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Abstract  

The integration of renewable energies, particularly photovoltaic energy, into green hydrogen production 

presents a highly promising prospect in the energy sector. Nonetheless, these energy sources face challenges 

due to their inherent instability and susceptibility to various atmospheric factors such as temperature and 

illumination. Therefore, it's imperative to tackle these challenges before renewable energy can be widely 

adopted as a primary source in hydrogen production. To address this, we propose constructing an autonomous 

photovoltaic system using MATLAB software. This system will employ a DC-DC boost converter to connect 

the PV array to the load. Furthermore, to enhance the efficiency of photovoltaic power generation, we will 

implement the perturbation and observation maximum power point tracking (MPPT) approach. The research 

endeavor extends towards integrating this optimized system with an electrolysers developed a sophisticated 

electrolyte model utilizing MATLAB Simulink software, paving the way for hydrogen gas production. 
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1. INTRODUCTION  

  

Utilizing renewable energies, especially 

photovoltaic solar power for hydrogen production, 

presents a viable solution to escalating electricity 

demands due to its cleanliness and natural 

abundance. However, its inherent volatility, 

influenced by climatic variables like light intensity 

and temperature, necessitates precise control 

mechanisms such as the Maximum Power Point 

(MPP) [1] . This study employs the Perturbation and 

Observation method to track the MPP, offering 

advantages of simplicity, independence from PV 

array specifics, accuracy, and high performance 

under uniform radiation. 

The paper's structure unfolds in the following 

manner: Section 2 provides a concise system 

overview, followed by Section 3 which concentrates 

on system modeling. Section 4 explores the 

implementation of Perturb and Observe (P&O) 

control for monitoring photovoltaic system output. 

Section 5 elaborates on the modeling of an advanced 

electrolyzer using Matlab and the integration of this 

component with the photovoltaic energy source, 

along with the exploration of novel technologies for 

controlling energy conversion to establish an 
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integrated and highly optimized system for green 

hydrogen production. Simulation outcomes are 

detailed in Section 6, with Section 7 summarizing 

the key findings and conclusions derived from this 

study. 

 

2. OUTLINE OF THE PROPOSED SYSTEM'S 

FEATURES 

  
Illustrated in Figure 1, the modeling process of 

the photovoltaic system intricately involves three 

primary components, each wielding significant 

influence over the system's functionality and 

performance. The photovoltaic (PV) array, acting as 

the cornerstone of solar energy capture, consists of 

interconnected solar cells engineered to efficiently 

convert incident sunlight into electrical energy [2]. 

Complementing the PV array, the boost converter 

assumes a pivotal role in voltage regulation, 

amplifying the generated direct current (DC) to 

levels conducive for effective power transmission 

and utilization. Meanwhile, the controller system, 

equipped with sophisticated algorithms and 

feedback mechanisms, orchestrates the intricate 

interplay between the PV array and the boost 

converter, dynamically adjusting operational 
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parameters to optimize energy conversion efficiency 

and adapt to varying environmental conditions [3]. 

This holistic approach to modeling not only affords 

a comprehensive understanding of the individual 

components' characteristics but also enables a 

nuanced analysis of their collective behaviour, 

facilitating informed decision-making and the 

refinement of photovoltaic system designs for 

enhanced performance and sustainability [4].  

 

Fig. 1. The Proposed System 

 

Photovoltaic (PV) electrolyzers harness solar 

energy, typically from photovoltaic panels, to 

conduct electrolysis, splitting water molecules into 

hydrogen and oxygen gases. These gases serve as 

clean energy carriers for various applications. 

Existing systems include Proton Exchange 

Membrane (PEM), Alkaline, Solid Oxide (SOE), 

and Flow Electrolyzers [5]. They vary in operation 

temperature, efficiency, and scalability. Integrated 

systems incorporate energy storage for continuous 

hydrogen production, while hybrid systems combine 

multiple renewable sources for improved efficiency. 

PV electrolyzers are vital for a sustainable energy 

future, evolving through ongoing research to 

enhance efficiency, cut costs, and broaden 

applications [7]. 

Fundamentally, the electrolyzer's design 

comprises two half-cells separated by a thin, proton-

conducting, insulating Proton Exchange Membrane 

(PEM) positioned at the center of the cell. Adjacent 

to each side of the membrane lies a layer of porous 

catalyst where the electrochemical reactions occur. 

The combination of PEM and catalyst layers 

constitutes the Membrane Electrode Assembly 

(MEA) . Enclosing the MEA is a current collector, 

establishing physical and electrical connections 

between the catalyst layer and the bipolar plate. The 

bipolar plate, in turn, serves as a structural element 

that ensures the cell's integrity, facilitates the 

movement of reactants and products, and isolates 

individual cells within a stack configuration [8]  .  

The electrolyzer undergoes several reactions, 

including anodic, cathodic, and overall processes, 

which are outlined below: 

Anodic reaction:  
 

𝐻2𝑂 → 2𝐻+ + 
1

2
 𝑂2 +  2𝑒−            (1) 

Cathodic reaction: 

2𝐻+ + 2𝑒−  →  𝐻2                              (2) 

Global reaction: 
 

𝐻2𝑂 →  𝐻2 + 
1

2
 𝑂2                            (3) 

 

3. DEVELOPING A MODEL FOR THE 

PROPOSED SYSTEM 

 

3.1. Creating a Model for Photovoltaic Panel 

An ideal solar cell is often represented by a 

current source connected in parallel to a diode. 

However, real-world solar cells exhibit 

imperfections, prompting the model to incorporate 

additional components. In the illustrated Figure 2, 

two resistances are introduced-one in series and 

another in parallel-to account for these imperfections 

[6]. 

 
 

Fig. 2. Electrical Modeling of Solar Cells 

 

When light illuminates the surface of a solar cell, 

it activates its unique capability to convert light 

energy into electrical current. In essence, the solar 

cell behaves similarly to a diode under illumination, 

exhibiting comparable electrical characteristics. 

Consequently, the electrical behaviour of a solar cell 

featuring a PN junction can be mathematically 

described using the following equations [6]  :  

 

Photocurrent (I_ph) : 
 

 𝐼𝑝ℎ = [ 𝐼𝑠𝑐 + 𝐾𝑖. (𝑇 − 298)].
𝐺

1000
 (1) 

 

      Saturation current (I_0): 

𝐼0 =  𝐼𝑟𝑠 . (
𝑇

𝑇𝑛
)

3

. (𝑇 − 298). exp [
𝑞 .𝐸𝑔0.(

1

𝑇𝑛
−

1

𝑇
)

𝑛 .𝑘
]    (2)    

 

 

     Saturation Current in Reverse Bias (I_rs): 

 𝐼𝑟𝑠 =
𝐼𝑠𝑐

𝑒
(

𝑞 .𝑉𝑜𝑐
𝑛 .𝑁𝑠.𝐾 .𝑇

)−1
 (3) 

 

Current Flow Across Shunt Resistor (I_sh): 
 

 𝐼𝑠ℎ = (
𝑉+𝐼 .𝑅𝑠

𝑅𝑠ℎ
)  (4) 

 

Output current (I): 

 𝐼 =  𝐼𝑝ℎ −  𝐼0. [exp (
𝑞.(𝑉+𝐼 .𝑅𝑠)

𝑛 .𝐾 .  𝑁𝑠..  𝑇
) − 1] − 𝐼𝑠ℎ  (5) 

 

Where   𝑰𝒔𝒄 : Short-circuit current, 𝑲𝒊 : the 

Temperature coefficient, 𝑻 : the Temperature, 𝑮 is 

the Incident irradiance, 𝑻𝒏 : the Nominal 

temperature, q : Elementary charge, . 𝑬𝒈𝟎 : Bandgap 
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energy at reference temperature, 𝒌 : Boltzmann 

constant, 𝑽𝒐𝒄 : Open-circuit voltage, 𝑵𝒔 : Number of 

series cells, 𝑹𝒔 : Series resistance, 𝑹𝒔𝒉 : Shunt 

resistance. 

 

3.2. MPPT Control Strategy: Perturb and 

Observe Algorithm 

The Perturbation and Observation (P&O) 

algorithm is widely acknowledged as a prominent 

method in literature and practical applications due to 

its straightforward implementation. This algorithm 

utilizes PV module input voltage (Vpv) and PV 

module current (Ipv) values to calculate the duty 

cycle. It begins by perturbing the voltage (Vpv) 

through adjusting the duty cycle, then evaluates and 

compares the power output of the solar panel with its 

previous state. As the power output increases, the 

algorithm approaches the Maximum Power Point 

(MPP), leading to consistent adjustments in the duty 

cycle. Conversely, a decrease in power output 

indicates deviation from the MPP, prompting a 

reversal in the direction of duty cycle adjustments. 

The accompanying figure illustrates how the power 

and voltage characteristics of a solar generator 

respond to changing weather conditions [10]  . 

Next, we will delve into the details of the 

Perturbation and Observation control algorithm. 

 

Fig. 3. Perturbation and observation control 

algorithm 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Typical Power-Voltage characteristic 

 

3.3. Modeling of the Electrolyzer 

For the second part of this investigation, we 

developed a sophisticated electrolyte model utilizing 

MATLAB Simulink software. The system 

architecture comprises two distinct components: the 

anode section, featuring fluid channels linked to a 

heat exchanger and a recirculation system to enhance 

operational efficiency, with water sourced from a 

dedicated water tank. Conversely, the cathode 

section consists of fluid channels connected to a 

dehumidifier to isolate water vapour from the 

generated hydrogen, which is subsequently stored in 

a hydrogen tank. Additionally, a cooling mechanism 

is employed to maintain optimal system temperature, 

as depicted in Figure 11. Three distinct energy 

profiles were employed as power sources: Solar 

power profile, Step current, and Ramp current, as 

illustrated in Figure 5 [14]. 

 
Fig. 5. Typical Power-Voltage characteristic 

 

4. SIMULATION RESULTS 

 

4.1. Energy source 

In this simulation, we consider an irradiation 

value of 1000 W/m2 and maintain a constant 

temperature of 25°C. These parameters are chosen to 

meticulously evaluate the efficacy of the 

Perturbation and Observation (P&O) strategy 

employed in the DC/DC converter [11]. 

 
Table 1. PV Model 

PV Model: SPR-225-BLK-U 

Maximum power 𝑃𝑚𝑝𝑝 = 213.15 W 

Voltage of maximal power 𝑉𝑚𝑝𝑝 = 29 V 

Current of maximal power 𝐼𝑚𝑝𝑝 = 7.35 A 

Open-circuit Voltage 𝑉𝑂𝐶 =36.3 V 

Short-circuit current 𝐼𝑆𝐶 = 7.84 A 

Cell numbers 60 

Temperature coefficient of 

the maximum power 

- 0.360% 

Reference temperature 𝑇𝑟 = 25oC 

Boltzmann Constant K = 1.3805*10-23 J/K 

Electron charge q = 1.6 * 10-19 C 

 

The simulation outcomes unveil the remarkable 

adaptability and stability of the photovoltaic (PV) 
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system across diverse irradiation conditions. 

Notably, the PV system adeptly sustains its peak 

power output throughout the simulation, showcasing 

its capacity to efficiently harness solar energy 

despite fluctuations in irradiation levels [12]. 

Furthermore, the system exhibits exceptional 

performance in external voltage regulation, 

steadfastly maintaining a consistent voltage level at 

the designated reference value of 48 V. Even amidst 

varying irradiation, the system promptly readjusts to 

this reference value, underscoring its robust voltage 

regulation capabilities and resilience against 

environmental changes. Similarly, the battery 

current remains impressively stable, hovering 

closely around the prescribed reference value. 

With minimal oscillations observed. This consistent 

current flow reflects the efficacy of the battery 

management system, ensuring optimal charging and 

discharging processes to maximize energy storage 

efficiency and prolong battery lifespan. 

In essence, the comprehensive analysis of the 

simulation data provides valuable insights into the 

PV system's reliability and performance under 

dynamic environmental conditions. Its ability to 

maintain peak power output, regulate external 

voltage, and stabilize battery current highlights its 

suitability for various renewable energy 

applications, bolstering confidence in its real-world 

deployment for sustainable energy generation and 

storage [13]. 

 

 

 

Fig. 6. Temporal Variation of Irradiance 

 

Fig. 7. Photovoltaic System Power Output 

 

Fig. 8. Photovoltaic System Voltage Output 
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Fig. 9. Battery charging current 

 

Fig. 10. Battery voltage 

 
Fig. 11. Advanced Electrolyzer Simulation 
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Fig. 12. Solar Power Profile graphs 

 

 
Fig. 13. Step Profile graphs 
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Fig. 14. Ramp Profile graphs 

 

4.1. Electrolyzer 

The ensuing curves below illustrate distinct 

outcomes based on different configurations. In the 

context of the solar setup (referenced in Fig. 12), 

hydrogen production demonstrated an increasing 

trend alongside rising light intensity, peaking at 0.52 

g/s before tapering off with diminishing light 

intensity. Correspondingly, energy output followed 

a similar trajectory, ascending to 100 KW with 

heightened light intensity before descending. As 

energy output surpassed requirements, surplus 

energy was converted to heat, reaching a maximum 

of 22 KW. Despite the rise in hydrogen production, 

the electrolyzer's temperature climbed to 80 °C but 

stabilized through the cooling system, ensuring 

operational efficiency without compromising output. 

In contrast, the Step Profile (depicted in Fig. 13) 

exhibited a transient surge in production rate from 0 

to 0.43 g/s, followed by stabilization in response to 

the power supply [14].  

Similarly, energy spiked from 0 to 80 KW before 

stabilizing, with consistent heat liberation at 20 KW. 

Effective cooling mechanisms maintained the 

electrolyzer temperature at 80 °C throughout. 

In the scenario of the Ramp Profile (illustrated in 

Fig. 14), hydrogen production steadily increased, 

reaching 0.45 g/s and continuing its upward 

trajectory. Concurrently, power output reached 80 

KW, while temperature stabilized at 80 °C with 

cooling system support [15]. 

Analysis of the results indicates that despite energy 

losses, power output exceeded the requirement for 

hydrogen production, leading to the dissipation of 

excess heat. The thermal efficiency of the 

electrolyzer, representing the proportion of electrical 

energy utilized for hydrogen production relative to 

the calorific value of hydrogen, was approximately 

87%. Crucially, the cooling system effectively 

regulated the system temperature, preventing it from 

surpassing 80 °C [15].  

 

5. CONCLUSION 

 

This paper presents a comprehensive 

investigation into the optimization analysis of an 

autonomous PV solar system. The study proposes a 

novel approach grounded in perturbation and 

observation methodology, aimed at maximizing PV 

power extraction. Through simulated experiments 

conducted using Simulink Matlab software, the 

efficacy of this strategy is rigorously evaluated 

within a boost converter-based setup.  

The simulation results unequivocally validate the 

proposed strategy's effectiveness in tracking the 

Maximum Power Point (MPP) and maximizing 

power harvesting, irrespective of varying solar 

environmental conditions. This robust performance 

underscores the potential of the perturbation and 

observation technique as a reliable and adaptable 

solution for optimizing PV system performance. 

Then, Employing Matlab Simscape, we crafted a 

sophisticated electrolyzer system distinguished by 

its advanced design. Notably, the system's 

productivity consistently achieved an impressive 
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87% yield, marking a significant milestone in our 

endeavors. This outcome underscores the robustness 

and effectiveness of our design methodology, 

instilling confidence in the potential for future 

breakthroughs in electrolysis technology. 

One of the challenges confronting us pertains to 

the design of a practical and appropriate cooling 

system that guarantees the stability of the studied 

system. This aspect will be the primary focus of 

forthcoming investigations. 

The forthcoming challenge involves identifying 

and implementing an optimal control technique 

tailored to efficiently manage the electrolyzer within 

the integrated PV system framework. Furthermore, 

conducting a comparative analysis between the 

obtained results and those derived from an authentic 

model to ascertain the validity of these findings. This 

multifaceted exploration promises to unlock new 

avenues for sustainable energy generation and 

storage, driving advancements towards a greener and 

more resilient energy infrastructure. 
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