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Abstract 

Objectives was to determine the durability of pins and sleeves used in the construction of a cycloidal gear. 

The methods used were based on a comparative analysis of selected macro photos of their surfaces and 

representative surface profiles recorded before and after the bench tests and the Ra and Rz surface roughness 

values determined on their basis. Before and after the bench tests, the weight of each sleeve and pin was 

measured, their surface profiles were recorded and micro photos of these surfaces were taken. Based on each 

recorded surface profile, the roughness parameters Ra and Rz were determined. The advantages of using steel 

sleeves in the cycloidal drive structure, increasing its durability, have been demonstrated by the low mass wear 

of the sleeves and the low surface roughness parameters Ra and Rz. It was shown that the appropriate accuracy 

of the pins and sleeves is necessary. 
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1. INTRODUCTION 

  

The main problems in the field of maintenance 

are ensuring high reliability and readiness to start 

work [1]. High requirements as to durability and 

reliability make it necessary to obtain information 

about the condition of devices during maintenance 

[2]. 

Due to the use of a cycloidal drive at structures 

with high loads, its individual components must be 

highly resistant to wear to ensure the long life of the 

gear. The structure of the tested cycloidal drive is 

shown in Fig. 1. 

The sliding sleeves and pins are made of the same 

material as cycloidal discs: 32CDV13 steel. Sliding 

sleeves, pins and cycloidal discs have undergone the 

same heat treatment for which the hardness of the 

44HRC elements was achieved. The outer surfaces 

of each sliding sleeve and pin were ground. The 

article [3[ presents the research on the impact of slide 

burnishing process carried out with use of various 

ceramics on friction and wear of steel elements. In 

addition, surfaces after grinding, lapping and 

polishing processes were tested 

The sliding burnishing process enables to obtain 

an increased hardness in the surface layer [4, 5] and 

to obtain a very good surface smoothness [6]. These 

features favorably affect a number of functional 

properties, including tribological wear [7] and 

fatigue strength [5, 8]. 

 

 
Received 2023-10-31; Accepted 2023-11-29; Available online 2023-12-11 

© 2023 by the Authors. Licensee Polish Society of Technical Diagnostics (Warsaw. Poland). This article is an open access article distributed 
under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 

Fig. 1. Cross-section od the cycloidal drive:  

1 – input shaft, 2 – housing,  

3.1,3.2 – cycloidal discs, 4 – outer pins with 

sliding sleeves, 5 – inner pins with sliding 

sleeves,  

6 – output shaft 

 

The research results concerning the influence of 

variables loads on the maintenance characteristics of 

sliding bearings have been published [9]. The issues 

related to geometrical surface texture were 

investigated in [10–12]. The publications [13, 14] 

present the methodology of designing a cycloidal 

drive and describe the influence of selected 
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geometrical parameters on its durability. Kinematic 

error analysis and tolerance allocation of cycloidal 

drive reducers were investigated [15]. Tooth 

modification and dynamic performance [16]. [17] 

presents the results of cycloidal drive tests in terms 

of the application of slide and needle roller bearings. 

The primary issues of cycloidal discs durability in 

experimental studies were investigated in [18]. The 

tests results of sliding sleeves mounted on internal 

pins, made of bronze and used in cycloidal drive, are 

presented in [19]. Their very high sensitivity to wear 

was the reason for undertaking further research on 

reducing the wear effect. The article [20] considered 

planetary gear vibration response to detect gear 

pitting due to wear. The research objects assumed in 

this article are all external and internal pins and the 

sleeves installed on them. Such a comprehensive 

approach to the study of these kinematic pairs 

allowed for a better analysis of the obtained results 

and drew the correct conclusions. 

 

2. ASSUMPTIONS OF THE BENCH TESTS 

 

Based on the analysis of the forces acting on the 

slide sleeves [13], a decision was made to use steel 

slide sleeves, replacing the previously used 

SELFOIL® bronze sleeves made in the powder 

sintering process. Each sliding sleeve and pin were 

marked at the production stage with their own 

individual number, which made it easier to identify 

the cooperating surfaces of individual components at 

the experimental and measuring stage. 

A METTLER AT261 laboratory balance was 

used to measure the weight of the sleeves and pins. 

The Taylor Hobson Form Talysurf PGI 830 

profilograph was used to measure the surface 

roughness of the tested elements, record the wear 

pattern profile and surface topography. Profilograph 

Form Talysurf PGI 830 from Taylor Hobson is a 

measuring system for roughness, waviness, and 

shape determination, using the contact method. The 

measurement is carried out using a sensor with a PGI 

830 laser head, which moves along the tested 

surface. The surface condition was analysed with the 

use of a Nikon MM 40 / L3FA optical microscope. 

This type of microscope, together with the 

MultiScanBase digital image acquisition and 

processing system, is used to observe the surface of 

test elements and to observe traces of wear. 

Operating parameters of the cycloidal drive 

during the bench test: temperature of the working 

environment temperature t = 25°C, input rotational 

speed n_w  = 3500rpm, load T = 32Nm, The number  

of measuring cycles was set to 50 while the time 

of a single cycle was 1h [21]. 

The test bench illustrated in Fig. 2 enables testing 

with different braking torques and input rotational 

velocities. 

 

Fig. 2. Test bench: 1-input engine, 2-braking torque, 3-reducer, 4-output torque measurement (collecting data: 

output velocity, output torque), 5-input torque measurement (collecting data: input velocity, input torque), 6-

elastic clutches 

 

Fig. 3. Summary of cycloidal drive efficiency values calculated for the selected measuring cycles 
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The efficiency was controlled during the tests 

according to the procedure presented in [22] where 

the theoretical and experimental values were 

verified. The results every 10 cycles are presented in 

the Fig. 3. An increase in the efficiency in time can 

be observed, regardless of the measuring cycle, 

which is conditioned by the oil temperature increase 

in the cycloidal gear. It can be noted that in the 

increase of the working cycles the efficiency curves 

are getting closer to each other which means that the 

gearbox is already ran-in and the inspection of the 

wear of the components can be performed. 

A comparison of the recorded performance 

efficiency characteristics of the cycloidal gearbox 

working with steel sliding sleeves and with sliding 

bearings made of sintered bronze and presented in 

[22] shows a significant similarity. Based on this, it 

can be concluded that a change in the material used 

for the sliding sleeves in a cycloidal drive does not 

result in almost any loss change. 

 

3. MASS WEAR 

 

To determine the mass wear of the inner and 

outer sleeves, the mass of each element was 

measured before and after the bench tests. The 

average mass of the selves at the beginning of the 

trial was 8.8143 grams. Fig. 4 and Fig. 5 present 

respectively the calculated mass difference of the 

inner and outer sleeves 

On the inner and outer pins, there were two 

sleeves, which is why in pictures 3 and 4 there is 

twice higher number of sleeves. The first set for 

inner (1-8) and external (1-16) pins was working 

with the cycloidal gear wheel depicted in the Fig. 2 

pos. 3.1 and the second set of sleeves for inner (9-

16) and external (17-32) with pos. 3.2. An analysis 

of the mass wear of the inner sleeves and outer 

sleeves shows maximal weight loss at value 1.94e-3 

g and 1.6e-3 g which nevertheless is not equal for 

each pin which can be caused by the manufacturing 

and assembly tolerance. 

 

4. THE CONDITION OF THE SURFACE OF 

THE INNER PINS AND OUTER PINS AND 

THE STEEL SLIDING SLEEVES 

MOUNTED ON THEM 

 

To determine the visual state of the surfaces of 

the selected pins and sleeves, macro photos were 

taken at 100 times magnification. Fig. 5 shows 

exemplary photographs of the condition of selected 

surfaces of pins at the test beginning and after 50 

measurement cycles 

 

 

Fig. 4. Measurement results in the form of the mass difference of the inner sleeves 

 

 

Fig. 5. Measurement results in the form of the mass difference of the outer sleeves 
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a 

 
b 

 
c 

 
d 

Fig. 1. A list of photographs showing the selected a) new surface of the inner pin no. 4, b) the surface 

of the inner pin no. 4 after 50 cycles, c) the new surface of the outer pin no. 13, d) the surface of the 

outer pin no. 13 after 50 cycles 

 
a 

 
b 

 
c 

 
d 

Fig. 7. A list of photographs showing the selected a) new surface of the inner sleeve no. 4, b) surface of 

the inner sleeve no. 4 after 50 cycles, c) new surface of the outer sleeve no. 3, d) surface of the outer 

sleeve no. 3 after 50 cycles 
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Fig. 6 shows examples of photographs of 
selected surfaces of the new sleeves and after 50 
measuring cycles. The photos were taken at 100 
times magnification using an optical microscope 

The condition of the surfaces shown in Fig. 5 and 
Fig.6 indicates that they have been lapped. The 
analysis of the list presented in Fig. 4 allows finding 
no noticeable effects of pitting wear that occurred 
after conducting bench tests with the use of 
SELFOIL® bronze sliding sleeves [21], Fig. 7. 
Based on the photographic analysis of the surface 
condition, steel sliding sleeves can be indicated as 
elements that better transfer loads. 

 

5. COMPARATIVE ANALYSIS OF SURFACE 

PROFILES AND SURFACE ROUGHNESS 

VALUES 

 

The analyzed gear design has 32 slide sleeves 

mounted on 16 external pins and 16 slide sleeves 

mounted on 8 internal pins (Fig. 1). 

It was assumed that the profiles of the sleeves and 

pins were recorded by three longitudinal profiles in 

the following positions (Fig. 7): 

• 0° (the surfaces above the number 

representing the sleeve or pin were selected 

as a reference point),  

• 120°, 

• 240°. 

The left side of the element corresponds to the 

numbered side of the element.  

Figure 7 shows an example of an inner sleeve 

no.2 for recorded a profile set for an angle of 0°. 

 

 
Fig. 8. The assumed system of the 

measurement profiles on the example of the 

inner sleeve no.2 

 

The profiles of the new surface of the outer pin 

no. 4 for the settings 0, 120 and 240 are shown in 

Fig. 8. 

The analyzes of all recorded profiles of pins and 

sliding sleeves indicate quite large discrepancies in 

shape. This may have an adverse effect on the nature 

of work in the contact zones of individual kinematic 

pairs of pin-sleeve, sleeve-cycloidal disc. 

Representative profiles of selected surfaces and 

the results of surface roughness measurements for 

the inner pin no.1 are shown in Fig. 9. 

 

a)  

b)  

c)  

Fig. 9 Profiles of the surface of the outer pin No. 4 for the setting corresponding to the angular value:  

a) 0°, b) 120°, c) 240° 
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a)  

b)   

Fig. 10. Profile of the surface of the inner pin no.1 for the setting corresponding to the angular value 0°:  

a) new b) after 50 measuring cycles 

 

 

The surface roughness values determined on the 

basis of the registered profile are:  

- for the new surface: Ra=0.062 µm; Rz=0.551 

µm;  

 

- for surfaces after 50 cycles: Ra=0.053 µm; 

Rz=0.407 µm. 

Representative surface profiles and the results of 

surface roughness measurements for the inner sleeve 

no. 1 are shown in Fig. 10. 

a)   

b)   
Fig. 11. Surface profile of the inner sleeve no.1 for the setting corresponding to the angular value of 240°:  

a) new b) after 50 cycles 

 

The surface roughness values determined based 

on the registered profile are: 

- for the new surface: Ra=0.072 µm; Rz=0.709 µm; 

- for surfaces after 50 cycles: Ra=0.047 µm; Rz=0.340 

µm. 

  

 

Representative surface profiles and the results of 

surface roughness measurements for the outer pin 

no. 1 are shown in Fig. 11. 
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a)  

b)   

Fig. 12. Surface profile of the outer pin no.1 for the setting corresponding to the angular value of 120°: 

 a) new b) after 50 measuring cycles 

 

The surface roughness values determined based 

on the registered profile are:  

- for the new surface: Ra=0.161 µm; Rz=1.547 µm;  

- for surfaces after 50 cycles: Ra=0.098 µm; Rz=0.858 

µm. 

Representative surface profiles and the results of 

surface roughness measurements for the outer sleeve 

no.17 are shown in Fig. 12 

a)   

b)   
Fig. 13 Surface profile of the outer pin no.17 for the setting corresponding to the angular value 0°:  

a) new b) after 50 measuring cycles 

 

The surface roughness values determined based 

on the registered profile are:  

- for the new surface: Ra=0.144 µm; Rz=1.087 µm;  

- for surfaces after 50 cycles: Ra=0.079 µm; Rz=0.688 

µm. 
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6. CONCLUSIONS 

 

1. Mass wear of sleeves after 50 measuring cycles 

is in range 1.6e-3g to 1.84g and is equal to it can 

also be noted that the mass wear is not equal for 

all the sleeves. 

2. Record profiles of new surfaces of the sleeves 

and pins indicate manufacturing errors. 

Therefore, it seems necessary to ensure the 

control of the execution of these transmission 

elements.  

3. The analysis of the roughness values Ra and Rz 

determined from the recorded surface profiles 

showed their reduction after 50 measuring 

cycles. 

4. The analysis of wear traces using macro photos, 

recorded surface profiles and a comparative 

analysis of the determined Ra and Rz roughness 

values on the surfaces of pins and sliding sleeves 

after 50 measuring cycles indicates the need to 

extend the time interval of the tests to observe 

greater wear effects. 
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