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Abstract 

With global life expectancy rising every year, ageing-associated diseases are becoming an increasingly 

important problem. Very often, successful treatment relies on early diagnosis. In this work, the issue of 

Parkinson's disease (PD) diagnostics is tackled. It is particularly important, as there are no certain antemortem 

methods of diagnosing PD - meaning that the presence of the disease can only be confirmed after the patient's 

death. In our work, we propose a non-invasive approach for classification of raw speech recordings for PD 

recognition using deep learning models. The core of the method is an audio classifier using knowledge transfer 

from a pretrained natural language model, namely wav2vec 2.0. The model was tested on a group of 38 PD 

patients and 10 healthy persons above the age of 50. A dataset of speech recordings acquired using a smartphone 

recorder was constructed and the recordings were labelled as PD/non-PD with the severity of the disease 

additionally rated using Hoehn-Yahr scale. We then benchmarked the classification performance against 

baseline methods. Additionally, we show an assessment of human-level performance with neurology 

professionals. 
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List of Symbols/Acronyms 

 

PD – Parkinson’s disease; 

HP – Healthy population; 

SNR – signal to noise ratio; 

GRU – Gated Recurrent Units; 

FFT –  Fast Fourier Transform; 

UPDRS – Unified Parkinson's Disease Rating Scale; 

 

1. INTRODUCTION 

 

Parkinson’s disease (PD) is a progressive 

disorder of the nervous system that affects parts of 

the brain responsible for the motor functions. It is 

estimated that in industrialised societies PD affects 

about 1% of the population above the age of 60 [15]. 

Despite its commonness, there is still no antemortem 

test for PD. Therefore, the diagnosis relies on 

patient’s history and physical examination. Novel 

approaches are examined in works such as [3, 5, 10 

14]. 

Previous findings, including [1,8,12], have 

shown that Parkinson’s disease can be accurately 

diagnosed using speech recordings and machine 

learning techniques. In authors’ earlier research 

covering the presented PD dataset [4] the results 

indicated a significant signal in speech recordings 

acquired using a smartphone. In this work, we 
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approach this topic using deep learning audio 

models. We propose an architecture based on 

wav2vec 2.0 [13] and we test it in a transfer learning 

setup. Ultimately, we discuss the possibility of 

implementing our approach as a remote diagnostics 

tool and we present a human-level performance 

assessment consulted with the medical experts in the 

neurology domain. Our goal was to determine if an 

audio model that was trained on a large-scale natural 

language dataset can be transferred and fine-tuned to 

a downstream task of medical diagnostics. Medical 

tasks usually suffer from insufficient amount of 

labelled training data, therefore it would be much 

beneficial to observe such knowledge transfer. 

 

2. RELATED WORKS 

 

2.1. Wav2vec2.0 

As a backbone architecture for our experiments, 

we use pretrained parts of the wav2vec 2.0 model. It 

is a raw audio speech recognition transformer model 

published in [13]. The model is pretrained in an 

unsupervised manner and was shown to deliver 

state-of-the-art performance in speech recognition 

tasks using very limited fine-tuning. In this work, we 

utilise the pretrained convolutional layers of 

wav2vec 2.0. 
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2.2. Explainability in AI 

Explainable AI (XAI) plays an important role in 

medical applications of artificial intelligence. It was 

shown in [11] that black-box models with wrong 

explanations encourage distrust in deep learning 

models, despite their good overall performance. It is 

therefore important to design models in a way that 

their predictions can be explained and understood by 

domain experts, who might not be familiar with 

machine learning at all. In this work, we discuss 

possible explanations of the audio models and we 

present a survey among neurology experts, aiming to 

assess the human-level performance of speech-based 

PD diagnostics. 

 

3. PROPOSED METHOD 

 

3.1. Data acquisition 

The data was acquired according to the previous 

research presented in [4,7,9]. The dataset consisted 

of phonetic test recordings gathered using a mid-

range Android smartphone. PD patients were 

labelled with Hoehn-Yahr ratings by the neurologists 

at the clinic and the clinical hospital. Healthy 

persons were recruited from participants above the 

age of 50, as majority of the PD patients are among 

the elderly. This helped to mitigate the potential age-

related bias. The patients were asked to read out loud 

a set of vowels (including sustained phonation), 

syllables, and sentences in Polish language:  

• vowels \a, \e, \i, \u pronounced normally (3x); 

• sustained phonation of vowels \a, \e, \i, \u (3x); 

• words {ala, as, ula, ela, igła} (3x); 

• sentences (each 3x): 

– Dziś jest ładna pogoda.  

– Jacek mył kota. 

– Lola lubi bal. 

– Rysiek narysował bar. 

– Marysia namalowała dym. 

Full recordings were later manually segmented 

into audio samples containing fragments of speech 

described above. The total length of the segmented 

speech samples was approximately 38 minutes in 

2141.wav files, giving on average 43 recordings per 

subject. Exact numbers vary between patients due to 

the manual quality check process which ruled out 

incomprehensible and noisy samples. 

 

3.2. Preprocessing and data augmentation 

Before entering the pipeline, two-channel 

smartphone recordings were subtracted from each 

other for noise cancellation, as described in previous 

work [4]. The recordings were also peak-normalised 

to common gain. Taking into account the relatively 

small number of available audio samples in the 

dataset (2141) and a need for broad domain 

generalisation stemming from the usage of  

a smartphone recorder, it was necessary to strongly 

augment the dataset. So-called "audiomentations" 

[6] were used, including: addition of random 

background noise, addition of random coloured 

noise, random shift in time domain, random polarity 

inversion (Figure 1). The augmentations were 

prepared by addition of background noise. Two 

noise recordings were used to be randomly sampled 

into the training set: 

• Recording of a busy street with people talking 

unintelligibly and objects rattling. Duration: 2:21 

minutes. 

• Recording of street traffic with cars passing by at 

different speeds. Duration: 2:00 minutes. 

Random fragments of background noise were 

sampled at every iteration and added to the training 

samples. 

The augmentations were prepared by addition of 

coloured noise. Parameters drawn randomly from: 

• signal-to-noise ratio (SNR) [dB] in range [3,30] 

• fdecay in range [-2, 2] 

The augmentations were prepared by time shift 

of audio signals. Temporal shift was applied in range 

of ±10% difference without rollover. 

The augmentations were prepared by polarity 

inversion of audio signals too. Applied to the whole 

training sample. Each of the augmentations was 

applied with 50% probability, drawn at every 

iteration for every augmentation separately. The 

samples were randomly augmented during each 

iteration of the training and were turned off during 

testing. 

 

Fig. 1. Visualisation of the signal waveform 

before (first row) and after augmentations 

(bottom two). Both of the augmented signals 

are still clearly intelligible to the human ear. 

 

3.3. Model architecture 

The model architecture was designed in a 

sequence-to-one manner (Figure 2). The input to the 

model was expected to be a single-channel raw audio 

waveform that was then internally processed into a 

vector representation and classified into a class label. 

Wav2vec 2.0 model is by design a sequence-to-

sequence transformer, therefore, sequence 

aggregation had to be performed after the 

representation was obtained. 
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Fig. 2. Proposed model architecture. The 

convolutional layer was taken from a 

pretrained wav2vec 2.0 model. 

 

Among tested configurations, the best-

performing one was a GRU that was using a 

convolutional feature map from wav2vec as the 

input. We tested also a full transformer setup, but it 

failed to converge in every experimental run. 

Training logs from both of described approaches are 

shown in  Figure 3 and Figure 4. The last hidden state 

of the GRU layer was passed on to a linear classifier 

that generated per-sample predictions. 

 

 

Fig. 3. Training loss of several runs using the 

simplified model shown in Figure 2. 

 

 

Fig. 4. Training loss of several runs using the 

full wav2vec transformer. In all tested setups, 

the transformer model failed to converge. 

 

3.4. Voting inference 

 

The models were trained to classify segmented 

audio samples. However, the final prediction needs 

to aggregate all of the single-sample predictions for 

a given patient. Using an end-to-end Multiple 

Instance Learning setup [2] was restricted due to 

hardware limitations. Voting inference was proposed 

to counteract this obstacle.  After the models were 

trained to classify single samples, their predictions 

were aggregated for each patient. The final output 

label was the mode value of single-sample 

predictions. In the results, we report both the single-

sample and aggregated voting performance. 

 

3.5. Experimental setup 

In our dataset, we gathered 38 PD patients at 

different stages of the disease’s development (a 

detailed Hoehn-Yahr table is presented Table 1) and 

10 healthy persons (HP) above the age of 50. After 

segmentation, the dataset consisted of a total of 2141 

audio samples ranging from vowels to full sentences. 

Audio had to be resampled from original 44.1 kHz 

sampling rate to 16 kHz, which is the sampling 

frequency using which the wav2vec backbone was 

trained [13]. To verify the hypothesis that knowledge 

from pretrained natural language audio models can 

be transferred to medical tasks, we trained our 

models in 3 configurations: 

• baseline model with pretrained and frozen 

convolutional layers (frozen conv) 

• baseline model with pretrained convolutional 

layers and full fine-tuning (full + pretrained) 

• baseline model with randomly initialised layers and 

full training (full + not pretrained) 

The pretrained model that we used was Wav2Vec 

2.0 base with no fine-tuning. The GRU was a 

bidirectional unit with 1 hidden layer and hidden size 

256. Classifier head consisted of 2 hidden layers 

with hidden size equal to 128. Each of the 

configurations was trained in a 5-fold cross-

validation setup. The folds were stratified in terms of 

Hoehn-Yahr score, meaning that each fold contained 

patients at different stages of PD. The reported 

metrics were averaged across the folds. Models were 

trained for 400 epochs with batch size 32 and Adam 

optimizer with 10e-4 learning rate and betas equal to 

(0.9, 0.999) on a Nvidia Tesla K40 XL GPU. 

 
Table 1. Value counts in target subgroups  

Group Hoehn-

Yahr grade 

Count Count 

(group) 

PD 5 1 38 

4 11 

3 13 

2 11 

1 2 

HP 10 

 

4. RESULTS 

 

The results below are presented for a setup 

described in 3.5, unless otherwise noted. We report 

averaged 5-fold cross-validated test metrics. 

In Figure 5 we present the voting inference 

metric. The measure is equivalent to the fraction of 

single-sample predictions that were predicted as PD-

positive in a given patient. HP is healthy population. 

Dotted line is the 0.5 votes threshold between 
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positive and negative grading. An important 

observation is that the only misclassified subject is a 

false negative, which very undesired in a medical 

classification system. Additional metrics, including 

false negative rate, are shown in Table 3. 

 
Table 2. Comparison of models’ scores between different 

training schemes 

Model 

Single-

sample  

accuracy 

Inferred 

voting 

accuracy 

Inferred 

voting 

ROC 

AUC 

frozen conv  89.92% 97.92% 0.99 

+ pretrained  

 

82.07% 83.33% 0.84 

full + not 

pretrained  

81.11% 83.33% 0.80 

 
Table 3. Comparison of models’ sensitivity and 

specificity 

Model Inferred 

voting  

Sensitivity (true 

positive rate) 

 

Inferred voting 

specificity (true 

negative rate) 

frozen conv  0.97 1 

full + pretrained  1.00 0.20 

full + not 

pretrained  

1.00 0.20 

 

 
Fig. 5. Plot of the voting certainty at different 

stages of Hoehn-Yahr scale. 

 

In Table 2, we compare single-sample accuracy 

to inferred voting accuracy across 3 training setups. 

Two observations can be drawn from the table: 

1. pretraining improves the classification 

performance; 

2. fine-tuning the convolutional part degrades the 

classification performance. 

 

5. HUMAN-LEVEL PERFORMANCE 

ASSESSMENT AND INTERPRETABILITY 

 

The aim the performed assessment was to 

determine if human experts can also pick up some 

signal in speech recordings solely. A survey was 

conducted among experts in neurology who did not 

examine the patients otherwise. In a provided 

questionnaire, the experts were provided with the 

recordings sampled from different parts of the 

phonetic test. 

The subsets in the questionnaire consisted of: 

• all parts of the phonetic test; 

• only full sentences; 

• only words and syllables; 

• only vowels and sustained phonation. 

Six experts took part in the survey. They were 

asked to label each set of recordings (per patient) 

with one of the following: no symptoms; mild PD 

symptoms; advanced PD symptoms; symptoms of a 

disease other than PD. We provide a detailed table of 

collected answers in Table Y. Averaged accuracy of 

the experts predictions on a binary task of PD scores 

up to 75% when using mode value (similar to the 

proposed voting inference). We can therefore draw a 

conclusion that: 1) our model outperforms the 

human experts in speech classification; 2) there is a 

significant signal that can be distilled from speech 

only. This encourages further examination of the 

model’s explainability, which could provide experts 

with reliable diagnostic input and promote trust in 

the proposed AI-based diagnostic tool. We also 

approach the model in terms of interpretability. We 

wanted to observe if the feature map created by 

 
Table 4. Summary of the answers to the 

questionnaire. Options in the questionnaire were: 1 - no 

symptoms, 2 -symptoms other than PD, 3 - early-stage 

PD, 4 - advanced-stage PD. ‘Hit‘ means that at least one 

of the experts provided correct answer. 

 

Set 1: all types of recordings 
Subject True  

H-Y 
Mode(s) Average Hit 

1 (PD) 1 1 1.3 YES 
2 (HP) - 1, 3 2.0 YES 
3 (PD) 3 3 3.0 YES 
4 (HP) - 1 1.0 YES 
5 (PD) 5 2, 3 2.5 YES 
6 (HP) - 1 1.7 YES 

Set 2: only full sentences 
Subject True  

H-Y 
Mode(s) Average Hit 

7 (PD) 2 1 1.3 YES 
8 (PD) 2 3 2.3 YES 
9 (PD) 4 4 3.3 YES 

10 (PD) 4 4 3.3 YES 
11 (HP) - 1 1.0 YES 
12 (HP) - 3 2.7 YES 

Set 3: words and syllables 
13 (HP) - 3 3.2 NO 
14 (PD) 2 1 2.3 YES 
15 (HP) - 3 2.7 YES 
16 (HP) - 1 1.5 YES 
17 (HP) - 1 1.3 YES 
18 (PD) 4 4 3.2 YES 

Set 4: vowels and sustained phonation 

19 (PD) 2 4 3.2 YES 

20 (HP) - 1 1.5 YES 

21 (PD) 3 4 3.7 NO 

22 (PD) 4 2, 4 3.0 YES 

23 (PD) 4 4 4.0 YES 

24 (PD) 2 4 4.0 YES 



DIAGNOSTYKA, Vol. 25, No. 1 (2024)  

Chronowski M, Kłaczyński M, Dec-Ćwiek M, Porębska K.: Parkinson’s disease diagnostics using AI and… 

 

5 

wav2vec convolutional layers can be interpreted in 

time-feature domain, similar to how spectrograms 

are analysed in time-frequency domain. We present 

a sample comparison in figure 6. The spectrogram 

was calculated with FFT length 1024 and 1/8 

window overlap so that the output frequency 

resolution matched with the number of features in 

the internal wav2vec representation (512). We 

observe that there is no interpretable pattern in the 

feature map, however, the representation is much 

more evenly distributed than in case of the 

spectrogram, meaning that it likely yields more 

information. 

 

 

Fig. 6. Comparison of a spectrogram (left) with a 

wav2vec feature map (right) for a sentence "dziś 

jest ładna pogoda" ("the weather is nice today"). 

Spectrogram visualises the acoustic input in time-

frequency domain, while extracted feature map 

does so in a trainable time-features domain 

 

6. DISCUSSION 
 

In our experiments, we have shown that it is possible 

to use an audio model trained on natural language to 

improve the performance on a downstream medical task. 

Our novel contribution is the construction of a machine 

learning framework for medical audio classification that 

takes the advantage of existing speech processing models. 

We have shown that our implementation obtains very good 

performance on downstream tasks, scoring up to 97.92% 

accuracy. In needs to be noted, however, that our 

approaches towards obtaining accurate multi-class 

predictions for different stages of the disease were so far 

unsuccessful, most probably due to insufficient 

representation of each Hoehn-Yahr subset in the training 

data. Further studies should focus on constructing a model 

that would differentiate the subjects in terms of the stage 

of disease’s development. Probably, a different grading 

scale could be used, such as UPDRS. Our classifier should 

also be used with a given uncertainty margin, especially 

when considering an implementation of a downstream 

diagnostic tool. Our method can be used efficiently to 

separate healthy population from PD patients, but false 

negative rate has to be taken into account to avoid missing 

disease-impaired subjects. Another study should also 

check how the classifier performs in the presence of other 

diseases, most importantly ones impairing the human 

speech in any way. Having addressed all these 

uncertainties, it might be possible to develop a remote 

diagnostic tool for supporting the traditional clinical PD 

diagnostic process, based on the proposed method. 
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