelligence technology, especially real-time 

monitoring and fault diagnosis, in the specific field of 

coking exhaust gas treatment, aiming at achieving the 

following key breakthroughs: firstly, to construct an 

intelligent monitoring system based on AI technology, 

which can continuously and accurately monitor the 

dynamic changes of exhaust gas emissions in coking 

production process, and provide data support for rapid 

response; Secondly, advanced machine learning 

algorithms are used to conduct in-depth analysis on the 

collected massive monitoring data, accurately identify 

the operating status of exhaust gas treatment facilities, 

timely discover and diagnose faults, greatly shorten 

maintenance cycles, and reduce the risk of production 

interruption caused by faults; Moreover, through the 

self-learning and optimization ability of AI algorithm, 

the operating parameters of exhaust gas treatment 

system are dynamically adjusted to ensure that the best 

treatment effect can be maintained under various 

working conditions, so as to effectively reduce energy 

consumption, reduce resource waste and promote the 

coking industry to change to a greener and low-carbon 

production mode. 

2. RELATED RESEARCH 

 

2.1. Composition analysis of coking waste gas 

The waste gas produced in coking process mainly 

comes from coke oven, gas cooling and purification 

system and subsequent processing equipment. 

According to literature [1], coking exhaust gas has 

complex components, including a large number of 

volatile organic compounds (VOCs), sulfur oxides 

(SOx), nitrogen oxides (NOx), particulate matter (PM), 

polycyclic aromatic hydrocarbons (PAHs) and heavy 

metals. VOCs and PAHs pose serious threats to human 

health and ecosystems due to their high toxicity, 

persistence and bioaccumulation [8]. For example, 

VOCs such as benzene, toluene and xylene are 

recognized carcinogens, while PAHs are associated 

with skin, respiratory diseases and cancer [2]. In 

addition, the presence of sulfur oxides (SOx) and 

nitrogen oxides (NOx) in coking exhaust gases cannot 

be ignored. SOx can cause acid rain, causing severe 

corrosion to forests, water bodies and buildings, and 

may cause soil acidification, affecting crop growth. 

NOx participates in photochemical reactions in the 

atmosphere, generating ozone and fine particulate 

matter, exacerbating air pollution problems and 

adversely affecting human cardiopulmonary function. 

Particulate matter (PM), especially fine particulate 

matter (PM2.5) less than 2.5 microns in diameter, can 

penetrate deep into the alveoli of the human body due 

to its small size and large surface area, increasing the 

risk of cardiovascular disease, respiratory disease and 

even lung cancer. Heavy metal pollutants such as lead, 

mercury, cadmium, etc., although the content of coking 

waste gas is not high, but its toxicity is large, difficult 

to degrade, can be amplified through the food chain 

accumulation, pose a threat to biodiversity. Once these 

heavy metals enter the human body, they can cause 

neurological damage, kidney dysfunction and mental 

retardation in children [9, 10]. 

At the same time, strengthening environmental 

monitoring and law enforcement, and promoting the 

research and development and application of green 

production technologies are the key paths to reduce 

pollution from the source and realize the sustainable 
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development of coking industry. Through these 

comprehensive means, the aim is to reduce the 

negative impact of coking exhaust gas on the 

environment and human health and promote 

harmonious coexistence between economy and 

environment. 

 

2.2. Pollutant emission standards and 

environmental requirements 

Pollutant emission standards and environmental 

protection requirements are important norms to ensure 

the harmonious coexistence of industrial production 

activities and the natural environment. Taking coking 

industry as an example, its pollutant emission 

standards strictly comply with relevant national and 

local laws and regulations, reflecting the high 

importance attached to environmental quality. 

According to the coking chemical industry wastewater 

discharge standard (GB13456 -96), coking enterprises 

must control the discharge of water pollutants and air 

pollutants, which include but are not limited to key 

indicators such as phenol, cyanide, sulfide, ammonia 

nitrogen, chemical oxygen demand (COD) and 

biochemical oxygen demand (BOD) [11]. For 

example, the emission limits for phenol and cyanide 

are set at 0.5 mg/L, sulfide at 1.0 mg/L, ammonia 

nitrogen at 15mg/L, COD at 100mg/L, BOD at 

30mg/L, and the emission limit for the strong 

carcinogen benzo (a) pyrene is 0.03μg/L [7]. These 

strict values not only reflect the basic requirements for 

water quality protection, but also serve as an important 

line of defense to avoid ecological damage and protect 

public health. In addition to water quality emission 

standards, air pollutant emissions are also strictly 

controlled. Taking Jiangsu region as an example, the 

specific requirements for the emission of atmospheric 

pollutants from coking industry include emission 

limits of dust, sulfur and nitrate of 10mg/m³, 30mg/m³ 

and 100mg/m³ respectively, demonstrating the 

determination to reduce the air pollution level [12]. In 

order to meet these environmental protection 

requirements, enterprises need to implement a series of 

scientific and efficient environmental protection 

measures. This involves improvements in production 

processes, such as the use of low-polluting raw 

materials and cleaner production technologies, as well 

as upgrading of end-of-pipe treatment facilities, such 

as the installation of high-efficiency dust removal 

equipment, desulfurization towers and denitration 

units [13]. Environmental protection requirements are 

not only reflected in emission standards, but also in the 

management of the whole production process. For 

example, it is required to implement closed treatment 

of unorganized emission in the material yard, add gas 

collecting hood and dust removal facilities in the 

production process, adopt closed system for material 

transportation, and implement greening and road 

hardening measures in the plant area to reduce 

unorganized emission and dust [14]. In addition, 

establishing a sound environmental protection 

management system to ensure that the safety 

production responsibility system is in place, and 

improving employees 'environmental awareness and 

operational skills are also indispensable [15]. 

To sum up, the formulation and implementation of 

pollutant emission standards and environmental 

protection requirements is the key to promoting 

industrial restructuring, promoting technological 

innovation and achieving a win-win situation between 

economic and social development and environmental 

protection. With the advancement of science and 

technology and the enhancement of environmental 

awareness, these standards and requirements will 

continue to be optimized to guide enterprises to 

transition to a greener and low-carbon production 

model. 

 

2.3. Limitations of traditional governance methods 

Traditional treatment methods play an important 

role in coking waste gas treatment, but their limitations 

are increasingly prominent, which has become a 

bottleneck restricting the further improvement of 

environmental protection effect. According to 

literature review, these limitations are mainly 

manifested in efficiency, cost, secondary pollution and 

technical adaptability. 

In terms of efficiency, although the traditional wet 

desulfurization technology can effectively remove 

sulfur oxides (SOx), there are problems that the 

treatment efficiency is greatly affected by flue gas 

conditions and a large amount of desulfurization 

wastewater containing heavy metals is easily 

generated. As described in Document [16], additional 

investment is required to treat these wastewater, which 

increases the overall treatment cost. In addition, 

although low nitrogen combustion technology has 

some effect in reducing nitrogen oxide (NOx) 

emissions, it is often difficult to meet strict emission 

standards while ensuring combustion efficiency, 

especially in high temperature and oxygen-rich 

environments such as coke ovens [17]. Cost 

considerations, taking activated carbon adsorption 

method as an example, although it has a good removal 

effect on VOCs, the frequent replacement and 

regeneration of adsorbent materials are expensive, and 

the treatment capacity is limited by adsorption 

saturation, and the long-term operation cost is high 

[18]. The problem of secondary pollution cannot be 

ignored. As the main means of particulate matter (PM) 

control, electrostatic precipitator technology has high 

dust removal efficiency, but it is easy to appear anti-

corona phenomenon under high humidity conditions, 

which leads to the generation of secondary pollutants 

such as ozone and affects air quality [19]. Finally, in 

terms of technical adaptability, some traditional 

methods are not adaptable to complex and changeable 

exhaust gas components, such as simple physical 

sedimentation method, which is difficult to effectively 

remove fine particles and gaseous pollutants, and it is 

difficult to meet the current strict environmental 

protection requirements [20].  

In conclusion, the limitations of traditional 

treatment methods are not only reflected in technical 

efficiency and cost-effectiveness, but also related to the 
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risk of secondary pollution of the environment and the 

wide applicability of the technology. These factors 

together prompt the industry to explore new treatment 

technologies that are more efficient, economical and 

environmentally friendly, such as intelligent 

optimization control combined with artificial 

intelligence, development and use of new catalysts, 

and multi-pollutant collaborative control technologies, 

in order to achieve environmentally friendly and 

sustainable development while ensuring production 

efficiency. 

 

2.4. Requirements analysis of real-time monitoring 

and fault diagnosis 

The application of real-time monitoring and fault 

diagnosis technology in coking and other heavy 

industry fields has become the focus of academic and 

industrial attention. Literature research shows that this 

technology has important significance for improving 

production efficiency, ensuring safe production and 

reducing environmental pollution. According to 

literature [21], the real-time monitoring system can 

detect abnormal fluctuations in time and prevent 

potential failures by continuously collecting and 

analyzing key parameters in the production process, 

such as temperature, pressure, flow, etc. For example, 

the use of sensor networks based on the Internet of 

Things (IoT), as described in literature [22], can 

achieve remote monitoring and real-time data 

transmission, greatly improving the accuracy and 

timeliness of monitoring. This real-time feedback 

mechanism is essential to maintain efficient and stable 

operation of equipment and reduce unplanned 

downtime. Literature [23] points out through 

comparative analysis that the average equipment 

failure rate of enterprises implementing real-time 

monitoring is reduced by about 20% compared with 

those not implemented. In terms of fault diagnosis, 

Literature [24] introduces a fault recognition model 

based on machine learning. Through training 

algorithms to learn data features of normal and 

abnormal working conditions, problems can be 

accurately identified and located at the initial stage of 

fault occurrence. For example, techniques such as 

Support Vector Machine (SVM) and Neural Network 

(NN) have been successfully applied to equipment 

vibration signal analysis to effectively distinguish 

different types of fault modes. The case study in 

literature [25] shows that compared with traditional 

manual inspection, the fault detection accuracy of this 

intelligent diagnosis system is improved by nearly 

30%, the fault response time is significantly shortened, 

and the maintenance cost is reduced. At the 

environmental impact level, literature [26] emphasizes 

that the role of real-time monitoring and fault diagnosis 

in reducing accidental emissions cannot be 

underestimated. Through precise control and timely 

intervention, the excessive emission caused by 

equipment failure is avoided, and the increasingly 

strict environmental protection regulations are met. In 

a practical study of coking plants [27], VOCs 

emissions after intelligent monitoring were reduced by 

about 15% compared with the previous one, indicating 

that the technology has a positive effect on achieving 

green production and sustainable development goals. 

 
3. MODEL CONSTRUCTION AND 

ALGORITHM DESIGN 

 

This section describes in detail the construction 

process of real-time monitoring and fault diagnosis 

model in coking exhaust gas treatment, including data 

acquisition system design, real-time monitoring model 

construction, fault diagnosis model development, and 

model fusion and optimization strategy, aiming to 

improve the accuracy and efficiency of monitoring and 

diagnosis through innovative algorithms and 

technologies. 

The target variable in this paper is industrial 

emission data, which is initially in the form of a 

continuous variable. In order to better meet the needs 

of monitoring and decision-making, these data are 

divided into discrete categories, such as "normal", 

"exceeding the standard" or "severely exceeding the 

standard", so that the classification model can quickly 

identify abnormal conditions. Therefore, accuracy is 

chosen as the evaluation metric because it is suitable 

for classification tasks rather than standard regression 

metrics. At the same time, the accuracy metric helps to 

measure the overall performance of the model in 

identifying different emission categories. In future 

work, other evaluation metrics can be considered, such 

as precision, recall, and F1 scores commonly found in 

classification reports, to further improve the 

comprehensiveness and scientificity of the evaluation. 

 

3.1. Design of data acquisition system and sensor 

layout scheme 

Fault diagnosis. A comprehensive data acquisition 

system is designed in this study, covering key nodes of 

coke oven, gas cooling and purification system and 

subsequent processing devices. Sensor selection and 

placement is crucial, based on the principle of multi-

source information fusion, distributed placement 

scheme is adopted to ensure coverage of all key 

emission points. Sensor types include, but are not 

limited to, temperature sensors (T), pressure sensors 

(P), gas composition analyzers (infrared gas analyzers 

to measure CO, CO2 concentrations), and particulate 

matter meters (PM). The layout strategy follows the 

principle of uniform spatial distribution and 

synchronous sampling to ensure the integrity and 

representativeness of the data. The frequency of data 

acquisition is set to once per minute to meet real-time 

monitoring requirements. 

 

3.2. Real-time monitoring model construction 

 

3.2.1. Feature Selection and Data Cleaning 

In this paper, correlation coefficient analysis, 

principal component analysis (PCA) and other 

statistical methods were used to screen features, and 

the features highly correlated with emission 
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concentration were retained. Data cleaning for the 

study included missing value processing 

(interpolation), outlier detection (IQR method), and 

data smoothing (moving average method) to ensure 

data quality. 

 

3.2.2. Time series analysis model 

The fluctuation of coking exhaust gas emission is 

affected by many factors and presents obvious time 

series characteristics. Traditional statistical methods or 

simple neural network models may not be able to 

capture long-term dependencies effectively when 

dealing with such sequence data, resulting in limited 

prediction performance. As a variant of recurrent 

neural network, LSTM solves the long-term 

dependence problem by gating mechanism, but it does 

not give prominence to the weight assignment of key 

information points in the sequence. Therefore, 

attention mechanism is introduced in this study to 

optimize the information extraction process, so that the 

model can autonomously identify and focus on the 

most critical historical information points for 

prediction, thus enhancing the prediction ability and 

interpretation power of the model. The model 

framework is shown in Figure 2. 

The structure of A-LSTM model integrates 

attention layer on the basis of traditional LSTM, and 

its workflow can be summarized into the following 

three stages: First, LSTM layer processes the input 

features of each time step t, and combined the hidden 

state of the previous time step to generate the hidden 

state of the current time step. This process not only 

considers the immediate input information, but also 

retains the continuity of historical information. It is 

formulated as Equation 1. The LSTM function 

represents the operation of the LSTM unit, including 

the operation of the input gate, the forgetting gate, the 

cell state update and the output gate. Next, the attention 

mechanism intervenes to emphasize important 

information by calculating the correlation between the 

current hidden state and all the hidden states in the 

history, and assigning different historical states 

different weights. The calculation of attention weights 

is usually based on the dot-product attention 

mechanism, which is specifically formalized as 

Equation 2. Here, is the weight matrix, is the bias term, 

and the Softmax function ensures that the weight sum 

is 1, achieving a probability distribution [28]. 

1( , )t t th LSTM x h −=     (1) 

1 2 1Softmax( [ , , ,..., ] )T

t a t t aa W h h h h b−= +   (2) 

Finally, based on the weighted hidden state 

sequence, the final prediction output is generated 

through the Dense Layer, i.e., Equation 3. This step 

converts the attention mechanism-enhanced context 

information into a direct prediction of emissions, 

where historical information representing weighted 

summation reflects different emphasis on different 

time points in the sequence. 
1

1

( )
t

t ti i

i

o Dense a h
−

=

=      (3) 

The innovation of A-LSTM model lies in that it 

realizes adaptive and dynamic weighting of sequence 

data through attention mechanism, which shows 

excellent performance when dealing with time series 

prediction problems, especially in complex scenes with 

noise interference and information redundancy. It not 

only improves the prediction accuracy of the model, 

but also enhances the understanding and interpretation 

ability of the model to the inherent mode of time series, 

and provides a powerful tool for real-time monitoring 

of coking exhaust gas emissions. 

 

3.3. Fault Diagnosis Model Development 

3.3.1. Fault feature extraction technology 

In the field of fault diagnosis of industrial 

equipment, effective feature extraction is the key to 

identify abnormal state. This link covers extracting 

characteristic indicators characterizing the health of
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update  
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Fig. 2. A-LSTM model
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equipment from continuous. These characteristics 

can be grouped into three broad categories: 

a). Frequency domain feature extraction: By means 

of fast Fourier transform (FFT), the time domain 

signal is converted to the frequency domain to 

reveal the frequency composition of the signal, 

which is helpful to identify fault characteristics 

at specific frequencies, such as the association 

between vibration frequency and equipment fault 

type. 

b). Statistical feature analysis: including mean, 

standard deviation, kurtosis and skewness, these 

statistics reflect the overall distribution 

characteristics of the signal and help identify the 

central trend and fluctuation of the data. 

In addition, dynamic time warping (DTW), as an 

alignment technique, is used to compare and analyze 

time series data with inconsistent length, and to 

overcome the problem of sequence length difference 

caused by different sampling rates , so as to ensure 

the consistency and accuracy of feature comparison. 

 

3.3.2. Deep learning models 

Aiming at the highly nonlinear and temporal 

characteristics of industrial equipment failure modes, 

this section introduces a hybrid model combining 

convolutional neural network (CNN) and recurrent 

neural network (RNN) to deeply mine the 

spatiotemporal features in fault data. The model 

framework is shown in Figure 3. Firstly, CNN's 

strong local feature extraction ability is used to map 

the data of each time step, and extract the spatial 

features and local invariant features of the time series. 

The specific operation is completed by the 

convolution layer, and a set of filters are used to 

perform convolution operation on the input data to 

obtain the feature map. The expression is Formula 4. 

Where, and represent convolution kernel weights 

and bias terms respectively. Then, the feature 

sequence extracted by CNN is input into RNN. RNN 

retains the historical information of the sequence by 

hiding the state, and updates the state to reflect the 

influence of the new input feature, which is 

formulated as Formula 5. Here, the weight matrix 

and bias term of RNN are respectively considered. 

The (RNN) function comprehensively considers the 

current input feature and the hidden state of the 

previous time step, reflecting the time dependence 

relationship between the sequences. Finally, the final 

hidden state of the RNN is converted into the 

probability distribution of the fault category by using 

a fully connected (Dense) layer, and the prediction 

probability of each fault type is given by normalizing 

the Softmax function, as shown in Formula 6. 

( ; , )t t f ff Conv x W b=    (4) 

1( , ; , , )t t t h h hh RNN f h W U b−=   (5) 

1:( | ) ( )T o T op y x Softmax W h b= +   (6) 

The advantage of CNN-RNN fusion model is 

that CNN focuses on extracting features from local 

regions of time series and effectively grasps the 

spatial distribution of fault features; RNN is good at 

capturing the time dependence of sequences, and the 

combination of the two can capture the 

spatiotemporal features of fault patterns more 

comprehensively. This deep learning model has 

strong recognition ability for complex and nonlinear 

fault patterns, especially suitable for real-time fault 

diagnosis of continuous monitoring data. 

 

3.4. Model fusion and optimization strategy 

To further enhance the accuracy of prediction 

and diagnosis, a model fusion strategy is proposed, 

combining the predictive power of the A-LSTM 

model with the fault recognition capability of the 

CNN-RNN model. The outputs of these models are 

integrated using a weighted averaging mechanism. 

However, the process through which the A-LSTM's 

prediction results are combined with the fault 

detection or diagnostic outputs of the CNN-RNN 

model is clarified here. Specifically, the A-LSTM 

model focuses on time-series anomaly prediction, 

while the CNN-RNN is responsible for recognizing 

and classifying specific fault types based on feature 

extraction from the data. These outputs are combined 

sequentially: the A-LSTM first flags potential 

anomalies, and the CNN-RNN subsequently 

identifies the fault type, ensuring real-time 

monitoring and actionable insights. Diagnosis, in 

this context, refers to the classification and 

identification of specific fault patterns rather than 

merely flagging anomalies, enabling precise fault 

management.  

Additionally, the fusion and optimization 

strategy uses methods such as grid search and 

Bayesian optimization to refine hyperparameters and 

achieve optimal performance. However, the specific 

techniques used in fusion are elaborated here. 

Weighted averaging is explicitly applied to integrate 

the outputs of the models, ensuring the final decision 

reflects   the   relative   strengths   of    each   model
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Fig. 3. CNN-RNN fusion model 
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in the context of prediction and fault recognition. 

Cross-validation, specifically K-fold cross-

validation, evaluates the model’s generalization 

ability to unknown data. By explicitly adopting 

weighted averaging over other methods (e.g., voting 

mechanisms), this approach ensures robustness and 

precision in the fusion process, offering a clear 

pathway for implementation in real-world scenarios. 

 

 4. CASE STUDIES AND EXPERIMENTAL 

VALIDATION 

 

 4.1. System deployment and data collection 

In order to ensure the effectiveness of the 

proposed real-time monitoring and fault diagnosis 

model, the research team selected a medium-sized 

coking enterprise with perfect configuration and 

mature environmental monitoring system as the test 

site. At the beginning of the project, the sensor 

network was carefully planned, and high-precision 

sensors were deployed at key positions such as inlet 

and outlet of coke oven, gas purification system and 

exhaust port to monitor temperature, pressure, gas 

(CO, SOx, NOx) and particulate matter 

concentration. Then, with the help of industrial 

Internet of Things technology, a data acquisition 

system is constructed to transmit field data to the 

central server in real time, and the data preprocessing 

module is integrated to complete key steps such as 

outlier elimination and missing value filling to 

ensure data quality. 

To support the real-time computing requirements 

of the A-LSTM and CNN-RNN models, this paper 

designs a distributed computing architecture based 

on the Industrial Internet of Things (IIoT). The data 

acquisition device transmits the real-time monitoring 

data to the edge computing node for preprocessing to 

reduce the pressure on data bandwidth. The 

preprocessed data is transmitted to the cloud server 

through a high-bandwidth network. The server is 

equipped with a high-performance GPU cluster to 

support the rapid execution of deep learning models. 

At the same time, to ensure the real-time 

performance of the system, the microservice model 

is adopted in the architecture, and each module is 

deployed and operated independently. This design 

ensures that the model can efficiently process 

complex computing tasks while meeting the needs of 

real-time monitoring, laying a solid foundation for 

the practical application of the system. 

 

4.2. Performance test and analysis 

 

Table 1 shows the performance metrics of the 

real-time monitoring model, including accuracy, 

response time, F1 score, and false alarm rate. These 

indicators reflect the performance of the model in 

practical applications, with an accuracy rate of 

96.5%, indicating that the predicted values of the 

model are very close to the actual values; a response 

time of 2 minutes, ensuring that abnormal emissions 

can be quickly identified; an F1 score of 0.94, 

indicating that the model has a good balance between 

accuracy and recall; and a false alarm rate of 1.2%, 

although high, which is expected to be further 

reduced by adjusting thresholds and optimizing the 

model. By comparing the actual predictions of the A-

LSTM model with actual emission data, the model 

demonstrated excellent performance. The accuracy 

of the model is as high as 96.5%, indicating that the 

predicted values are very close to the actual values 

in most cases. Response times as short as 2 minutes 

ensure abnormal emissions can be quickly identified 

and addressed. The F1 score of 0.94 demonstrates a 

good balance between accuracy and recall. Although 

the false alarm rate is 1.2%, it is expected to decrease 

further by adjusting thresholds and optimizing 

models. 

Table 1. Performance indicators of real-time monitoring 

model  

indicators described found 

accuracy 
correctly predicted time series 

proportion 
96.5% 

response 

time 

Average time from data 

acquisition to alarm 

2 

minutes 

F1 score 
Comprehensive evaluation of 

prediction performance 
0.94 

false alarm 

rate 

Proportion of false alarms 

without fault 
1.2% 

 

In a real fault case, a partial blockage occurred 

inside the coking furnace, resulting in abnormal gas 

emission. Figure 4 compares the performance of 

different fault diagnosis models, including CNN-

RNN, CNN-only, and RNN-only. The results show 

that CNN-RNN fusion model has significant 

improvement in accuracy, recall and F1 score, which 

verifies the superiority of the model in complex fault 

pattern recognition. Using CNN-RNN fusion 

models, faults were identified quickly, the model 

accurately predicted the type of fault, and an alarm 

was issued within 3 hours of the fault occurrence, 

much earlier than the time of detection by 

conventional inspections. Compared with other 

single models (CNN only and RNN only), CNN-

RNN model has significantly improved accuracy, 

recall and F1 score, which verifies the superiority of 

the model in complex fault pattern recognition. 

 
Fig. 4. Performance comparison of fault diagnosis models 
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85,00%

90,00%

95,00%
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Table 2 shows the performance stability of the 

model under different operating conditions, 

including normal operating conditions, high load 

operating conditions and post-maintenance recovery 

operating conditions. The accuracy rate change rate 

and response time change rate reflect the 

performance stability of the model under different 

working conditions. The accuracy rate change rate is 

small, indicating that the model can maintain high 

accuracy under different working conditions; the 

response time change rate is also small, indicating 

that the model can respond quickly under different 

working conditions. 

Table 2. Performance stability test of the model under 

different working conditions 

conditions 
accuracy rate 

of change 

response time 

rate of change 

normal working 

conditions 
-1.2% +5% 

high loading 

conditions for 
-0.8% -3% 

Recovery after 

maintenance 
+1.5% +8% 

 

Table 3 tests the robustness of the model against 

noisy data, including low, medium, and high noise. 

The decline rate of accuracy and F1 score reflect the 

performance stability of the model under different 

noise intensities. The decline rate of accuracy is 

small, indicating that the model has certain 

robustness to noise; the decline rate of F1 score is 

also small, indicating that the model can still 

maintain high comprehensive performance under 

noise environment. 

 
Table 3. Robustness test of model against noisy data 

noise 

intensity 

accuracy 

degradation rate 

F1 score decline 

rate 

low noise -0.5% -0.02 

noise in -1.2% -0.05 

high noise -2.8% -0.12 

 

In order to evaluate the generalization ability of 

the model, we test the performance of the real-time 

monitoring model under different operating 

conditions. The results show that the model is stable 

under normal and high load conditions, and the 

variation of accuracy and response time is within 

acceptable range, which proves the adaptability of 

the model to daily production fluctuation. After 

maintenance, the accuracy of the model is slightly 

improved, but the response time is increased, which 

indicates that the model needs a period of time to 

relearn the data pattern under the new working 

condition. For robustness evaluation, we introduce 

different levels of noise into the data to simulate data 

disturbances that may be encountered in actual 

production. The results show that even in high noise 

environment, the model performance degradation is 

still controllable, and the accuracy and F1 score are 

relatively small, which proves that the model design 

has good anti-interference ability. 

 

 4.3. Discussed 

As shown in Table 4, comparative analysis 

shows that the accuracy of the A-LSTM model 

proposed in this study in real-time monitoring 

reaches 97.5%, which is much higher than the 

average level of other models. In terms of response 

time, this model can issue an early warning within 2 

minutes, which is at least 30% faster than the average 

response time of other models, which is attributed to 

the efficient information extraction ability of the 

attention mechanism in the model. 

Table 4. Accuracy and response time evaluation of real-

time monitoring model 

model name 
Accuracy 

( %) 

Average 

Response Time 

(minutes) 

A-LSTM with Attention 

Mechanism 
97.5 2 

ARIMA Time Series 

Forecasting Model A 
94.8 3 

Random Forest 

Regression Model B 
96.2 2.5 

Gradient Boosting 

Regression Model C 
95.6 3.5 

Support Vector 

Regression Model D 
96.8 3 

Long Short-Term 

Memory (LSTM) 
without Attention 

(Model E) 

95.0 4 

 

As shown in Table 5, in terms of fault diagnosis 

performance, the accuracy of CNN-RNN fusion 

model in this study is as high as 96.7%, which has 

obvious advantages over other models.  

As shown in Table 6, this research model shows 

strong adaptability and stability through testing 

under different operating conditions. Under extreme 

conditions such as high load, low load and aging of 

equipment, the fluctuation amplitude of model 

accuracy is the smallest, which shows that it has 

good generalization ability and robustness. 

Considering the initial investment and long-term 

benefits, although the initial deployment of this 

research model may require higher technology and 

hardware investment, its long-term benefits in 

reducing unplanned downtime, reducing 

maintenance costs, and avoiding environmental 

penalties are significant. Compared with other 

models, the payback period of this model is 

shortened by about 10%, and the overall net present 

value (NPV) is increased by 15%, showing excellent 

cost-benefit ratio. 
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Table 5. Comparison between accuracy and positioning 

efficiency of fault diagnosis model 

model name 

Fault 

diagnosis 

accuracy ( %) 

Mean 

Positioning 

Time (hours) 

CNN-RNN (paper 

model) 
96.7 1.2 

SVM with Time 
Windows 

94.1 2.5 

Recurrent Neural 

Network (RNN) 
95.3 2.2 

Random Forest on 
Feature Extracted by 

PCA 

95.9 2.8 

Gradient Boosting 

Machine (GBM) for 
Anomaly Detection 

94.8 3 

Convolutional Neural 

Network (CNN) for 
Time Series 

95.6 2.6 

 

Table 6. Comparison of model performance under 

different working conditions 

conditions 

Fluctuation of 

accuracy of this 

model ( %) 

Average Other 

Model Accuracy 

Fluctuation ( %) 

high load ±2.0 ±3.5 

low load ±1.8 ±3.2 

equipment 

aging 
±2.5 ±4.1 

seasonal 

variation 
±1.5 ±2.8 

 

As shown in Table 7, the A-LSTM with 

Attention Mechanism outperforms other models in 

terms of annual maintenance cost, prediction 

accuracy decline rate, maintenance frequency, and 

long-term performance stability. Specifically, it 

boasts the lowest annual maintenance cost (200,000 

RMB), the slowest decline in prediction accuracy (a 

mere 1.5% per year), the least maintenance required 

(only 4 times per year), and the highest level of long- 

 

term performance stability. In contrast, the Long 

Short-Term Memory (LSTM) without Attention has 

a slightly higher annual maintenance cost (220,000 

RMB), a faster decline in prediction accuracy (2.0% 

per year), and requires more maintenance (5 times 

per year), with moderate long-term performance 

stability. The Convolutional Neural Network - 

Recurrent Neural Network (CNN-RNN) incurs the 

highest annual maintenance cost (250,000 RMB), 

experiences the fastest decline in prediction accuracy 

(3.0% per year), requires the most frequent 

maintenance (6 times per year), and also exhibits 

moderate long-term performance stability. In 

summary, the A-LSTM with Attention Mechanism 

not only demonstrates superior initial performance 

but also maintains efficient and stable performance 

over the long term, reducing additional maintenance 

costs and downtime, thereby showcasing the best 

cost-effectiveness and industrial application value. 

 

 5. CONCLUSION 

 

An intelligent system integrating data 

acquisition, real-time monitoring and fault diagnosis 

was successfully constructed in this study, aiming at 

improving the efficiency and effect of coking 

industry exhaust gas treatment. Through the 

carefully designed data acquisition system, the 

comprehensive and high-frequency monitoring of 

key emission parameters is realized, which provides 

a high-quality data base for the model. The proposed 

A-LSTM model utilizes attention mechanism to 

deeply analyze time series data, achieving a 

monitoring accuracy of up to 97.5% and a response 

time of only 2 minutes, which is significantly better 

than existing models. This model not only improves 

the timeliness and accuracy of monitoring, but also 

enhances the understanding of complex time series 

patterns through dynamic weighting. In fault 

diagnosis, CNN-RNN fusion model shows the 

ability of deep fault feature mining, the accuracy 

reaches 96.7%, and the average location time is 

shortened to 1.2 hours, which is better than similar 

models,   which   proves   the   superiority   of   this 

 
Table 7. Comparison of Long-Term Performance and Maintenance Costs of Models 

Model Name 

Annual 

Maintenance 

Cost (10,000 

RMB) 

Prediction 

Accuracy Decline 

Rate (%) 

Maintenance 

Frequency 

(Times/Year) 

Long-Term 

Performance 

Stability 

A-LSTM with Attention 
Mechanism 

20 -1.5% 4 High 

Long Short-Term Memory 
(LSTM) without Attention 

22 -2.0% 5 Moderate 

Convolutional Neural Network - 
Recurrent Neural Network 

(CNN-RNN) 

25 -3.0% 6 Moderate 
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model in complex fault pattern recognition. Through 

the tests under different working conditions, the 

system model shows a high degree of stability and 

adaptability, even under extreme conditions, it can 

maintain good performance, highlighting its 

reliability in practical applications. Cost-benefit 

analysis shows that although the initial investment is 

relatively high, the system can significantly reduce 

unplanned downtime, reduce maintenance costs and 

avoid environmental penalties. In the long run, the 

system can bring significant economic benefits to 

enterprises, shorten the investment recovery period 

by about 10%, and increase NPV by 15%. It fully 

proves its economic feasibility and industrial 

popularization value. 
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