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Abstract 

Power System Stabilizers (PSS) are control devices used in synchronous generators to enhance the stability 

and damping of power systems by providing supplementary control signals to the generator excitation system. 

It’s come in various types, each designed to address specific stability issues and accommodate different system 

configurations, Conventional Lead-Lag PSS, Phase-Compensation PSS, High-Speed PSS and Wide-Area PSS. 

Multi-area transitional stability hinges on the ability of a power system consisting of multiple interconnected 

areas or regions to maintain synchronous operation following a disturbance, such as a short circuit or a 

disturbance in the load. Ensuring transient stability in such systems is crucial for preventing cascading failures 

and blackouts. The proposed control illustrates the implementation of different strategies for PSS using the four 

machines two-area kundur test system. 
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1. INTRODUCTION 

 

The history of Power System Stabilizers (PSS) 

dates back to the mid-20th century when researchers 

and engineers began developing control devices to 

improve the stability of the power supply systems, In 

the early years of power system engineering, 

stability analysis focused primarily on small-signal 

stability and frequency response [1]. Engineers 

developed simple control schemes, such as 

automatic voltage regulators (AVR), to regulate 

generator voltage and improve system stability [2-3]. 

The concept of supplementary damping control 

emerged, leading to the development of the first-

generation PSS. These early PSS designs typically 

employed lead-lag compensators added to the 

excitation control loop of synchronous generators to 

provide additional damping torque and stabilize the 

system [4-5]. During the 1970s and 1980s, 

advancements in control theory and computer 

technology enabled the development of more 

sophisticated PSS designs. Researchers explored 

various control strategies, including phase 

compensation, optimal control, and adaptive control, 

to improve the effectiveness and robustness of PSS. 

The introduction of digital control systems 

facilitated the implementation of advanced PSS 

algorithms, allowing for real-time monitoring, 

optimization, and adaptive tuning [6].  Application 
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in Large Interconnected Systems (1990s-2000s): As 

power systems grew larger and more interconnected, 

the importance of transient stability and inter-area 

oscillations became increasingly apparent. PSS 

evolved to address the unique challenges of multi-

area power systems, with the development of wide-

area PSS (WAPSS) and coordinated control schemes 

for inter-area damping. Model-based predictive 

control (MPC), neural networks and fuzzy logic, are 

the most well-known and suitable advanced control 

techniques. were applied to enhance PSS 

performance and adaptability in complex networked 

environments [7-10]. Integration with FACTS and 

HVDC Technologies (2000s-Present): In recent 

years, PSS has been integrated with modern 

technologies as the flexible alternative current 

Transmission Systems (FACTS) and High-Voltage 

Direct Current (HVDC) technologies to achieve 

greater dynamic stability and well-coordinated 

control enhancement. There are several types of 

FACTS devices, including thyristor-controlled 

series capacitors (TCSC) and varistor-controlled 

static compensators (SVC) are used in conjunction 

with PSS to improve system reliability by adjusting 

transient stability and voltage regulation. HVDC 

links enable power system operators to control the 

flow of power and provide supplementary damping 

across large geographical areas, enhancing overall 

system stability [11-13]. Power System Stabilizers 
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have evolved from simple lead-lag compensators to 

sophisticated control devices employing advanced 

algorithms and technologies to enhance the stability 

and reliability of power systems[14-18]. 

 

2. METHODOLOGY 

 

2.1. MB – PSS: multi band power system 

stabilizer 

In MB-PSS, the stabilizer design relies on 

mathematical models in the complete electrical 

system, MB-PSS often begins with system 

identification, where mathematical models of the 

power system, including generator dynamics, 

excitation systems, and network parameters, are 

developed based on measurements and data analysis. 

The Multi-band Power System Stabiliser (MB-PSS) 

is a system based on multi-frequency variables at 

low, medium and high frequencies. The stabiliser 

principle of the MB-PSS multiband system is 

developed to introduce a moderate phase advance at 

all oscillation frequencies of interest  [19]. 

 
Fig 1. Basic structure of MB-PSS algorithm [20] 

 

2.2. LF PSS: Fuzzy logic  power system 

stabilizer 

They are control devices used in electrical 

systems to improve the stability and damping of 

oscillations in electrical systems. They employ fuzzy 

logic, a mathematical framework that deals with 

uncertainty and imprecision, to mimic human-like 

decision-making processes. FLPSS offers several 

advantages over traditional PSS, such as the ability 

to manage non-linearities and uncertainties in the 

electricity power system more effectively. They can 

also adapt to changing operating conditions and 

provide smoother and more robust control [21-24]. 

 

 

Fig. 2. Principle diagram of a fuzzy PID 

controller [21] 

2.3. Delta PA: Generic power system stabilizer 

A generic power system stabiliser (PSS) is a 

control system designed to improve the stability of 

these systems by damping out oscillations that may 

occur due to disturbances such as sudden changes in 

load or faults. PSS is typically installed in 

synchronous generators (usually large generators in 

power plants) to provide additional control beyond 

the automatic voltage regulator (AVR). Two major 

criteria can influence the generic design of PSSs, 

such as the specific requirements of the power 

system and the control philosophy adopted by the 

system operator. However, their primary objective 

remains consistent: to enhance the stability of the 

power system by damping out oscillations and 

ensuring reliable operation [25-27]. In this type of 

optimization technique, GPSS consists of four main 

components: a gain block, an output limiter, low-

pass and high-pass filters, and a phase compensation 

system. [28-29]. 

 

Fig 3. A generic power system stabilizer 

diagram [29] 

 

2.4. GA PSS:  algorithm Genetic power system 

stabilizer 

An algorithmic approach to power system 

stabilization that draws inspiration from genetic 

algorithms. To find the best solution, two steps need 

to be taken. The first is to generate a population of 

potential solutions and then iteratively evolve them 

to a given problem. In the context of power systems, 

a Genetic Power System Stabilizer (GPSS) could be 

an algorithm designed to optimize the parameters of 

a power system stabilizer (PSS). PSSs are control 

devices used in power systems to dampen 

oscillations and maintain stability. By using genetic 

algorithms, the GPSS could iteratively adjust the 

parameters of the PSS to improve its performance in 

stabilizing the power system [30-33]. The genetic 

algorithm is one of the best-known optimization 

methods. It takes its name from the biological 

evolution of living beings in the real world. 

unfavorable environment [34]. 

 

 
Fig 4. The continuous genetic algorithm 

Chart [33] 
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3. PROBLEM FORMULATION 

 

In the present article, authors have chosen to 

solve the problem of stability of an electrical system 

after a three-phase fault on a transmission line. The 

chosen configuration is that of four machine two area 

kundur test system shown in figure 5 [28]. The 

previous methods were used to solve this problem. 

This is a standard benchmark system used in power 

systems for analyzing and testing various control 

strategies and algorithms. The system consists of 

four synchronous generators (machines) connected 

to two distinct areas via transmission lines. Each area 

represents a portion of the power grid, and the 

generators within each area work together to supply 

power demand. The system studied consists of two 

identical zones interconnected by a double 230KV 

line 220 km long with two identical round-rotor 

generators rated at 20KV/900MVA in each zone.   

The generator parameters are detailed in the 

reference [28]. 

 

 
Fig 5. Single-line diagram of the system 

studied [28]. 

 

The characteristic quantities of the system 

studied are detailed in reference [28].  

 

4. SYSTEM MODELLING  

 

Optimization algorithms are used to obtain 

system damping controller parameters. The main 

objective of optimization is to find the best controller 

parameters to minimize system performance in terms 

of overshoot and settling time. This enables the 

system to operate correctly under all operating 

conditions and with a wide variety of loads. 

Simulation of the proposed system has been carried 

out for different PSS models. The simulation is 

performed in MATLAB/Simulink with a simulation 

time of 10s. The objective of our study is to apply 

the four optimization techniques outlined above to 

search the solution space for optimal or near-optimal 

PSS parameter sets that improve the stability of the 

power system. The proposed techniques are tested in 

the presence of a three-phase fault at the start of 

transmission line 1a and near bus B1 at t = 5 s for a 

duration of 0.2 s. 

 

5. RESULTS AND DISCUSSION 

 
A comparative study was conducted in this 

article, the results obtained by the optimization 
techniques used to improve the performance of 
electricity networks by demonstrating the 
effectiveness of these techniques, the proposed 
techniques were tested on the power system during a 
large disturbance. The positive sequence of voltage 
at buses B1 and B2 in PU, transfer active power 
between buses B1 and B2 in MW, rotor angle 
relative to machine 4-G1,2,3 in degrees, rotor speed 
and electrical power in PU are shown in those cases:  
Case1: System response without PSS 
Case2: System response with MB-PSS: for 
oscillations damping control in power systems two-
inputs adaptive IEEE multi-bands power system 
stabilizer (PSS4B) was developed. The diagram and 
parameters of the model have been detailed by the 
authors of the reference [35]. 
Case3: System response with FLC-PSS: Five steps 
can be summarized in the design process of a fuzzy 
logic controller, after the selection and choice of the 
control variables, the membership function must be 
represented. In our approach, the fuzzy inference 
method chosen is of the Mamdani type, using the 
fuzzy centroid method as a defuzzification strategy. 
Due to the normalization performed on the physical 
variables, the membership functions of the two input 
variables were considered to be identical. The 
Mamdani fuzzy model with two inputs and one 
output. Seven membership functions generate the 49 
rules. The inputs, rotor speed deviation (dw) and 
deviation of active power (DP) and the output field 
voltage (Vf). Two speed levels can be encountered, 
which determine the nature of the output signal:  
 - If the speed deviation is large but decreasing, the 

control must be moderate, i.e. when the machine is 
slowed down, even at high speed, the system is 
able to return to the desired stable state on its own.  

- If the speed deviation is small but increasing, good 
optimization requires significant control. so if the 
machine accelerates, the control must be able to 
reverse the situation. 

Case 4: System response with Delta PA 
Case 5: System response with GA -PSS: The 
continuous genetic algorithm was used and chosen 
to solve the problem of optimizing the parameters of 
the PSS. Among these parameters, minimizing the 
variation in angular velocity was the objective of this 
optimization. Table 1 shows the parameters of 
genetic algorithm [36-37-38].  

 
Table 1. Genetic algorithm parameters 

Population type Double vector 

Population size 50 

Generation number 400 

Migration Fraction 0.2000 

Elite Count 2.5 

Crossover probability 0.8 

 

Figure 6 represents the relative rotor angle of 

machine 4 with respect to machines 1,2,3 in degrees, 
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the rotor speed response during fault without PSS are 

presented in figure 7; The generator’s electrical 

power is shown in figure 8. The positive sequence of 

voltage at buses B1 and B2 for different cases are 

presented in figure 9. Figure 10 shows the transfer 

active power between buses B1 and B2 in MW , 

without power system stabilizer.  

 

 
Fig 6. Rotor angle relative to machine 4-G1,2,3 

 

 
Fig 7. The rotor speed without PSS 

 

 
Fig 8. Generator electrical power without PSS 

 
Fig 9. The positive sequence voltage Vabc without PSS 

 

 

Fig 10. Transfer active power between bus B1 and bus 

B2 

 

As shown in previous figures (7-10), the power 

system is subject to a large disturbance after a three 

phase fault, which lasted 0.2s, the responses of the 

various parameters shown in the figures, show that 

these parameters present peaks at the start of the 

fault, then try to stabilize and return to their healthy 

state, but without PSS the system is formally 

destabilized and very oscillatory. 

 

 
Fig 11. Rotor angle relative to machine 4-G1,2,3 
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Fig 12. The rotor speed with different 

techniques 

 

 
Fig 13. Generator electrical power with 

different techniques 

 

 
Fig 14. The positive sequence voltage Vabc 

with different techniques 

 
Fig 15. Transfer active power between bus B1 and  

bus B2  

 

From the above results, we notice that the 

reliability of the techniques chosen and studied is 

well approved.  

Case 6: Self-adaptative genetic algorithm power 

system stabilizer SAGA-PSS. Genetic algorithms 

are powerful search algorithms that rely on the 

parameters being set before the execution of a 

genetic algorithm (GA), and these parameters 

remaining fixed during execution. The problem of 

interest here is the self-adaptive adjustment of GA 

parameters. In this part of our research, our objective 

is the self-adaptive adjustment of GA parameters for 

PSS optimization. A new approach consists in 

adjusting the various GA parameters one by one until 

the best possible combination is obtained [39-40]. 

The first implementation focuses on self-

adaptation of mutation rates. The results obtained 

are: Best PSS Parameters: a1= 3.4244, b1= 0.4769, 

c1= 0.1046, d1= 0.0006, Best Fitness: 2.3280e-05.  

 
Fig 16. Rotor angle relative to machine 4 to 

G1, G2 and G3 with SAGA (adjustment of 

mutation rate) 

 

The second test consists of self-adaptation of 

both mutation rates and crossover probabilities in a 

genetic algorithm (SAGAMC-PSS) at the same time 

[41-42]. Best PSS Parameters: a1= 4.6384, b1= -

0.0238, c1=0.1187, d1= 0.0028, Best Fitness: 

2.1922e-05. 
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Fig 12. Rotor angle relative to machine 4 to 

G1, G2 and G3 with SAGAMC (adjustment 

of mutation rate and crossover probabilities) 

 

6. CONCLUSION 

 

This paper presents a contribution to improving 

the performance of power system stabilization 

techniques in the Kundur two-zone test system, in 

the presence of a three-phase fault in close to bus 

transmission line B1. 

The aim of the work is to apply existing 

techniques for PSS and to try to choose the best 

parameters and coefficients to solve this problem. 

five cases of study have been detailed and simulated. 

firstly, the system parameters have been evaluated 

for the case without PSS. the synthesis of the results 

justifies the need to look for optimization techniques 

to try to stabilize the system again. 

Genetic algorithms offer the best and most 

innovative solutions to this kind of problem. 

Three different techniques have been used, 

simulated, the first is the continuous GA method, 

which gave satisfactory results, especially for 

electrical power Pe and network voltage Vabc, while 

the second technique studied is the self-adaptative 

genetic algorithm SAGA with adjustment of the 

parameter: mutation rate, rotor angle relative to 

machine 4 to G1, G2 and G3 is presented and 

evaluated. it's clear that the curve is still oscillating, 

but with a smaller amplitude than the other results 

obtained. the latest technique used is the self-

adaptative genetic algorithm SAGA with adjustment 

crossover probabilities and mutation rate, with the 

same findings as the previous technique, but with a 

further improvement in system parameters. 

As a follow-up to this work and in order to 

complete it, the authors will use other optimization 

techniques such as PSO and verify their performance 

in other systems with the integration of energy-based 

sources. 
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