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Abstracts 

An algorithm combining particle swarm algorithm and twin support vector machines is proposed. Secondly, 

in an attempt to suppress the vibration signal noise and enhance the signal features, a rolling bearing signal 

feature extraction model based on improved variational mode decomposition is proposed. Then, in an attempt 

to reduce the data dimensionality to improve the computational speed, the study introduces the kernel principal 

component analysis to reduce the dimensionality of the data, and at the same time, the excavator distance 

algorithm is introduced so as to construct a condition monitoring model. Finally, the proposed algorithm is 

applied to the monitoring model to construct a rolling bearing fault diagnosis model based on the algorithm and 

data dimensionality reduction. The suggested approach outperformed the comparison algorithm in terms of 

average accuracy rate and loss value, with 97.2% and 1.39, respectively, according to a comparative 

performance analysis. The bearing defect diagnostic model underwent performance comparison study as well, 

and outcomes confirmed that the model's average diagnosis accuracy rate was 94.7%. The identification 

accuracy of inner ring pitting fault, outer ring pitting fault, outer ring fault and rolling element pitting fault are 

96.2%, 94.7%, 94.5% and 84.9%, respectively, much higher than the comparison model. 
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FD: fault diagnosis; 

CWP: Circulating Water pump; 
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TWSVM: twin support vector machines; 

SVM: support vector machine; 

PSO: Particle swarm optimization; 

KPCA: kernel principal component analysis; 

HD: high-dimensional; 

PCA: principal component analysis; 

VMD: variational mode decomposition; 

MPE: multi scale permutation entropy; 

WHNR: weighted harmonic to noise ratio; 

VS: vibration signals; 

NPP: nuclear circulating pump; 

KKT: Karush-Kuhn-Tucker; 

FV: fitness value; 

EV: extreme value; 

IMF: intrinsic mode function; 

FDF: frequency-domain features; 

TDF: time-domain features. 

 

1. INTRODUCTION 

 

Circulating Water pump (CWP) is a key 

component of the operation of mechanical 

equipment, and the rolling bearing, as the core part 

of the water pump, is particularly important in 
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ensuring the smooth operation of the CWP (1). 

Rolling bearings (RB) are prone to failure, and if the 

fault is not diagnosed in time, it may cause major 

safety accidents (2). The fault sources of RB usually 

come from four aspects. First, long-term operation 

causes cracks caused by material fatigue and failure 

under the action of contact stress on the working 

surface of bearings. Second, the relative sliding 

friction of bearings makes the metal constantly wear, 

especially when hard particles are added and 

lubrication conditions deteriorate, resulting in 

surface deformation and parts damage. Third, when 

the work is overloaded, the parts break and the 

materials reach the limit. Fourth, long-term contact 

with corrodes, such as current corrosion, expands the 

corrosion area, resulting in failure. Choosing the 

right method can effectively improve the accuracy 

rate of rolling bearings, timely maintenance of faults, 

so as to avoid safety accidents. However, Because 

the working environment of circulating pump is very 

bad, and the vibration signal has the characteristics 

of high frequency and non-stationarity, many 

methods cannot effectively process and extract the 

signal. At present, the fault diagnosis (FD) methods 

of water pump rolling bearing often have some 

problems such as inaccurate diagnosis. Although 

many scholars have done research in related fields, 
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the effect is still not good (3). Although many 

scholars have done research in related fields, the 

results are still poor (4). For example, For example, 

Cheng et al. proposed a bearing residual service life 

model based on dynamic interactive hybrid model in 

order to solve the problem that it is difficult to 

accurately predict the residual service life of the 

shaft journal bearing of the nuclear circulating pump 

(NPP). Due to the inability to extract fault 

characteristics well, the prediction effect is poor (5). 

In addition, for the problem of pump fault diagnosis, 

Dutta et al. used the literature review method to 

study relevant literatures, but did not propose how to 

enhance fault characteristics to improve the 

diagnostic accuracy (6). Meanwhile, slightly 

effective studies also exist. Pu et al. presented a FD 

method based on depth separable convolutional 

neural network in an attempt to enhance the accuracy 

of FD of RB of water pumps. The method was 

experimentally validated and the results showed 

effectiveness (7). 

Because the circulating water pump is in a high 

load working state for a long time, its rolling bearing 

is prone to failure, which affects the normal work of 

the circulating water pump. How to accurately 

diagnose the rolling bearing fault has become an 

urgent problem to be solved. How to accurately 

diagnose the faults of RB has become an urgent 

problem. By resolving two related SVM-type 

difficulties, twin support vector machines 

(TWSVM), a binary support vector machine (SVM) 

classifier, identify two non-parallel planes (8). It has 

advantages such as better handling of multi-

classification problems and is widely used in fields 

such as FD. However, TWSVM has the 

disadvantage that the parameters are difficult to 

specify. Particle swarm optimization (PSO) is a 

population-based stochastic optimization technique, 

which seeks the optimal solution of a problem by 

simulating the behavior of a group such as a flock of 

birds, and has the advantages of finding the global 

optimal objective, etc., and is able to make up for the 

defects of the TWSVM algorithm better (9). In 

addition, because the circulating water pump is in a 

complex environment and the data scale is large, it is 

prone to digital disaster. The fundamental concept of 

the kernel principal component analysis (KPCA) 

nonlinear dimensionality reduction technique is to 

use nonlinear transformations to map the sample 

data from the input space to the high-dimensional 

(HD) feature space, and then principal component 

analysis (PCA) to extract features (10). Many 

scholars have done related research. For example, 

Huang et al. suggested an automatic TSVM 

parameter selection technique based on chaotic 

mapping dung beetle optimization algorithm to 

address the issue of challenging TWSVM parameter 

selection. After experimental validation, it turned out 

that the method had high precision (11). 

The above research shows that the current 

method used in the fault diagnosis (FD) of water 

pump rolling bearing is too low in FD due to the lack 

of effective feature extraction. In this study, the 

variational mode decomposition is improved and 

combined with multi-scale arrangement entropy, so 

as to enhance the extraction of fault vibration signal 

features of rolling bearing, so as to improve the 

diagnostic accuracy. Therefore, the study combines 

PSO and TWSVM to construct PSO-TWSVM 

algorithms. In addition, in order to better extract 

vibration signal features, a rolling bearing vibration 

signal feature extraction model based on improved 

variational mode decomposition (VMD) is 

constructed. Then, in order to improve the 

calculation speed of the algorithm and monitor the 

running state of the rolling bearing of the circulating 

water pump, the Earth Mover's Distance (EMD) 

algorithm is combined with KPCA algorithm and 

applied to the signal feature extraction model, so as 

to build the state monitoring model based on KPCA-

improved VMD-EMD. Finally, the PSO-TWSVM 

algorithm is applied to the condition monitoring 

model to construct the FD model of circulating water 

pump rolling bearing based on data reduction and 

TWSVM. The innovation of this study is the 

combination of PSO algorithm and TWSVM, aiming 

to improve the FD accuracy of circulating water 

pump rolling bearing. It is expected that this method 

can contribute to enriching bearing FD theory. 

 
2. METHODS AND MATERIALS 

 

2.1. Fusion of PSO and TWSVM algorithm 

construction 

One of the essential parts of CWP in NPP is RB, 

which is crucial to the proper operation of CWP in 

NPP. It is essential to the CWP in NPP operating 

safely. It is crucial to develop a technique for 

precisely identifying RB issues in order to guarantee 

the NPP's CWP operates safely TWSVM, developed 

from SVM, optimizes the classification effect by 

constructing two parallel decision boundaries to 

improve the prediction efficiency and accuracy (12). 

It has advantages such as better handling of multi-

classification problems, and is widely used in fields 

such as FD (13). TWSVM is categorized into linear 

and nonlinear, and an example of linear TWSVM is 

shown in Figure 1 (14). 

In Figure 1, TWSVM has two classification 

hyperplanes, whose two hyperplanes are not parallel 

to each other. Moreover, one of the hyperplanes is 

very close to the same class of training points, but 

very far from the other class of training points. The 

operation steps of linear TWSVM are as follows. 

First, assume that there is a training sample set 

{( , ), 1,2; 1,2, , }i

j jx y i j m= = , 
i

jx R . Among 

them, 
i

jx  is the j  samples in sample i . i  is 

the sample type. j  is the samples. jy  is the 

sample corresponding label and { 1, 1}jy  + − . m  

is the total samples and 1 2m m m= + . 1m  is the 

total sample type 1. 2m  is the total  sample type 2. 
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Fig. 1. Example diagram of a linear programmable model of TWSVM 

 

Moreover, the set of sample type 1 and the set of 

sample type 2 are displayed by matrix 1m n
A R


  

and matrix 2m n
B R


 , respectively. Secondly, 

TWSVM is viewed as a quadratic programming 

problem and two hyperplanes TWSVM1 and 

TWSVM2 are constructed simultaneously. The 

computational expression is shown in Equation (1). 
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 (1) 

In Equation (1),   and   are slack variables. 

1e  and 2e  are unit vectors. 1b  and 2b  are 

biases. 
1  and 

2  are weight vectors. Then, the 

optimization problem for the two inequalities is 

solved by Lagrangian method. Moreover, the 

pairwise problems of TWSVM1 and TWSVM2 are 

obtained by combining the Karush-Kuhn-Tucker 

conditions (KKT). Among them, the TWSVM1 

formula is shown in Equation (2). 

1

2

1

1
  ( )

2

. .     0

T T T Tmin G H H G e

s t c


  



− −

 

 (2) 

In Equation (2),   is the Lagrange multiplier, 

H  and G  are matrices and 1[    ]T TH A e= , 

2[   ]T TG B e= . The TWSVM2 formula is shown in 

Equation (3). 

 

1

1

2

1
  ( )

2

. .     0

T T T Tmin P Q Q P e

s t c


  



− −

 

 (3) 

In Equation (3),   is the Lagrange multiplier. 

P  and Q  are matrices and 1[   ]P A e= , 

2[   ]Q B e= . Finally, the final discriminant formula 

( )Label x  computational expression is obtained as 

shown in Equation (4). 

 
1,2 1,2

1

2

( ) { }

  1
               =

  2

T i i

i
i i

Label x argmin d argmin x b

d x class

d x class


= =

= = +

 


 

 (4) 

In Equation (4), 1d  and 2d  are dimensions. 

class  is the type. However, TWSVM has the defect 

of parameter uncertainty. PSO algorithm has 

advantages such as finding the global optimal 

objective, which can better compensate for the 

defects of TWSVM algorithm (15). The flow of PSO 

algorithm is shown in Figure 2 (16). 

Start Initialize the

 particle swarm

Evaluation

 particle swarm

Update Particle

 Swarm

Meet the termination condition?？
Output the

 optimal solution

End

Y

N

 
Fig. 2. Flow chart of PSO algorithm  

 

The PSO method in Figure 2 initializes each and every 

particle in the population first. Second, the fitness value 

(FV) of every particle is computed for every generation of 

evolution. Subsequently, the FV of every particle is 

contrasted with its unique extreme value (EV) of the 

optimal place in history. If it is better than the past value, 

then it is taken as the individual EV of the current position. 

Each particle's FV is concurrently compared to its previous 

global EV. The global EV's index number is reset if it is 

superior. The particles' position and velocity are then 

updated to see if the iteration has reached the maximum of 

generations or if the FV meets the predetermined criteria. 

Provide the best outcome if the condition is met. Instead, go 

back to the second step. Among them, after each iteration, 

the particle's velocity update formula is shown in Equation 

(5). 

1 2. ().( ) . ().( )id id id id gd idv wv q rand p q Rand p = + − + −

  (5) 

In Equation (5), idv
 is the particle velocity. 1q

 

and 2q
 are the weights. idp

 and gdp
 are the d

th dimension components. w  is the parameter. 

()rand
 and 

()Rand
 are random numbers. The 

particle position update formula is shown in 

Equation (6). 

   id id idv = +
    (6) 

Based on the above, PSO is combined with 

TWSVM to construct PSO-TWSVM algorithm. The 

flow of this algorithm is shown in Figure 3. 



DIAGNOSTYKA, Vol. 26, No.2 (2025) 

Chen Z, Li D, Su H, Liu W.: Fault diagnosis of rolling bearings in water pumps based on data … 

4 

Figure 3 shows the specific operation steps of 

PSO-TWSVM algorithm. First, the particle swarm's 

size and maximum iterations are determined. The 

particles' speed and direction are also initialized 

simultaneously. Secondly, the particles are 

substituted into the TWSVM and the training set data 

are classified and the accuracy of the classification is 

used as the fitness. The particles are evaluated using 

the fitness to obtain the initial fitness of each particle. 

Then iterative optimization search is performed, 

utilizing the position update formula and velocity 

update formula for the velocity and direction of the 

particles. Followed by the number of iterations are 

updated, while the adaptation degree of the 

corresponding particle is calculated. If the updated 

fitness is superior, the value is updated. The value of 

the global optimal fitness is updated if the particle's 

optimal fitness exceeds the current value. Then, the 

current number of iterations is judged and stopped if 

the maximum iteration is reached. Instead, continue 

the iteration. Finally, the optimal value obtained is 

extracted and the operation is terminated after 

obtaining the optimal parameters. 

2.2. Design of bearing FD model based on data 

dimensionality reduction and TWSVM 

The intricate operating environment of CWP in 

NPP results in a high level of noise in the VS, 

making it challenging to identify the characteristics 

of the RB fault. To increase the accuracy of FD of 

CWP in NPP, it is crucial to figure out how to 

process the signal and add features. Before 

extracting the features, the signal needs to be 

processed, so the first study introduces the VMD 

model. Moreover, to address the shortcomings of the 

VMD model such as low identification accuracy of 

intrinsic mode function (IMF), penalty factor and 

multilevel decomposition are introduced for 

decomposition. In this way, the optimal IMF is 

obtained to denoise the signal and enhance the 

features. Secondly, in an effort to control the number 

of decomposition layers, safeguard the integrity of 

fault features, eliminate redundant modes, and 

control the IMF bandwidth as well as to prevent the 

problem of insufficient or insufficient noise 

reduction, the study introduces the energy ratio 

index, 1.5-dimensional Weighted Harmonic to Noise 

Ratio (WHNR index), and constructs a method based 

on the improved VMD VS decomposition. Figure 4 

displays the method's flow chart.

Start Initialize the particle population
Initializing particles into TWSVM and 

calculate the particle fitness

Update individual and global extremes 

based on particle fitness

Update particle individual and global 

extremes

Maximum number 

of iterations

End
The optimal parameters were brought into 

TWSVM to classify the samples
Get the optimal parameters

Y

N

 
Fig. 3. Flow chart of PSO-TWSVM algorithm 
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n layer decomposition

Make the IMF

 a new signal
The 1.5-dimensional 
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ratio index of the new signal 
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Is the current weighted 

harmonic noise ratio smaller 

than the last step?
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and the maximum number of 

decomposition

Reach the maximum 

decomposition series？
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improved VMD and m=m+1

Output the optimal IMF of 

the n decomposition and the 

corresponding weighted 

harmonic noise ratio
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given accuracy?
End Make the remaining items the 
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N

Y
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Fig. 4. The improved VMD vibration signal decomposition method 
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Figure 4 shows the specific operation flow of the 

method. In the first step, each parameter is initialized 

to operate, and the energy ratio threshold and the 

maximum number of graded levels are set. 

Meanwhile, the original VS is input and then its 1.5 

dimensional energy spectrum analysis WHNR index 

is calculated, so that the times n  is added to 1 and 

the decomposition levels m  is equal to 1. In the 

second step, the signal is decomposed by using the 

VMD to obtain the IMF and the residual term. It also 

updates and calculates the energy ratio threshold for 

the n  level of decomposition, while making the 

IMF for the new signal to calculate the 1.5 

dimensional energy spectrum analysis WHNR for its 

decomposition level m . In the third step, if the 

decomposition level reaches the maximum 

decomposition level, the optimal IMF for the 

decomposition of the n  level as well as the 

corresponding 1.5-dimensional energy spectrum 

analysis WHNR are outputted. Determine whether 

its threshold is greater than the given accuracy, if yes 

then the remaining terms are used as new input 

signals and return to the first step to recalculate. 

Otherwise output the result and the decomposition is 

finished. In the fourth step, if the decomposition 

level has not reached the maximum number of 

decomposition levels then determine whether the 

current level 1.5 dimensional energy spectrum 

analysis WHNR is smaller than the previous level. 

Proceed to the following stage if the answer is 

affirmative. Rather, it goes back to step two. In the 

first step, the energy ratio needs to be calculated, the 

energy ratio calculation formula is shown in 

Equation (7). 

 

2

2

1

( )

2

( )
s

CF

imf

f CF

E f

sig

f

s

E f

R

E f

f





= −

=

=





 (7) 

In Equation (7), ER  is the energy ratio. CF  is 

the center frequency. ( )sigE f  and ( )imfE f  are 

the spectral amplitude of the original signal and the 

frequency in the IMF, respectively. f  is the signal 

sampling frequency.   is the calculation range. 

1.5-dimensional energy spectrum analysis WHNR  

calculation formula is shown in Equation (8). 

 
( )

( ) 10
(0) ( )

o

o o

f T

Z o

o

f f T Z Z o

r f
WHNR f log

r r f

+

= +

=
−

  (8) 

In Equation (8), of  is the fault frequency. Zr  

is the 1.5-dimensional energy spectrum analysis total 

energy. T  is the weighting factor. Secondly, 

MultiScale Permutation Entropy (MPE) is used to 

extract the time-domain features (TDFs) of the 

vibration signals (VS) and 1.5-dimensional energy 

spectrum analysis S-index to extract the frequency-

domain features (FDFs) of the VS. Construct the 

fault feature extraction model of roller bearing signal 

of CWP in NPP. The specific process of the model 

is as follows: firstly, the sensors are arranged in two 

orthogonal directions, respectively +X-axis and +Y-

axis, and the vertical direction is +Z-axis in the shell 

part of the CWP, with a total of three positions. Then, 

MPE and 1.5-Dimensional Energy Spectrum 

WHNR  are used to enhance the VS features in the 

three directions, and the three optimal IMFs are 

obtained at the same time. Finally, the TDF MPE and 

FDF WHNR  of the optimal IMFs of each sensor 

are extracted, and the time-frequency feature matrix 

of the VSs is constructed. Among them, the 

expression for calculating the MPE  value ( )J   

after normalizing the alignment entropy of each 

coarse-grained sequence is shown in Equation (9). 

 1
( )

( !)

k

g g

g

I lnI

J
ln

 


=

−

=


 (9) 

In Equation (9),   is the embedding dimension 

and 1,2, , , !g k k =  , I  are the elements. 

Here, the RB fault feature extraction of CWP in NPP 

is completed. Next, in order to solve the problem that 

CWP in NPP in the monitoring state of HD features 

will have dimensional catastrophe, the study 

introduces the KPCA algorithm to reduce the 

dimensionality of the data. Its calculation method 

steps first set the input matrix as 

( 1,2, , )jL W j N = . Among them, N  is the 

number of samples and   is the variables. The data 

in the original space is mapped to the HD feature 

space F  by the nonlinear mapping function  . 

The vector jL  is mapped to ( )jL  and the de-

meaned mapping ( )jl  is assumed to exist in the 

HD space. The resulting expression for the 

covariance matrix calculation is shown in Equation 

(10). 

 
1

1
( ( ) ( )

N
F T

j j

j

C l l
N

 
=

=   (10) 

In Equation (10), 
FC  is the covariance matrix. 

The covariance matrix's eigenvalues and 

eigenvectors must then be calculated, and the 

computational expression must be conformed as 

shown by Equation (11). 

 
FC  =   (11) 

In Equation (11),   is the eigenvalue.   is the 

eigenvector. Next,   is regarded as a linear data 

set. The coefficients ( 1,2, , )r r N =  exist, 

which leads to the eigenvector computational 

expression as shown in Equation (12). 

 
1

( )
N

r r

r

l  
−

=  (12) 

As a result, Equation (2) can be simplified to 

obtain the computational formula N r Kr = . 

Among them, K  is the kernel matrix of N N . 

and rjK  is the dot product of ( )jl  and ( )rl . 

As a result, the expression for the computation of kt
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, the projection of ( )l  in the eigenvector k , is 

obtained as shown in Equation (13). 

 
1

, ( ) ( ), ( )
N

k

k k j r

r

t l l l    
=

= =  (13) 

In addition, the calculation of the kernel matrix 

requires a kernel function, and the study combines 

the practical situation with the Gaussian kernel 

function. Equation (14) provides the expression for 

its computation. 

 ( )2( , ) ( ) / 2r j r jK l l exp l l = − −  (14) 

In Equation (14),   is the nuclear parameter. 

Immediately after that, to better detect the operation 

state of the RB of the CWP. The study introduces the 

EMD combined with KPCA under the Lajda 

criterion to construct the EMD-KPCA algorithm. 

Moreover, it is applied to the feature extraction 

model of RB VS based on improved VMD, so as to 

construct the condition monitoring model based on 

KPCA-improved VMD-EMD. The specific flow of 

the model is shown in Figure 5. 

Figure 5 shows the specific flow of the model. 

First of all, the initialization operation is carried out 

on the parameters of the model. Moreover, the 

features of the VS are extracted using the kernel 

cycle based on the improved VMD VS 

decomposition method as well as the pump roller 

bearing signal fault feature extraction model, and the 

feature data are preprocessed after the feature matrix 

at the same time. Secondly, the processed feature 

matrix is set to two-dimensional data, and KPCA is 

utilized to downsize the data. Then, the 

dimensionality reduced data is input to the distance 

of each principal component in the EMD and the 

distance threshold is calculated using the Lajda 

criterion to determine the KPCA. Finally, the data to 

be measured is input to the KPCA and the EMD 

distance is calculated by repeating the previous step. 

The RB condition monitoring is realized by 

comparing with the threshold value. Finally, to 

provide accurate diagnosis of RB faults, the study 

applies the PSO-TWSVM algorithm to the KPCA-

improved VMD-EMD-based condition monitoring 

model. The FD model of RB of CWP in NPP is 

constructed based on the reduced dimensional data 

and TWSVM. Figure 6 displays the model's flow. 

Figure 6 shows the specific flow of the proposed 

FD model. First, basic parameters such as the 

population size and the maximum number of 

iterations of the PSO algorithm are set, and the speed 

and direction of particles in the particle swarm are 

initialized. Secondly, the particles obtained after 

initialization are substituted into TWSVM, the 

training data set is trained and classified, and the 

classification accuracy is used as the fitness to 

evaluate the particles, thus obtaining the initial 

fitness of all particles. Then the particle position and 

velocity are updated, and the corresponding particle 

fitness is calculated. If the new particle fitness is 

better than its own fitness, the value is updated; if the 

fitness of a particle is better than the global fitness, 

the value is updated to the global optimal value. 

Then, the number of iterations of the algorithm is 

judged. If the maximum number of iterations is 

reached, the algorithm is stopped, and vice versa, the 

iteration continues. Finally, the obtained optimal 

value is put into TWSVM for training and input test 

data, so as to obtain fault classification results and 

classification accuracy. 

Normal operating 

characteristics

Characteristics of the

 data to be measured

Data preprocessing

Data preprocessing

Build the 

KPCA 

KPCA 

Main element 

information of normal 

working condition

The primary information 

under test data

Calculate the

 EMD distance
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Fig. 5. State monitoring model based on KPCA-improved VMD-EMD 
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Fig. 6. FD model of rolling bearing of CWP in NPP based on dimensionality reduction data and TWSVM 
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3. RESULTS 

 

3.1. PSO-TWSVM performance comparison test 

For verifying the superior performance of the 

PSO-TWSVM algorithm (Algorithm 1) proposed in 

the study, it is compared with the GA-SVM 

algorithm (Algorithm 2), the PSO-CNN algorithm 

(Algorithm 3) and the multi-scale collaborative 

fusion residual neural network (MCFRNN) 

algorithm (Algorithm 4) in the Matlab simulation 

software for experimental comparison. The 

experimental metrics include adaptation and 

accuracy, etc. In order to ensure the effectiveness of 

the experiment, a data acquisition system was 

designed, as shown in Figure 7. 

Signal acquisition by setting up the experimental 

platform and using the data acquisition system to 

collect data. As shown in Figure. 7 (a), the combined 

water tank is composed of a heating water tank and 

a storage water tank with a vertical circulating water 

pump as the driving pressure head. The data is 

collected by a data acquisition system composed of 

electromagnetic flowmeter and temperature sensor 

arranged around the pump. As can be seen in Figure 

7 (b) and Figure 7 (c), the data acquisition system is 

composed of a performance parameter acquisition 

module and a vibration signal acquisition module. 

By imitating the faults such as pitting and breaking 

of the inner and outer rings of the bearing ring and 

the rolling body, the bearing signals are collected 

using sensors and electromagnetic currents, and 

transmitted to the data acquisition and signal 

analysis system using the network intelligent 

acquisition instrument, and finally transmitted to the 

terminal to complete the collection. The sensors used 

to extract the experimental signal are temperature 

sensor and pressure sensor respectively. The 

temperature measuring element of the temperature 

sensor is Pt100 thermal resistance with a measuring 

range of 0 ~ 100℃ and the output current is 4 ~ 

20mA standard current. The pressure sensor adopts 

the static pressure gauge produced by Guangzhou 

Sennuo Instrument Co., LTD., with a measuring 

range of 0-2.5MPa, the output signal is 4-20mA, and 

the pressure measurement accuracy is ±0.1%. The 

pump is a vertical centrifugal pump, the model is 

GDS50-250, the flow is 35m3, the head is 70m, the 

speed is 3950r/min, the driving power is 18.5kW. 

Network intelligent acquisition instrument, the 

model is INV3062, 8-channel / 24-bit, each channel 

sampling frequency is 6.25-51.2kHz. Data 

acquisition and signal analysis system, model 

DASP-V11, oscillographic sampling, INV high 

precision frequency meter, time domain analysis, 

format conversion. Acceleration sensor, model 

INV9822, installed resonant frequency >25kHz, 

resolution is 0.002m/s2. The frequency domain 

legend of normal vibration signal, bearing inner ring, 

outer ring and rolling element common pitting 

failure in the data is shown in Figure 8. 

It can be seen from Figure 8 that the time domain 

distribution of VS of normal bearing VS, inner ring 

of bearing, outer ring of bearing and rolling body are 

different when pitting corrosion fault occurs, which 

have their own unique characteristics. The frequency 

domain characteristic legend of normal bearing 

vibration signal, bearing inner ring, outer ring and 

rolling element when pitting fault occurs is shown in 

Figure 9. It can be seen from Figure 9 that when 

pitting corrosion fault occurs, there are obvious 

differences in the amplitude distribution 

characteristics of the frequency domain of the inner, 

outer, rolling body and normal VS of the bearing 

ring. By extracting and classifying the features, the 

fault location and fault type can be accurately 

distinguished effectively. When the bearing fails, the 

peak value will change dramatically. The peak value 

of vibration signal in frequency domain and time 

domain is reflected in the data set, and the fault is 

inferred by the peak value. Through the data 

acquisition system, a total of 27621 pieces of data 

were collected as the vibration signal data of rolling 

bearings, 80% of which were used as the training set 

and 20% as the test set. The specific experimental 

environment of this research is shown in Table 1. 

Vertical 

Circulating

 water pump

Control consoleCombined water tank

(a) Summary of circulating pump shrinkage test 

bench

Electromagnetic 

flowmeter

Inlet and outlet

 pressure gauge

Temperature gauge PLC Control cabinet
Performance parameter collection 

interface of circulating pump shrinkage 

test bench
(b) Performance parameter acquisition module

Acceleration sensor Network type intelligent 

acquisition instrument

Data acquisition and signal 

analysis system

Acquisition terminal

(c) Vibration signal acquisition module  

Fig. 7. Data acquisition system 
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Fig. 8. Four kinds of fault time domain 

images  
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Fig. 9. Frequency domain diagram of four 

fault types 

 

Table 1. Specific experimental environment of this 

study 

Parameter names Parameter 

Processor Intel Core i9-13900K 

Main frequency 5.8GHz 

Internal memory 32GB 

Hard disk capacity 500GB 

Operating system Windows 10 64 

Matlab version Matlab 2023a 

Data analysis software Spss24.0 

 

In the above environment, the four algorithms are 

firstly experimented for accuracy and loss value 

comparison. Figure 10 displays the outcomes of each 

algorithm's accuracy and loss numbers. 

In Figure 10(a), the average accuracy of Algorithm 

1, 2, 3, and 4 are 97.8%, 95.1%, 94.2%, and 89.6%, 

respectively. Among them, Algorithm 1 proposed by 

the study has the highest average accuracy. In Figure 

10(b), the loss value curve of Algorithm 1 starts to 

converge at iteration 227 generations. Its average 

loss value is 1.39, which is lower than 1.62 for 

Algorithm 2, 1.69 for Algorithm 3, and 1.52 for 

Algorithm 4. The above results illustrate that 

Algorithm 1 outperforms the comparative 

algorithms in terms of both quasi-average accuracy 

and loss value dimensions. The results of the fitness 

curves and runtime comparisons of the algorithms 

are shown in Figure 11. 
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Fig. 10. Loss and accuracy curves for each 

algorithm 
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Fig. 11. The fitness curve and the run time  

comparison results of the algorithm 
 

In Figure 11(a), the fitness curve of Algorithm 1 

is the first to converge and starts converging around 

118 generations of iterations. The fitness curve of 

Algorithm 2 starts to converge around 139 

generations of iterations. The fitness curve for 

Algorithm 3 begins to converge at around 196 

generations of iterations. The fitness profile of 

Algorithm 4 starts converging around 203 

generations of iterations. In Figure 11(b), the 

average running times of Algorithm 1, 2, 3, and 4 are 

0.86 s, 2.13 s, 3.96 s, and 5.69 s, respectively. The 

aforementioned findings demonstrate that, in terms 

of running time and adaption dimension, Algorithm 

1 outperforms the comparative algorithms. Figure 12 

displays the comparison findings of each algorithm's 

F1 value and accuracy rate.  

In Figure 12(a), the average F1 values of 

Algorithm 1, 2, 3 and 4 are 97.5%, 88.6%, 94.6% 

and 85.3%, respectively. Among them, Algorithm 1 

proposed in the study has the highest average F1 

value. In Figure 12(b), the average accuracy of 

Algorithm 1 is 97.2%, which is higher than that of 

Algorithm 2 (91.3%), Algorithm 3 (93.9%) and 

Algorithm 4 (86.1%). The aforementioned findings 

demonstrate that, in terms of accuracy and F1 value 

dimensions, the suggested Algorithm 1 performs 

better than the comparative algorithms. When the 

aforementioned findings are combined, they 

demonstrate that the study's suggested algorithm 

performs more effectively than the comparative 

algorithms in terms of running time dimensions, 

precision rate, F1 value, accuracy rate, loss value, 

and fitness curve. 
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Fig. 12. F1 value contrast results and the 

precision of these algorithms 

 

3.2. Performance analysis of the rolling bearing 

FD model for CWPs 

After verifying the superior performance of the 

PSO-TWSVM algorithm, the study also analyzes the 

performance of the algorithm-based FD of RB model 
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(Model 1) for CWP. The study analyzes it 

experimentally in comparison with GA-SVM based 

FD of RB model for CWP (Model 2) and FPSO-

CNN based FD of RB model for CWP (Model 3). 

The models are put on the dataset to diagnose four 

kinds of faults and normal operating conditions. The 

correct diagnosis rate of each model is shown in 

Figure 13. 
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Fig. 13. Diagnostic accuracy rate of each 

model 

 

In Figure 13, the average diagnostic accuracy of 

Model 1, 2, and 3 for the same fault on the dataset 

are 94.7%, 86.1%, and 79.8%, respectively. Among 

them, Model 1 has the highest average diagnostic 

accuracy. The findings suggest that the model 

suggested by the research is feasible and 

outperforms the comparison models when it comes 

to the diagnosis dimension for the same issue on the 

dataset. To further validate the superior performance 

of the proposed Model 1, the study conducts 

visualization classification effect comparison 

experiments with Model 2 and 3, and the MCFRNN-

based FD model for the RB of CWP. The visual 

classification effect of each model is shown in Figure 

14. 

In Figure 14(b), the classification effect of Model 

2 is the worst, and the four types of faults are 

confused together to differentiate inconspicuously, 

and the visualization effect is the worst. In Figure 

14(c), the classification effect of Model 3 is better 

than that of Model 2, but there is a situation that three 

fault types are mixed together. In Figure 14(d), the 

classification effect of Model 3 is better than that of 

Model 2 and 3, but a small amount of dispersion and 

a slightly worse aggregation of the same type. In 

Figure 14(a), Model 1 has the best classification 

effect, with significant aggregation of each fault type 

and obvious differentiation. The above results show 

that from the dimension of visualization 

classification effect, the proposed model of the study 

has good classification effect and its performance is 

better than the comparison model. When the 

aforementioned findings are combined, the research-

proposed model performs better than the comparison 

model in terms of fault accuracy and visualization 

classification impact. 
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Fig. 14. Each model visualization classification effect 

 

4. DISCUSSION 

 

In this study, the performance of PSO-TWSVM 

algorithm was analyzed in comparative experiments 

and the performance of FD of RB model for CWP 

based on PSO-TWSVM algorithm was analyzed in 

comparative experiments. The outcomes indicated 

that the PSO-TWSVM algorithm had significant 

advantages in the dimensions of accuracy rate, loss 

value and running time. In the accuracy comparison 

experiments, the average accuracy of PSO-

TWSVM, GA-SVM, PSO-CNN, and MCFRNN 

algorithms were 97.8%, 95.1%, 94.2%, and 89.6%, 

respectively. Among them, the PSO-TWSVM 

algorithm proposed in the study achieved the highest 

accuracy rate, indicating that the optimization 

feature of the PSO algorithm in this algorithm 

optimized the performance of the algorithm and 

improved its classification effect. The results were 
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similar to the results of the improved PSO-TWSVM 

algorithm proposed by Nan et al (17). This result 

indicated that the PSO-TWSVM algorithm had high 

accuracy in recognition and classification in the real 

application environment, thus improving the 

classification ability of the model. The average loss 

values of PSO-TWSVM, GA-SVM, PSO-CNN, and 

MCFRNN algorithms in the loss value comparison 

experiments were 1.39, 1.62, 1.69, and 1.52, 

respectively. Among them, the research-proposed 

PSO-TWSVM exhibited the lowest average loss 

value. This result indicated that the proposed PSO-

TWSVM algorithm of the study improved the fitting 

effect of the algorithm and improved the 

performance of the algorithm. In the running time 

comparison experiments, the average running time 

of PSO-TWSVM, GA-SVM, PSO-CNN, and 

MCFRNN algorithms were 0.86 s, 2.13 s, 3.96 s, and 

5.69 s, respectively. Among them, the average 

running time of PSO-TWSVM proposed in the study 

was the shortest. This result indicated that the 

introduction of PSO algorithm improved the 

computational efficiency of TWSVM algorithm. 

Meanwhile, in the F1 value and accuracy rate 

comparison experiments, the average F1 value and 

average accuracy rate of the research-proposed 

TWSVM algorithm were 97.5% and 97.2%, 

respectively. The results were better than the 

comparison algorithms, which further verified the 

superior performance of the algorithm. Wang and 

Chen obtained similar conclusions in the proposed 

PSO-TWSVM algorithm (18). Secondly, in the 

comparative analysis of the performance of the FD 

of RB model for CWP, it was found that the PSO-

TWSVM-based FD model has good performance in 

terms of visualization classification effect and 

diagnosis accuracy. In the comparative analysis of 

visualization classification effect, its classification 

effect was the best. This result indicated that the 

introduction of the improved VMD enhanced the 

fault features and improved the classification effect 

of the model. Cheng's team obtained similar 

conclusions in a related study in 2022 (19). In the 

comparative FD analysis, the average diagnosis 

correctness of the proposed model of the study was 

94.7%, which was significantly better than the 

comparison model. This conclusion was consistent 

with the related study done by Sun et al. in 2023 (20). 

This result indicated that the introduction of KPCA 

improved the model FD performance. 

 

5. CONCLUSIONS 

 

Aiming at the current FD method of RB of CWP 

in NPP, which has problems such as inaccurate 

diagnosis, the study presented a method that 

combined PSO and TWSVM and in an attempt to 

solve the problem of difficulty in extracting the 

features of RB. Penalty function, WHNR and 1.5 

Dimensional Energy Spectrum were introduced to 

improve the VMD for decomposing the VSs. 

Meanwhile, in an attempt to better extract the VS 

features, MPE was combined with the improved 

VMD vibration decomposition method. Moreover, 

to increase the calculation speed of the algorithm and 

monitor the RB operation status, EMD was 

combined with the KPCA algorithm, so as to 

construct the condition monitoring model based on 

KPCA-improved VMD-EMD. Finally, the PSO-

TWSVM algorithm was applied to the condition 

monitoring model to construct a data dimensionality 

reduction and TWSVM FD model of RB of CWP in 

NPP. The average loss values of the proposed PSO-

TWSVM, GA-SVM, PSO-CNN and MCFRNN 

algorithms are 1.39, 1.62, 1.69 and 1.52, 

respectively. The average running time was 0.86s, 

2.13s, 3.96s and 5.69s, respectively. The average 

accuracy was 97.8%, 95.1%, 94.2% and 89.6%, 

respectively. The average F1 values were 97.5%, 

88.6%, 94.6% and 85.3%, respectively. The above 

results show that the performance of the proposed 

PSO-TWSVM algorithm is significantly better than 

the comparison algorithm in terms of running time, 

accuracy and loss value. Then, through the 

comparative analysis of FD model experiments, it 

was found that the average diagnostic accuracy of 

the FD model, GA-SVM, PSO-CNN and MCFRNN 

models proposed in this study were 94.7%, 86.1% 

and 79.8%, respectively, among which the 

diagnostic accuracy of the proposed model was the 

highest. The aforementioned findings show that the 

PSO-TWSV FD model put forth in the study is quite 

successful at fostering the growth of FD of RB of 

CWP and enhancing its accuracy. The limitation of 

this study is that the operational environment of the 

CWP in a NPP is more complex in the real world. 

Complex working environment such as media 

characteristics, temperature and pressure changes, 

environmental factors and operating conditions and 

other aspects. This complex real-world environment 

represents a promising avenue for future research. 
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