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Abstract 

To enhance the effectiveness of diagnosing axial bearing fault signals in moving trains, this study proposes 

a method that combines improved complementary set empirical modal decomposition and optimal minimum 

entropy deconvolutional adjustment. There are plans to develop a screening method based on intrinsic modal 

function components to further boost the diagnostic procedure's effectiveness. The simulation experimental 

validation showed that the fault eigenfrequencies from 1 to 7 octave may be identified by the research-proposed 

method after envelope spectral analysis. Case Western Reserve University dataset validation indicated that the 

proposed method is superior in terms of bearing fault signal processing results. The time-domain amplitude of 

the inner ring fault signal increased by 50% and was increased at all times compared to other methods. The 

eigen frequency of the inner ring fault signal was found to be between 1 and 9 octaves, whereas the outer ring 

fault signal was found to be between 1 and 14 octaves. The findings show that the suggested approach is capable 

of accurately diagnosing axlebox bearing fault signals in the locomotive group and of directly localizing the 

fault location based on the envelope spectrogram's characteristic frequency. 
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1. INTRODUCTION 

  

With the increasing scale of China's high-speed 

railroads, people are more and more concerned about 

the safety and reliability of the structural 

components of the rolling stock. Axlebox bearings 

(ABBs), as one of the main components that make 

up the bogie of a rolling stock, are able to convert the 

rotation of the bogie wheels into the straight-line 

motion of the train along the track, and also carry the 

overall weight of the entire rolling stock [1-3]. 

However, the high-speed operation of rolling stock 

is accompanied by corresponding wear and 

consumption, which can easily lead to corrosion, 

corrosion and cracks in rolling bodies, inner rings, 

outer rings and cages, thus aggravating the 

phenomena of burnt shafts, seized wheelsets and 

operation noise, and even leading to safety accidents 

in rolling stock. Therefore, it is very important to 

carry out timely and effective fault diagnosis and 

monitoring (Fault Diagnosis, FD) of the ABB of the 

rolling stock. In the normal operation of the axlebox 

of the locomotive set, timely detection and diagnosis 

of the early weak faults can effectively avoid the 

occurrence of bearing failures. The current fault 

detection methods for ABB are mainly temperature, 
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sound and vibration monitoring (VM). However, in 

VM, the interference of vibration signal (VS) 

identification increases due to the addition of 

electromagnetic excitations and loads to simulate the 

train operation in the ABB test bed of the rolling 

stock during the experimental process [4-5]. 

Furthermore, the vibration sensor positioned at the 

end cap will be impacted during the signal collection 

process, making signal processing in the ABB FD 

process very important [6]. Based on this, a fault 

diagnosis method for high-speed train axle box 

bearings is proposed from the perspective of 

vibration signal denoising. First, the original signals 

of the monitored vibration data were decomposed 

into Intrinsic Mode Function (IMF) components 

using Complementary Ensemble Empirical Mode 

Decomposition (CEEMD). Secondly, the IMF 

components are selected according to the 

comprehensive indicators such as Kurtosis (K), Fault 

Impact Ratio (FIR) and Pearson Coefficient of 

Correlation (PCC) to obtain the Reconstructed 

Signal ( Reconstructed Signal (RS). Finally, 

Multipoint Optimal Minimum Entropy 

Deconvolution Adjusted (MOMEDA) is utilized to 

deconvolution calculation and envelope analysis of 
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RS, so as to diagnose the faulty parts of axle box 

bearings. 

The study's overarching framework is divided 

into four sections: in the first part, the research 

results and shortcomings of domestic and 

international research on bearing FD and VS 

analysis methods are summarized. In the second 

part, the FD method of ABB of moving train 

combined with improved CEEMD and MOMEDA is 

studied and designed. In the third part, the proposed 

FD method for moving train ABB is experimented 

and analyzed. In the fourth part, the experimental 

results are summarized and future research 

directions are indicated.  

 

2. RELATED WORKS 

 

Remote diagnosis is gradually being achieved by 

bearing fault detection (BFD) as a result of the 

advancement of Internet of Things technology. By 

installing sensors on the equipment, the operating 

data of the bearings are collected and transmitted to 

the remote diagnosis center through the Internet. 

Researchers both domestically and overseas have 

studied a variety of data-driven based diagnosis 

techniques. Aviña et al. investigated three types of 

fitted goodness-of-fit detection for the phenomenon 

of efficiency loss of induction motors under non-

optimal operation, thus finding that induction motors 

have the most serious damage effects in single-point 

damage and distributed damage [7]. The safe 

operation of spinning machinery is directly 

influenced by the condition of the bearings. By using 

the period segment matrix as the trajectory matrix 

enabled the reconstruction of the signal without the 

need to select singular values, thus realizing the 

suppression of noise between adjacent fault pulses in 

the detection of fault pulses [8]. Habbouche et al. 

proposed an approach to early diagnosis of bearing 

failures based on variational modal decomposition 

and machine learning techniques [9]. This approach 

aims to reduce the cost of rolling bearing 

maintenance and ensure effective monitoring of 

bearing degradation. Zhou et al. proved a method 

that uses an asymmetric Gaussian chirp model to 

solve the coefficient representation table optimized 

to originate from the parameters using an orthogonal 

matching pursuit algorithm optimized by the 

pathfinder algorithm, thus achieving the best 

approximation of the original signal (OS) [10]. 

VS analysis technique is an important method 

used to study the vibration characteristics of 

mechanical equipment, and the current research on 

this method at home and abroad has achieved various 

results. Hosseinpour et al. presented a diagnostic 

approach that uses feature selection of correlation to 

identify the best characteristics and uses random 

forests and multilayer perceptron neural networks 

for classification in order to address the issue of the 

low efficiency of applying intelligent FD in tractors. 

The feasibility of this method in tractor auxiliary 

transmission FD was confirmed by performance 

validation in a dataset thus [11]. Wang et al. 

proposed a novel convolutional neural network 

model to address the problem that current methods 

can only use a single-dimensional signal. By 

utilizing wavelet variations and the short-time 

Fourier transform, the model was able to handle the 

original time-domain signals simultaneously and 

produce an effective output for a three-dimensional 

task [12]. Zhang created a simulation system model 

for directional current protection in MATLAB 

software. Zhang's model enabled him to ascertain 

that, even after signal gathering and processing, 

faults can be successfully discharged in scenarios 

such as two-phase grounded short circuits and two-

phase packet circuits [13]. 

To sum up, researchers both domestically and 

internationally have conducted a variety of studies 

on bearing FD and signal analysis methodologies. 

Nevertheless, most of these research have 

concentrated on minor BFD and have had inadequate 

processing influence on other problems such as 

signal noise. Therefore, the study proposes a FD 

method for rolling stock ABB that combines the 

improved CEEMD and MOMEDA. Firstly, CEEMD 

is utilized for fault signal (FS) decomposition, then 

MOMEDA is utilized for deconvolution, and finally, 

envelope analysis is utilized for FD. Meanwhile, the 

study innovatively designs an IMF component 

screening method, which performs IMF component 

screening by indicators such as K, FIR, and PCC 

with a view to improving the efficiency of FD.  

 

3. DESIGN OF A FAULT DIAGNOSIS 

METHOD FOR AXLEBOX BEARINGS IN 

ROLLING STOCK COMBINING 

IMPROVED CEEMD AND MOMEDA 

 

To eliminate the interference or noise effects 

generated by the external environment of the rolling 

stock ABB test bed in VM and the simulation 

method, etc., the study proposes a FD method for the 

ABB that combines the improved CEEMD and 

MOMEDA. Firstly, the improved CEEMD method 

is introduced. Finally, the FD method design is 

carried out based on the improved CEEMD and 

MOMEDA. 

 

3.1. Improved CEEMD methods 

Empirical mode decomposition (EMD) was 

improved upon to create CEEMD, a decomposition 

technique. Without requiring the basis function to be 

predetermined, EMD can decompose the signal in 

accordance with the time scale features of the data 

itself [14-15]. It has a certain adaptive ability to the 

signal, and all signals can be decomposed into the 

sum of multiple empirical mode component (EMC) 

by EMD. Its main decomposition process is shown 

in Fig. 1. 

Using the decomposed signals, the local 

maximum and minimum extreme points are first 

searched. IMF component identification is 

performed by determining whether the obtained 
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value is the empirical modal component EMC.The 

process of finding the maximum and minimum 

extreme points is continued until the first IMF 

component is found if the value found is not the 

EMC. To find the residual, subtract the first IMF 

component from the signal. Repeating steps 1 

through 4 with the residual as the OS yields the 

second IMF component. By repeating the 

calculation, multiple IMF components can be 

obtained. Obviously, the signal decomposition step 

of EMD may lead to modal aliasing during 

processing. Thus, the proposal is for ensemble 

empirical mode decomposition (EEMD). After 

multiplexed averaging based on the specificity of the 

mean-zero noise, EEMD adds Gaussian white noise 

(GWN) to the OS as an additional analysis. This 

causes the noises to inhibit each other. Therefore, the 

final IMF component expression formula of EEMD 

is shown in Equation (1). 

1

1
( ) ( )

N

n ini
w t W t

n =
=                   (1) 

In Equation (1), ( )nw t  denotes the final IMF 

component and ( )inW t  denotes the ensemble of 

IMF components at each stage. n  is the stage of the 

IMF component and N  is the ensemble of all stages 

of the decomposition. Nevertheless, the amplitude 

and energy of the OS are altered by the addition of 

white noise, which reduces the efficiency of the 

signal's decomposition. Therefore, C 

EEMD is proposed to effectively compensate for 

the shortcomings of EEMD. CEEMD performs 

EMD by adding a set of white noise of the same size 

but opposite direction to EMD, and integrally 

averages the decomposition results [16-17]. Its main 

decomposition process is shown in Fig. 2. 

The expression equation in Fig. 2 after a set of 

white noise is added to the OS is equation (2). 

1 1

1 1

( ) ( ) ( )

( ) ( ) ( )

x t x t m t

x t x t m t

+ +

− −

 = +


= +

                   (2) 

In Equation (2), 
1 ( )x t+

 and 
1 ( )x t−

 denote the 

OS with forward and reverse GWN signals added, 

respectively, and ( )x t  denotes the OS. 
1 ( )m t+

 and 

1 ( )m t−
 denote the forward and reverse GWN, 

respectively, which are equal in size. Equation (3) 

illustrates the created IMF component expression of 

the signal, which is derived from the signal's 

calculated EMD decomposition after the white noise 

signal is added. 

m1

h1

r1

c2

Once the decomposed signal has been acquired, locate the local maximum and minimum 

extremum points. Next, fit the maximum and minimum points in the envelope using the 

spline curve fitting method. Finally, calculate the average m1 of the upper and lower 

envelope.

If h1 is an empirical mode component, then h1 is the first IMF component of x(t) : If h1 is 

not an empirical mode component, then h1 is used as the original signal to repeat the 

previous step k times, and the calculation can be obtained after the iteration is 

completed.

Subtract c1 from x(t) to get the residual expression r1

Repeat steps 1 through 4 with the resulting residual r1 as the original signal to get the 

next component of x(t), c2.
 

Fig. 1. EMD signal decomposition process 
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Fig. 2. CEEMD decomposition process 
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1

1

( )

( )

n

i ij

j

n

i ij

j

x w t

x w t

+ +

=

− −

=


=



 =





                      (3) 

In Equation (3), 
ix+

 and 
ix−

 denote the signals 

decomposed by EMD from the OS with forward and 

reverse GWN added, respectively. The IMF 

components that were acquired by decomposing the 

OS and adding forward and inverse GWN, 

respectively, are indicated by the letters ( )ijw t+
 and 

( )ijw t−
. Based on the obtained IMF components. 

They are further aggregated to calculate their 

positive and negative averages to obtain the final 

IMF components, which are expressed as shown in 

Equation (4). 

1

1
( ) ( ( ) ( ))

2

n

i ij ij

j

w t w t w t
n

+ −

=

= +           (4) 

The CEEMD decomposition method can 

automatically generate the basis functions and 

sequentially generate the IMF components of each 

stage with unequal bandwidths according to the 

order of high and low. In the complex train operation 

reality, the faulty VS of the moving train set ABB 

belongs to the fluctuating and nonlinear signals, and 

the high-pass filtering characteristic of CEEMD is 

just enough to decompose it. 

 

3.2. Enhanced bearing defect diagnostic 

technique integrating MOMEDA and 

CEEMD 

It is examined to use MOMEDA to deconvolve 

the RS after noise reduction, and then incorporate the 

analysis, in accordance with the improved CEEMD 

for decomposition and noise reduction of ABB's VS. 

MOMEDA is an enhancement over minimum 

entropy deconvolution (MED), which is resolved 

using the D-parameter deconvolution concept. The 

best deconvolution solution is determined by the 

multi-D-Norm (MDN) as the objective function [18-

19]. Equation (5) is thought to represent the OS 

expression function that MOMEDA in the sensor 

collected. 

( ) ( ) ( ) ( )x a h a k n s n=  +                 (5) 

In Equation (5), ( )x a  denotes the OS obtained 

in the sensor and ( )h a  denotes the response of the 

shock signal. ( )k a  denotes the actual shock signal 

and ( )s a  denotes the running noise signal. The 

expression equation for the recovery of the shock 

signal by MOMEDA through the optimal filter is 

shown in Equation (6). 

1

1

( ) ( ) ( )
A L

a a L

a

k a f a x a f x
−

+ −

=

=  =        (6) 

In Equation (6),   denotes the filter length and   

denotes the optimal filter in the sensor.   denotes the 

optimal filter and   denotes the signal length. Since 

there are multiple pulses in ABB's fault detection in 

its VS, the D-paradigm expression for MOMEDA is 

obtained by maximum value optimization on the 

basis of MDN, as shown in Equation (7). 
T

: max ( , ) max
f f

MOMEDA MDN =
t y

y t
y

   (7) 

In Equation (7), y  denotes the solution of the 

deconvolution and T  is the transpose matrix. f  is 

the optimal filter, and t  is the weight and position 

of the target pulse to be convolved. MOMEDA 

realizes the detection of bearing faults by 

deconvolution of the three pulses of the output 

signal, and prompts the deconvolution pulse to 

match the polarity of the signal by removing the 

absolute value. Therefore, the coefficient value of 

the filter can be obtained by the derivation of the D-

parameter of MOMEDA, which is calculated as 

shown in Equation (8). 

3

1 1 2 2 0( )
T

T

A L A L

d
t t t X

df

−

− −

 
= + + + −  

 

t y
y M M M y t y y

y

 (8) 

In Equation (9), M  denotes the set of filtered 

signals and 0X  denotes the initial RS. When the 

derivative of Equation (8) is 0, the expression is 

updated as shown in Equation (9). 

0 0

T

X X=
t y

y t
y

                      (9) 

Since MOMEDA needs to adjust its definition in 

ABB's FD, it is not suitable for input data without 

null hypothesis when only the output range is 

considered. And the multiplicity of filter coefficients 

still belongs to a solution of MOMEDA, so its 

optimal filter output formula is shown in Equation 

(10). 

0 0 0( )T
f = X X X t                     (10) 

In Equation (10), f  denotes the optimal filter as 

well as the output solution, and 
0 0

T
X X  denotes the 

unnormalized Teplitz equation autocorrelation 

matrix. The recovery equation of the OS in 

MOMEDA is shown in Equation (11). 

0

T=y X f                           (11) 

The investigation is simultaneously evaluated 

utilizing envelope demodulation following the noise 

reduction decomposition process of the FS by the 

enhanced CEEMD and the deconvolution of the RS 

after noise reduction by MOMEDA. Considering 

that not all IMF components generated by the 

improved CEEMD decomposition belong to the 

valid ones, and spurious components can reduce the 

decomposition effect and thus affect the FD results. 

K, FIR, and PCC are thus used in the study as 

screening metrics for the IMF components in order 
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to guarantee their validity. Of these, K is a measure 

of the particular peak state of a real random 

variable's probability distribution; Equation (12) 

provides the formula for its expression. 
4

4

( )x
Ku =





 −
                       (12) 

In Equation (12),   denotes the natural 

logarithm and x  denotes the original VS of the 

bearing. Ku  denotes the magnitude of the Kurtosis 

produced by the original VS,   denotes the standard 

deviation (SD) of the original VS, and   denotes 

the mean value of the original VS. The bearing is 

considered to be in acceptable condition when the K 

of the VS of the ABB is roughly equal to 3. The 

larger value of K of the IMF components at each 

stage obtained by CEEMD decomposition indicates 

that there is a larger amount of shock in the IMF 

signal of the corresponding order. The expression 

formula for FIR is given in Equation (13). 

1 2 3 4 5( ) ( ) ( ) ( ) ( )

t

D p D p D p D p D p
FIR

D

+ + + +
=  (13) 

In Equation (13), 1 5~p p  denotes the 1-octave 

to 5-octave frequencies of the bearing fault, and 

1 5( ) ~ ( )D p D p  denotes the amplitude of the 1-

octave to 5-octave frequencies, respectively. tD  

denotes the sum of the amplitudes of all points in the 

ES. PCC as a constant coefficient, which mainly 

reflects the same moving trend between two sets of 

linear data, the specific expression formula is shown 

in Equation (14). 

,

( , )Cov
Pcc 

 

 

 
=                  (14) 

In Equation (14), 
,Pcc   denotes the correlation 

coefficient between two variables that need to be 

analyzed for correlation.   and   denote the 

variables to be analyzed for correlation.   and   

are the SD of the two variables. The PCC has a range 

of values from -1 to 1. A change in the same 

direction will result in a positive correlation, at 

which point the PCC is greater than 0 and vice versa. 

The absence of a linear connection between the two 

sets of data is indicated when PCC equals 0. Since 

K, FIR and PCC are all positively correlated to 

reflect the fault characteristics, and the difference 

between FIR and K or PCC is several orders of 

magnitude, the study chooses the product of the three 

as the Composite Indicators (KI) of FD, which is 

calculated as shown in Equation (15). 

KI Ku FIR Pcc=                  (15) 

The IMF components at each stage generated by 

CEEMD decomposition are screened according to 

the KI value, and the diagnosis of the rolling stock 

ABB faults is realized by performing MOMEDA 

deconvolution based on the obtained RSs, and finally 

by performing the Hilbert envelope analysis [20]. 

Therefore, the specific flow of the proposed FD 

method (CEEMD-MOMEDA) for rolling stock 

ABB combining improved CEEMD and MOMEDA 

is shown in Fig. 3. 

First, the imported ABB FSs are supplemented 

with a pair of GWN signals of the same magnitude 

and opposite direction. Next, CEEMDF 

decomposition is carried out to extract all the IMF 

components of each stage. The K, FIR, PCC, and KI 

values of the three are used to filter the IMF 

components. The IMF components with K greater 

than 3, PCC greater than 0.3, and larger FIR and KI 

are selected as diagnostic signals for reconstruction. 

Finally, the deconvolution calculation is performed 

using MOMEDA and the calculated signals are 

included for analysis. 

 

4. EXPERIMENTAL VALIDATION OF A 

FAULT DIAGNOSIS METHOD FOR 

AXLEBOX BEARINGS IN MOVING 

TRAINS COMBINING IMPROVED 

CEEMD AND MOMEDA 

 

The study employed the created ABB fault model 

for simulation analysis and signal modeling to 

confirm the effectiveness of the CEEMD-

MOMEDA diagnostic technique. Second, 

experimental data validation was done using 

erroneous bearing data from the Case Western 

Reserve University (CWRU) Bearing Data Center. 

 

4.1. Simulation data analysis 

In order to realize effective simulation data 

verification, the study established an ABB fault 

Start Original signal

A pair of equal and opposite white noise 

signals were set up, and CEEMD 

decomposition was performed for N tests

Select values with kurtosis greater than 3, 

correlation coefficient greater than 0.3, fault 

shock ratio and KPC larger

The reconstructed signal is deconvolution 

filtered by MOMEDA algorithm, and the 

filtered signal is obtained

The fault characteristic frequency is obtained 

by Hilbert envelope analysis of the filtered 

signal

End

 

Fig. 3. CEEMD-MOMEDA processing flow 
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model for signal simulation and set the relevant 

parameters. The test bench's resonance frequency is 

set to 2500 Hz, its fault impact count is 455, its 

impact attenuation coefficient is 400, and its 

beginning amplitude value is 1.15 m/s2. And the 

bearing rotational frequency is 214Hz, the impact 

time interval of adjacent faults is 8.33×103s, and the 

time error is about 1%-2% of the impact interval time 

of adjacent faults. According to the above 

parameters and the simulation signal at 12000Hz 

sampling frequency, 1.5s sampling time length is 

selected to generate a noise-free fault vibration 

model in MATLAB software, as shown in Fig. 4. 

Fig. 4(a) displays the time domain waveform of 

the signal for the noise-free simulation. A noticeable 

periodic shock band is present in the graphic. The 

frequency domain plot of the signal for the noise-free 

simulation is shown in Fig. 4(b), and it is noticeable 

that the frequency domain's highest point is 

approximately 2500 Hz. In Fig. 4(c), the plot 

obtained after envelope demodulation analysis 

shows the transfer frequency (orange), the four 

inner-circle faults (red), and the corresponding 

transfer modulation frequency (blue) of the 

simulated signal (S-S). According to the time 

domain of this S-S, the study adds 18 levels of GWN 

to its signal and the two signals are superimposed 

into a mixed signal for CEEMD decomposition. The 

6th order IMF components obtained from the 

CEEMD decomposition are shown in Fig. 5. 
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Fig. 4. Noise-free simulation of signal time domain, frequency spectrum and envelope spectra 
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Fig. 5. Plot of IMF components of each 

order after CEEMD decomposition 

Figs. 5(a)-(f) displays the IMF component plots 

for the first six orders, respectively. It is evident that 

the signal amplitude of the IMF components 

acquired at each order varies slightly. The 6-order 

IMF components' corresponding K, FIR, PCC, and 

KI are computed, and the IMF components with K 

coefficients more than 3, PCC greater than 0.3, and 

larger FIR and KI are chosen for signal 

reconstruction. Table 1 displays the relevant indexes 

of the 6-order IMF components. 

 
Table 1. The values of K, FIR, P CC, and KI 

corresponding to different IMFs 

Index IMF 1 IMF 2 IMF3 IMF4 IMF5 IMF 6 

K 3.0863 2.2426 3.5913 2.9508 3.0647 2.8558 

FIR 0.0018 0.0012 0.0028 0.0023 0.0012 0.0010 

PCC 1 0.7661 0.4411 0.2871 0.2000 0.1879 

KI 0.0056 0.0021 0.0044 0.0019 0.0007 0.0005 

 

The three components in Table 1 have K values 

greater than 3, FIR values larger, PCC values greater 

than 0.3, and KI values largest amongst IMF1, IMF2, 

and IMF3; additionally, the three components have 

larger FIR values than IMF1, IMF3, and IMF4. 

Comprehensive comparison, the study selected 

IMF1 and IMF3 as the components of signal 

reconstruction. The specific results are shown in Fig. 

6. 
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Fig. 6. The simulated signal reconstruction's 

envelope spectrum and time domain 

waveform 

 

The RS's time-domain plot (TDP) and envelope 

spectrogram are shown in Figs. 6(a) and 6(b), 

respectively, throughout a 1.5-second period. The 

RS's frequency amplitude is increased by the FS, as 

the envelope spectrogram demonstrates. This 

suggests that the FS can be effectively deconstructed 

using CEEMD. A closer examination indicates that 

the envelope spectra of the RSs still contain 

additional interference frequencies. As a result, the 

research moves on to deconvolution in order to use 

MOMEDA to reconstruct the signal. Additionally, 

the signal spectra of the RSs following CEEMD 

deconvolution are compared with the signal spectra 

of the CEEMD deconvolution following 

MOMEDA, MED, and maximum correlation 

kurtosis deconvolution (MCKD) processing, 

respectively, to demonstrate the efficacy of the 

CEEMD-MOMEDA FD method suggested by the 

study. In MOMEDA processing, the window length 

(WL) of the finite pulse filter is set to 1500 with a 

period of 56.07, and the period interval of the 

deconvolution is taken to be [50,60]. In MED 

processing, its filter WL and iteration number are 30. 

In MCKD processing, the filter WL is 300, the 

iteration number is the same as that of MED, the 

displacement factor is 5, and the period is the same 

as that of MOMEDA. Fig. 7 displays the specific 

comparative results. 
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Fig. 7. Comparison of processing effects of 

three methods 

 

Fig. 7(a) displays the TDP of the RS following 

MOMEDA processing. Fig. 7(c) displays the TDP 

following MDE processing; and Fig. 7(e) displays 

the TDP following MCKD processing. Following 

MOMEDA's processing of the RS, a comparatively 

strong periodic pulse component appears in the 

signal, indicating that the noise has been effectively 

reduced. The amplitude of the signal after MED 

processing is in the range of [-40,60], which 

indicates that its signal is not enhanced and the signal 

shock characteristics are not significant. And in the 

time-domain graph after MCKD processing, only the 

signal around 0.85s has been had strengthened, and 

the processing effect is the worst among the three 

methods. The comparison of the envelope spectra 

obtained from the three techniques of processing 

(Figs. 7(b), (d), and (f)) demonstrates that the 

bearing FS's distinctive frequency after MOMEDA 

processing is the most noticeable. 

 

4.2. Experimental data Validation at CWRU 

To further validate the reliability and 

reasonableness of the CEEMD-MOMEDA proposed 

by the study in the diagnosis of ABB FSs, the study 

was experimentally verified based on the faulty 

bearing data released by the Bearing Data Center of 

CWRU. The experimental motor bearing's outer ring 

(OR) has a diameter of 52 mm, while the inner ring's 

(IR) diameter is 25 mm. The characteristic 

frequencies of the OR and IR faults are 3.5848 and 

5.4152, respectively. First, the IR fault data is used 

for the study. The bearing fault depth is determined 

by measuring the indentation of the electric spark, 

which is 0.1778 mm. The motor is configured to 

rotate at 1797 revolutions per minute, which is 

calculated to produce an IR fault of 162.19 hertz. 

Fig. 8 displays the outcomes of the initial envelope 

spectrogram and TDP. 
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Fig. 8. Envelope spectrum and time domain 

of the initial inner ring fault signal 

 

The original FS time domain depiction of the 

bearing's IR in Fig. 8(a) makes the periodic influence 

of the signal very evident. The rotational frequency 

of the FS, which ranges from 1 to 9 times the 

frequency of the FS of the IR, is displayed in Fig. 

8(b), along with the rotational modulation frequency 

around the 1 times frequency. To better diagnose the 

FS, the study added 6 levels of GWN for 

superimposed mixing in the inner circle FS. 

Simultaneously, the investigation contrasts the 

envelope and time-domain spectrograms of MCKD, 

MED, and the suggested postprocessing diagnostic 

approach. In MOMEDA processing, the WL of the 

finite pulse filter is set to 1500 and the period is 

73.99, and the period interval of deconvolution is 

taken as [70,80]. Fig. 9 displays the specific 

comparative results. 
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bearing inner ring fault signal after three 

methods of treatment 
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Figs. 9(a), 9(c), and 9(e) compare the TDPs of the 

FSs in the inner circle after processing by the three 

methods. The results indicate that MOMEDA has a 

stronger effect on noise processing than MED and 

MCKD, and that MCKD enhances the time-domain 

signals at approximately 0.9s, while MED does not. 

A comparison of the envelope spectra obtained from 

the three different methods of processing reveals 

that, in Fig. 9(b), the 1-9 times frequency can be seen 

after MOMEDA processing. In contrast, the 

characteristic and non-characteristic frequencies of 

the FS are mixed together in the MED and MCKD 

envelope spectra, making them difficult to 

distinguish. Simultaneously, the investigation 

conducted additional experimental validation of the 

bearing OR FS. Fig. 10 displays the envelope 

spectrogram and time domain map results of the 

OR's initial FS. 
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Fig. 10. Time domain and envelope spectrum 

of the original bearing outer ring fault signal 

 

It is evident from Figs. 10(a) and (b) that the OR 

bearing signal's TDP exhibits periodicity and a 

greater amplitude than the IR's. These spectra line up 

with the bearing's OR's initial FS. Consequently, the 

study added 14 levels of GWN to the OS. In 

MOMEDA processing, the WL of the finite impulse 

filter is set to 1500 and the period is 111.83, and the 

period interval for deconvolution is taken as 

[110,120]. The specific results are shown in Fig. 11. 
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Fig. 11. Comparison of the effect of the 

bearing outer ring fault signal after three 

methods of treatment 

 

The suggested diagnostic method's RSs of 

bearing OR faults are processed and displayed as 

TDPs and envelope spectra in Figs. 11(a) and (b). 

Comparing MED and MCKD, it can be noted that all 

the amplitudes of the TDPs after MOMEDA 

processing are enhanced, and the 1-14 times eigen 

frequency of the FS can be visualized. The 

aforementioned findings demonstrate the excellent 

applicability of the CEEMD-MOMEDA diagnostic 

approach in the CWRU bearing fault dataset, as well 

as the good logic and reliability of MOMEDA's 

deconvolution of RSs. 

 

5. CONCLUSION 

 

Aiming at the influence of interference or noise 

generated by the external environment of the ABB 

test bed of rolling stock in VM as well as simulation 

methods, the study proposes a FS diagnosis method 

by combining the improved CEEMD and 

MOMEDA. Verification by simulation experiment 

indicated that the CEEMD can decompose the 
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bearing FS efficiently and that the screened IMF 

component's FS eigen frequency is more observable 

and consistent. When RSs are processed using 

MOMEDA, the FS's time-domain amplitude may be 

efficiently increased. Additionally, analyzing the 

envelope spectra of the RS processing is easier with 

MOMEDA than with MED and MCKD. CWRU 

dataset validation revealed that the research-

proposed methodology enables effective diagnosis 

in both inner and OR FSs. When compared to 

alternative techniques, the OR's fault characteristic 

frequency was 1-14 octaves, and the envelope 

spectrogram of the FS of the IR of CEEMD-

MOMEDA showed a frequency of 1-9 octaves. The 

study's CEEMD-MOMEDA diagnostic method, 

whose calculation is more straightforward and 

efficient, demonstrated an effective ability to 

identify both outer and IR problems in ABB. IMF 

component screening using Kurtosis, correlation 

coefficient and other metrics can enhance the 

identification and diagnostic effect of FSs. However, 

the study still has certain shortcomings. The bearing 

vibration model established by the study saves in a 

certain idealization and mainly adopts the form of 

wear for bearing failure simulation. To realize the 

high efficiency of BFD for rolling stock, the study 

will carry out additional experimental tests in 

additional bearing fault scenarios using the 

suggested diagnostic approach in the future. 
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