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The procedure for taking into account shear and rotational inertia in the case of transverse vibrations of
beam elements of material handling vehicles with different conditions of fastening (support) is considered. The
dynamic model of the rod element is supplemented with compressive forces with a fixed line of action and
monitors the angle of rotation of the rod. The Fourier method of separation of variables in the harmonic
vibrations of beams is applied. This made it possible to obtain a differential equation, kinematic and static
parameters in the amplitude state. The resulting differential equation is integrated, the fundamental functions
are normalized, and the complete solution is presented in matrix form with initial parameters. Four cases of
fundamental functions are revealed. For beam elements with different support conditions, the vibration
frequency has been refined. With hinged support, the first 5 frequencies of this work coincide with the

frequencies obtained by another approach.
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1. INTRODUCTION

Usually, the equations of transverse vibrations of
beams do not take into account shear deformations
and rotational inertia. Therefore, they quite well
describe the transverse vibrations of a rod with a
large ratio of length to cross-sectional height
(I/h>10) and at low frequencies (characteristic
operation of rod structural elements of material
handling vehicles). However, for frame systems of
foundations of heavy production equipment, and
systems of material handling vehicles and similar
machine-building structures, when lsw/nh < 6, where
n — oscillation tone number; h — characteristic size of
the cross section; lsy — half-wave length of the elastic
line of the rod, it is already necessary to take into
account shear and rotational inertia [1, 2].

The problem of constructing more accurate
solutions of transverse vibrations of a rod is also very
relevant in the theory of stability in connection with
the application of the dynamic method.

The differential equation of transverse vibrations
of a rectilinear rod, taking into account shear
deformations and rotational inertia, was derived by
an outstanding scientist from Chernihiv Oblast,
Ukraine, professor S.P. Tymoshenko [3]. His model
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has now established itself as the most accurate and is
widely used in various tasks of structural mechanics.
To apply the model of S.P. Tymoshenko, it needs to
be supplemented with longitudinal force Fx in
stability tasks.

For this purpose, the rod compressed by
consecutive force F1 and force F2that has a fixed line

of action is considered (Fig. 1).
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Fig. 1. Scheme of two following forces

2. ANALYTICAL LITERATURE REVIEW

Works [1-4] present mathematical models for
accounting for shear and rotational inertia during
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harmonic vibrations of various beam systems. They
do not take into account compressive forces and
therefore cannot be used to solve stability problems
by the dynamic method. This work corrects the
mentioned shortcoming.

The finite element method can be used, but it will
give an approximate value of the critical forces. The
approach proposed by the authors of the article
provides greater accuracy in the values of critical
forces of non-conservative stability problems.

3. THE PURPOSE AND OBJECTIVES OF
THE RESEARCH

The purpose of this scientific work is to build a
mathematical model of harmonic vibrations of
various beam structures, which takes into account
shear, rotational inertia and compressive forces.

The following tasks are solved in this:

1. The model of Professor S.P. Tymoshenko is
supplemented with compressive forces.

2. The variables in the dynamic model are separated
by the Fourier method.

3. The refined differential equation is integrated, the
fundamental functions are normalized, and the
complete solution is given in matrix form with
initial parameters.

4. Calculation of refined frequencies of natural
oscillations of beams and their comparison with
the results of other studies are completed.

4. FORMATION OF MATHEMATICAL
MODELS

4.1. Application of the Fourier method
The expression for the bending moment follows
from the geometric relations of the rod strained state

M -(X,t): El WTM+ F,- y(x,t)— F- y(l,t), (D)

where ., (x,t) —the angle of inclination of the rod

cross-section without taking into account shear;
F. =F, +F,-longitudinal force in the current

section;

y(x,t), y(1,t) — respectively, the deflection of
the current and boundary points.

Here, the first derivative of the deflection in the
rod curvature is not taken into account and it is
assumed that as a result of small displacements
cos(dy/dx)=1; sin(dy/ox)=dy/ox.

For force F, expression (1) is exact, for F —
approximate. The full angle of rotation of the section
is equal to sum (3)

Xt

WY _ ity @
OX

where r*(x,t)—angle of transverse shear. Transverse

force in the considered case will be an expression.

The total angle of rotation is equal to the sum of the
two terms.

Q- (xt)=—KAGz-(x,t)-F - ayg‘('t) +F ay(,g:('t),
®)

where AG — shear stiffness of the section; k —
coefficient that takes into account the effect of the
cross-section shape on shear strain. Fundamentally,
equations (1), (3) do not change if the rod is
compressed by "dead" force. Next, the model of the
strained state (1) - (3) is brought to the Cauchy
problem. In this case, the starting equations are the
equilibrium equations of the elementary part of the
rod during its naturaloscillations:

sum of moments

(xt)=—kAG - (x.t)— F. YU y(LY) (4
Q-(xt)=—kKAGz-(x,t)-F > +F Pt

sum of projection on the vertical axis

ay(x.t) , - ay(l,t)
-(x,t)=—kAG7-(x,t)-F - +F ,
Q- (xt)=kac (1) F - V2L p A
(5)
where p = m/ A—density of the rod material; A —
cross-sectional area; | — axial moment of inertia of

the section; m —evenly distributed mass; q*(x,t) -
transverse dynamic load.

If function y,(x,t)is excluded from equations
(4), (5), then the equation of S.P. Tymoshenko,

taking into account the action of longitudinal force
F., will take on the form

EI (1+ E )64% oy _[H +pl (1+ F") 2y +
walot Moz lk6” TP 46/l ax2a?

y o1 3y pl d%*q EI 9%q
*oax? kG ot*t
It is limited to the case of harmonic oscillations,

which can be used to separate the linear and temporal

coordinates according to the Fourier method, i.e.

y(x,t) = V(x)sin(at + ¥,);

q(x,t) = q(x) sin(wt + ¥,);
Y(x,t) = ¥(x)sin(wt + P,), @)

where V(x), g(x), y(x)-deflection amplitude, load
and angle of inclination;

o —frequency of natural oscillations;

w, —initial phase. Substituting (7) into (1) - (3),
(6), the differential equation and the corresponding
kinematic and static parameters in the amplitude
state are obtained.

The authors of the work took into account only
the amplitude components of deflection, load and
angle of inclination.

VI (x) + 212V, + S*V (x) = q,(x)/EI;
V(x); o(x) =V'(x);
T aV'"(x) + a;Viyy + azq(x) — a,V(D);

®)
% =B, V" (x) + B,V + B3q (%) — B, (%),

M(x)
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where ¢(x), M (x), Q(x)-amplitude full angle of
rotation, bending moment and transverse force,
coefficients and the right-hand side take the form
_1w*m(E +xG) + (plw? + KAG)F,

2 2 )
" EI(kAG + Fx)
. w*mlPlw? — KAG
S T TEIRAG + E)
KAG — plw? El .
qy(x) = KAG +F, q(x) — AG +E 4 x); 9
F, mw? F,
=14+ ——; = + =;
% «AG’ T xac T EI
1 F,
% =ac “TEr
_ KAG +F,
174G — plw?’
_I(Em + kAGp)w’t(kAG + plw?)F,
B2 = EI(KAG — plw?) '
1 Fyplw?
B3

T KAG — plw?’ ™ T EI(KAG — plw?)

It is convenient to present the solution of
equation (8) in matrix form after normalization of the
fundamental functions

EIV(X) A Asz A | -Au
Elp(X) | = | Aa A2 Az | -Axn
M(x) - Az - Az Ass Az
Q(x) - An A | As | Au
(10)
EIV(0) B
EI(0) | =Bz
M (0) -Ba
Q(0) - Ba
where the "-" sign corresponds to the "down"

direction of the oy axis. The appearance of the
fundamental orthonormal functions depends on the
roots of the characteristic equation. Four main cases
of fundamental functions are presented.

Matrix equations (10) can be effectively used if
the conditions of support of the beams are known.
This is shown in the work as follows - when the
supports are tightly clamped.

1 2 3 4
1 —Awizs | —Au
2 — Az — A
3| -1 As3 Az
4 -1 Aasz A

EIV(=0; M(l) EIVe=0
Elpo=0 Elpn=0
M(0) — | M) =0.
Q) Q)

Columns 1 and 2 are zeroed, as they are equal to
"0", i.e. EIV(gand Elgq). M(l)is moved to the place of
the zero strips of the matrix Xg) and the
compensating coefficient A(1,3) = -1 appears. Q(l)
is moved and the compensating coefficient A(2,4) =
—1 appears.

Next, the matrix 4_ will take the form of a

determinant. From which it follows that
‘Ak(wsziS'A%_AﬂA'A% =0-
This equation is a frequent equation for a rigidly
clamped beam.
1%'case. (r“—S“)<0.
The roots are complex
kis=taxif; a=+(s?—-1r2)/2;
(s2+12) /2
&, =chax-sinfix; &, = chax - cos fx;
®; =shax-cosfx; &, =shax-sinfx;
a, — a r?
2afa, 4
_ BIB; — By (B* — 3a?)]®; — a[B, + By(a® — 36%)]®, .
- 2afS?B,; ’
() O, — D
Az = 2A14=—a Sl 33
2aBa,; 2aBS?B,
Ao = B(a,s? — a;)P3 — a(ays® + a) Py
21 — Zaﬂal ’

Ay =0, —

A12

A — B2 By12 _
2= P2 O
_ aCDl + ﬂq)3 . _ q)4_ .
BT 2aBa; ' ** 7 2afs;’
(a; —ayr®) + 2 afa;)?

Az == 2afaq Pa;

Ayy =D +a2_a1r2q>
33 — 2 Zaﬂal 4

B (B 3@ —ar?)

32 2aS%B, 3

2a?a,[B, + B, (a? — 362)]
2a5?%B,

[B, — By (a® — 3B9)](a? — a;7?) o

28528, !

2B%a,[B, — B1(B? — 3a?)]
Z,BSZBI

O; —

Dy;

(11)
A = [a(a? — a;7?) + 2aB?a,]P,
34— 2aBS?B, a

_[Baz —air?) — 2% Bay | ®5
2apBS?%B, ’
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2a?a,[B, + By (a? — B?)] B(a, + a;a?) shax — a(a, — a,f?) sin Bx
A = 2aa, s~ Ase = aB(a? + B?)B, ;
_ (az — a;7?)[B, — B, (8% — 3a?)] D — Apr = —a(a; — a;%)(8; +Bia?) shax _
2aa, 3 " (@ + p*)ay
_2,82‘11[32 —B,(B? _3a2)](p " _ Bla, + a,a?) (B, — B1S?) sin fx
2Ba, ! (a® + pHay '
(az — arr?)[B, + By (a? — 36%)] D A = (B2 + B1a?)(By — By %) (— chax + cos fx)
2fay v 2 (a2 + p?)B; '
_a’[By; +By(a® =367 _ a(B, + Bya®) shax + (B, — B f?) sin fx
Az == 2apS%B, ®s - Aaz = (az + f*ay ;
BB, — B (B? - 3a2)]z¢) _ A (By +B1a?) chax(s, — By f?) cos fx
2aBS?8, v " (a? + B*)By '
4. 2 leatea(a® — 3010, 3"case. (r*-$*)>0;5*>0;r? <0.
43 =
2aBay A case of tensile force (—F,).
BB, — B, (8% — 3a2)] D, The roots are real
* 2afa, ’ K1 = 1@ Kz—4 = £f;
By — ByT ’
Ay =D, +;a—BBiCD4. a=_|-r2++r*-5%
nd 4 a4 o4
2"case. (r* —S*)>0;S* <0. g= |—rz— frizsm,
The roots are r?lfntlj |mag|Ea:}/_ . o (a + ;%) chax — (a; + asa?) chx
Ki—2 = X4 K34 = —lﬁ' 1 — ([gz _ a2)a1 ’
2 _ 2
@= |—r2 4+ Jrr_st s Ay, = B(B, +B1f*)shax — a(B, + B, )shﬁx;
af(B? — a®)B,
—chax + ch fx
B = fr2+\/r4—s4; A13=(ﬁ2_—az)af:
—(a, — a;B?) chax + (ay + a;a?) cos Bx _ —Bshax+ashfx
A= PRCETD) : A= g —ahB,
4 —B(B, — B %) shax + a(B, + B;a?) sin fx = a(a, +a,?) shax — a; + a;a?) shfx
12 = ; 21 = 2 2 ;
ap(a® + p?)B; (B? — a?)ay
_ chax —cos fx (B, + B %) chax — (B, + B;a?) ch Bx
M= @y A2z = @ —adn; ;
B shax —asinfx —ashax + [ shfx
ST ey DT A = g ey,
ashax + fsin fx —chax + chfx
N Y T o4 =T —a,
o = —(ay — a,8?%) ashax—ﬁ(a—alaz)sinﬁx_ Mo = (ay + a;a?)(a, +a1ﬁ2)(cha'x—chﬂx)_
21 — ) 31 — ]
(a% + f*)ay (8% —a?)a,
4y, = —(B, — B18?) c(h (zuf: 51)32 + Bya?) cos Bx .(12) (13)
a® + BBy A _ Blaz + a,a*) (B, + B1f?) shax
A = chax — cos Bx 32~ aB(B? — a®)B,
2 (a? +p?)B; ° 2 2
_aap +a:8%) (8, — Bia®) shBx
oy = (ay + a;a®)(ay — qf’z)(—zch ax + cos ,Bx); aB(B? — ad)s, ;
@ (a® + %) Mo = —(a; + a;a®) chax + (ay + a; ) ch Bx
Ay = —B(az + a;a®)(8, — B, %) shax n 33 B2 —a®)a, ’
af(a? + p?)B, 2 2
A _ —pla+aa®)shax +a(a, + a1 )shﬁx_
ala, — alliZ)(Bzz + B1a2); 34 = W B — a)n, ;
apf(a? + p*)B, = a(ay + a, ) (B, + Bia?) shax
Aoy = (az + a;a?) chax — (a; — a, %) cos fx 9= (B2 — ada, -

(a®+ pHay '
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B(a; + a;a®) (B, + B,S%)shPx
- B* - a®)ay '

= (B, +B1a?) (B, + B f?)(ch ax — ch fx) _
2 (B% — a?)B, ’

—a(B; +Bya?) shax + f(B; + B, %) shfx
(B? — a?)a, '

—(B, + Bia?) chax + (8B, + B %) ch Bx
(B? — 2%)B, '

4”‘case(r4 —S“)> 0;S*>0;r*>0.

Az =

Ayy =

The roots are imaginary
Ki—p = Hia; Kz—4 = £if;

a= ,TZ —Jrt=5%

B = r?+r*—5%
a = (ay — a;8%) cos ax — (a; — a;a?) cos fx
m (a% - %a, '
A = B(B; — B1f?) sinax — a(s, — Bya?) sin fx
we apf(a? — p*)B, '
cos ax + cos Bx
A3 == m e
(a% - f*ay
A = —Bsinax + asinfx
" aBa? - BB,

A = —a(a, — a, %) sinax + Baz — a;a?) sin fx
2 (a® = p*ay '
A = (B, — B1f?) cos a* — (B, — Bya?) cos Px

22 (a? — B?)By ’
A = asinax—ﬁsinﬁx_
23 (a? — B?)By ’
A = —COs ax + cos Bx
- (a? = B2y '
(14)
Ao = (a; — aya?)(ay — a,?)(cos ax — cos fx) _
s (a% - pHay ’
Ao = B(a, — a;a®)(8, — By ) sin ax
2 af(a? — p?)B,
a(a; —a;f2) (8, — B1a?) sinﬁx_
ap(a? — p?)B, '
A = —(a; — a,a?) cos ax + (a; — a,f?) cos fx
B (a? = pHay ’

A = —B(a; — a;@®) sinax + ala; — a; %) sin fx

o ap(a® - )8, '
—a(a, — a,8%)(B, — Bia?) sinax
Ap =

(a? = pHay

+B(a2 —a;a?)(By — Bzﬁz)smﬁ_
(a% = pHay '
(B, — B1a?)(B, — By 3?)(cos ax — cos Bx) _
(a% - BB, '
a(B; — Bya?) sinax — (B, — B, %) sin fx
(a% - pHa, '
—(B, — Ba®) cos ax + (B, — By f?) cos fx
(a% — )8y ’
The components depending on the external load
and the limit parameters of the rod will take on the
form

Ay =

Ay =

Agg =

By = [ 14— £ 4,048 — 50041 () + 0,V DAy ()
0 —B3q'(0)A14(x) + Bop(DA14(x);
(15)
Bar = [ 420 = /0, (6)d6 — 30 (00 (0) + a0V (D5 (0)
@A) + (DAL
By = [ s = 0,646 - a3la(0)43,() - 4]
:

+ a,V(D[A33(x) — 1] = B3q'(0) 45, (x)
+ B4 @(DA3,(x);
By = | Ap(x = §) qy(f)df = a3q(0)A,3(x) + a, V(DA (x)

—B3[q'(0) A4, (x)—q' ()]
+ B, (D[A(x) —1].

OtY—x

4.2. Determination of frequencies of natural
oscillations of beams

Integrating expressions (15) for any transverse
load does not cause difficulties. The other cases of
fundamental functions (r?2 =0; S* =0; r*=S")
are of minor importance and are not given. Testing
the solution of the Cauchy problem (10) is carried
out on the problem of natural oscillations. In this
case F, =0; q,(x)=0. The frequency equations of

individual rods can be obtained when forming the
boundary value problem. For example, in the case of
rigid pinching of the boundary points, we will have

1 2 3 4

1 - A1 -Aw

2 - Az - Az

3| -1 As3 Az

4 -1 Ags A

1 [ Ev(o) =0; EIV(D =0
0

2 | Elp(0)=0; | - | Elp()=0 = 0>
Q)

3 M (0) M (1)

4 Q(0) QM

|
o

_)A«(a)):Ais'Azzl_Am'Azs_
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Table 1. Comparison of frequencies according to
different methods of calculation

Dimensionless natural oscillation frequencies of
individual rods w = wl?vr

Oscillation
tone ﬂ b
number q K

Dy =A13 A4 —A14- A3 =0

approximated refined error %

1 22,3736 21,9260 2,04
2 61,6714 57,4781 7,30
3 120,9030  105,3970 14,71
4 199,8596  161,4254 23,81
5 298,5557  222,6361 34,10
6 416,9909  287,0476 45,27
7 555,1652  353,4163 57,09
8 713,0787  420,9801 69,39
9 890,7286  489,3061 82,04
10 1088,1239  558,2521 94,92

Dimensionless natural oscillation frequencies of
individual rods w = wl?Vr

Oscillation

tone
number ;;

Dy =A13-A34—A14-A33=0

/
approximated refined error %

1 15,4184 15,1260 1,93
2 49,9652 46,7429 6,89
3 104,2480 91,2600 14,23
4 178,2700 144,5587 23,32
5 272,0311 203,5004 33,68
6 385,56317 265,9581 44,96
7 518,7714  330,5740 56,93
8 671,7503  396,4820 69,43
9 844,4094  463,1590 82,32
10 1036,8888 530,3037 95,53

Similarly, the frequency equations of any support
conditions can be obtained. The highest frequency
increase is determined by the method of linear
search, when the initial value and the step for w are
specified. The results of the determinant calculation
are output to a separate file. Viewing it allows
detecting the change in the sign of the determinant
and the rough value of the natural frequency.
Further, it can be precisely refined during subsequent
runs of the program with changed initial value and
step w. Tables 1, 2 shows a comparison of
frequencies according to the approximate solution of
Acad. O.M. Krylov and the solution of the equation
of S.P. Tymoshenko.

Frequencies were determined using the
following initial values: Poisson's ratio

u=03;
E =2,1-10' Pg;
G=E/2(1+4u) =0,8077 - 10! Pg;
p=7800kg/m3;

I=10m; A=Bxh=0,1%0,1=0,01m?
I = hB3;/12 = 8,3333 - 107 5m*;
m=pA=780kg/m;k=>5/6.
The absolute values of the frequencies led to a
dimensionless form

a)*:wlz\/%

It follows from Tables 1, 2 that the error of the
approximate solution grows rapidly and reaches
almost 100% at the 10" frequency at the ratio

l/h=10.
Table 2. Comparison of frequencies according to
different methods of calculation

Dimensionless natural oscillation frequencies of

individual rods w = wl?Vr
Oscillation
tone é‘

number ﬂ

D3 =A33-A4s —Az4 - A43=0

approximated refined error %

1 3,56161 3,5143 0,34
2 22,0348 21,3926 3,00
3 61,8633 56,8754 8,77
4 120,9023 103,9717 16,33
5 199,8596 158,8897 25,79
6 298,5557 218,8186 36,44
7 416,9909 281,7821 47,98
8 555,1656 346,5089 60,22
9 713,0787 412,1571 73,01
10 890,7310 478,1448 86,29

Dimensionless natural oscillation frequencies of
individual rods w = wl*Vr

Oscillation
tone S
number

Dy=A13-A34 —A14- 43, =0

approximated refined error %

1 9,8699 9,7081 1,67
2 39,4786 37,0953 6,42
3 88,8265 78,1553 13,65
4 157,9138 128,6654 22,73
5 246,7403 185,3173 33,14
6 355,3060 245,8317 44,53
7 483,6108 308,7225 56,65
8 631,6547 373,0370 69,33
9 799,4384 438,1725 82,45
10 986,9472 503,7375 95,92

The accuracy of the frequencies of equation (10)
can be judged by the fact that the first 5 frequencies
of Tables 1, 2 at the hinge resistance coincide with 5
frequencies in work [4].

5. APPLICATION OF THE MODEL OF S.P.
TYMOSHENKO IN M. BECK AND V.I.
REUT’S PROBLEMS

More accurate solutions of differential equations
open up new opportunities for solving various
problems, including problems of stability. With
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regard to non-conservative problems of stability of a
rectilinear rod, it can be noted that M. Beck and V. I.
Reut’s problems are quite well studied only on the
basis of approximate solutions. The effort to clarify
the existing results led to the appearance of works
[5-9], where the model of S.P. Tymoshenko was
used. In these works, only M. Beck's problem was
investigated, and to an incomplete extent [10-14]. In
this regard, a more complete and detailed solution of
non-conservative  problems, which  will be
considered in a combined form, is of scientific and
practical interest (Fig. 2) [15-17].

Fig. 2. Combined form of load

Simultaneous action of forces Fi, F.. The
linearized boundary conditions of the problem are
very simple.

EIV(0) = Elp(0) = 0;
M) = KV (£);
Q) = Fp(®).

Where x={ and given boundary conditions, the

matrix equation is brought to the form (B=0).

1 2 3 4
1 | -1+asAi/El by A14/EI Az | Au
2 | auPoslEl —1+ by Ayu/EL | Az | Ax
3 | [Frras(Ass)J/El | by Asg/El As | Aw
4 | aAxfEl [-Fatba(Aa-D))/EN | Ass | Au
EIV()
Elp(t) | =0
M(0) (16)
Q(0)

When F,=0, the equation |[A (o, FY)| = 0
represents M. Beck’s problem, when Fi = 0 it
represents V.I. Reut’s problem based on the model
of S.P. Tymoshenko, shear, rotational inertia and the
strained state of the rod are additionally taken into
account [18-21].

By determining the roots of this equation and the
coordinates of the merge points of the first two
frequencies by the method of linear search, it is
possible to find the critical forces of various non-
conservative stability problems. The results are
shown in Table 3.

If the longitudinal forces (F1 = F,=0) are not
taken into account in the coefficients aj-as, bi-ha,
then equation (16) will describe the model of a rigid
rod, when the maximum deflections lie within
(1/100- 1/1000)¢.

With large deflections, longitudinal forces F1, F»
affect the bending moment and transverse force. In
this regard, Table 3 shows the critical forces
according to two models of the rod — rigid (F) and

conditionally flexible (Fy), also with different ratios
of height and cross-section width. Cross-sectional
area A = bh = 0.01m? did not change. The data in
Table 3 allow drawing a number of interesting
conclusions.

M. Beck's problem. Accounting for shear,
rotational inertia, and the strained state of the rod
slightly increases the critical force. According to the
rigid model at £/h=10, the refinement is 4.69%,
according to the flexible model — 2.59%. Changing
h/b ratio has little effect on the magnitude of the
critical force [22-24].

V.I. Reut’s problem. The flexible model leads to
a significant reduction in the critical force (by 2.12
times) compared to the rigid model [25, 26]. Thus, a
force with a fixed line of action is more dangerous
than a force following the angle of rotation.

Two problems are considered in the article: the
problem of M. Beck with force F; and the problem
of V.I. Reut with force F..

Table 3. The value of the critical forces of M. Beck
and V. I. Reut's problems

Problems  Coordinates The ratio of the height to
of stability of the the width of the section
merging h/b;
points of the A=bh=0,01m?

first two

frequencies
1,0 2,0 3,0
M. Beck's FI?/EI 20,57 20,33 20,25
Fi=FiF=0 4 12/m/El 11,35 11,05 10,099
FI2/El 20,99 20,52 20,37
w!*~/m/El 10,68 10,95 10,99
V.I. Reut’s FI2/EI 912 931 9,38
Fi=0;F=F  ,12Jm/EIl 16,02 1652 16,66
FI2/El 1934 19,72 19,85
w!*~/m/El 12,02 11,42 11,34
Combined FI?/El 12,62 12,76 12,81

Fi=F;  oi2Jym/El 14,69 1511 1515
Fo=F;Fx=2F

Problems  Coordinates The ratio of the height to
of stability of the the width of the section
merging h/b;
points of the A=bh=0,01m?
first two
frequencies 4,0 5,0 6,0
M. Beck's FI2/El 20,21 20,16 20,15
Fi=FiF=0  412/m/EI 10,09 11,05 10,96
F,I%/El 20,30 20,23 20,21
wl?~/m/El 10,96 11,05 10,96
V.1. Reut’s Fl%/El 9,42 9,42 9,44
Fi=0; F2=F 12 /m/EI 16,70 16,57 16,68
FI%/El 19,91 19,92 19,95
wl*/m/El 11,22 11,20 11,12
Combined FI%/El 12,83 12,83 12,84
Fi=F,  »I>Jm/El 15,10 1508 1521
Fo=F;
Fx=2F
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Combined problem. The joint action of forces F1
and F; leads to a higher critical force than the case of
the action of one force F, which is impossible with
conservative compressive forces. In a rigid model,
all frequencies individually tend to zero, a certain
combination of non-conservative forces can lead to
conservative problems [27-30].

2. The free rod is stressed at the boundary points
by forces F1 and F» (Fig. 2).

The boundary conditions of this problem

M(0) = F2V(0);

Q(0) = Fap(0);
M(t) = FoV(0);
00 = F29(0)

lead to the stability matrix.

1 2 3 4

1 A — An— | —1-aAr/ boA14 1 El
—FoAB/ElI | —FAwulEl /El

2 Axn— Ax— a3 [El | —1+02A0a |

—FoAR/El | —F2AulEl [El

3 —As1— Az — [-F2+ b2A / El
—FAs/El | —FAu/El | as(As-1)]/
/El

4 —An— —Ap— Mz [ El [+

—FABEl | —FAulE ba(Aw-1)]/

/EI

To exclude zero leading elements of the matrix
(rigid model), its rows should be rearranged in a new
order, as shown by the numbers on the right [31-33].
The critical forces of this problem with a square
section and £/h=10 take the values

F1=0; F,=F

Fx=1,982EI/{* at

®=287VEI/m
A7)
F«=30,88EI/ 2 at

®=9,48JVEl /m

that is, for a free rod, the ratio of critical forces of
rigid and flexible models increases sharply
compared to a cantilever rod

Fl = Fz =F

Fx=3,028El / ¢? at
w=2,67

The other cases of action of compressive forces
according to Fig. 2 lead to conservative problems.

6. CONCLUSIONS

The submitted material unequivocally proves
that the work and tasks have been completed in full.
Herewith:

1. The -equation of S.P. Tymoshenko is
supplemented with compressive force, which
significantly increases the scope of application of
his solution.

2. The variables in the equation of transverse
vibrations of beams are separated by the Fourier
method.

3. A more accurate differential equation is
integrated,  fundamental  functions  are
normalized, and the complete solution is
presented in a convenient matrix form with initial
parameters.

4. Calculations of the frequencies of natural
oscillations of the beams, taking into account
shear and rotational inertia, have been made. For
the hinged beam, the obtained refined
frequencies coincided with the results of other
authors.

5. The model presented in the work is the most
accurate of those published. Therefore, it was
possible to refine the critical forces of the non-
conservative stability problems of M. Beck and
V.I. Reut.

Funding: The source of financing are own funds of the
authors.

Author contributions: research concept and design,
V.0.,0.N,,O.L., O.S.; Collection and/or assembly of data,
O.N,, O.L, P.S.; Data analysis and interpretation, V.O.,
O.L., V.P.; Writing the article, O.L., V.P, O.S. P.S,;
Critical revision of the article, V.O., O.N., P.S.; Final
approval of the article, V.O., O.N., V.P.

Declaration of competing interest: The author declares
no conflict of interest.

REFERENCES

1. Kolouschek V. Dynamics of structures. 1965.

2. Makeev VP, Grinenko NI, Pavlyuk YS. Statistical
problems of the dynamics of elastic structures; 1984.

3. Timoshenko SP. Oscillations in engineering, 1959.

4. Filippov AP. Oscillations of deformable systems;
1970.

5. Orobey V, Daschenko O, Kolomiets L, Lymarenko O.
Stability of structural elements of special lifting
mechanisms in the form of circular arches. Eastern-
European Journal of Enterprise Technologies
2018; 2(7(92): 4-10. https://doi.org/10.15587/1729-
4061.2018.125490.

6. Kolomiets L, Orobey V, Daschenko O, Lymarenko O,
Ovcharov Y, Lobus R. Investigation of force factors
and stresses at singular points of plate elements in
special cranes. Eastern-European Journal of Enterprise
Technologies 2018; 5(7(95): 6-12.
https://doi.org/10.15587/1729-4061.2018.142597.

7. Orobey V, Nemchuk O, Lymarenko O, Piterska V,
Lohinova L. Taking account of the shift and inertia of
rotation in problems of diagnostics of the spectra of
critical forces mechanical systems. Diagnostyka 2021;
22(1): 39-44. https://doi.org/10.29354/diag/132555.

8. Orobey V, Daschenko O, Kolomiets L, Lymarenko O,
Ovcharov Y. Mathematical modeling of the stressed-
deformed state of circular arches of specialized
cranes. Eastern-European  Journal of  Enterprise
Technologies 2017; 5(7(89): 4-10.
https://doi.org/10.15587/1729-4061.2017.109649.

9. Kolomiets L, Orobey V, Lymarenko A. Method of
boundary element in problems of stability of plane



https://doi.org/10.15587/1729-4061.2018.125490
https://doi.org/10.15587/1729-4061.2018.125490
https://doi.org/10.15587/1729-4061.2018.142597
https://doi.org/10.29354/diag/132555
https://doi.org/10.15587/1729-4061.2017.109649

DIAGNOSTYKA, Vol. 25, No. 1 (2024) 11
Orobey V, Nemchuk O, Lymarenko O, Piterska V, Sherstiuk O, Semenov P.: Consideration of shear ...

10.

11.

12.

13.

14.

15

16.

17.

18.

19.

20.

21.

22.

bending beams of rectangular cross section structures.
Metallurgical and mining industry 2016; 3: 59-65.
Chernov S, Titov S, Chernova L, Kunanets N, Piterska
V, Chernova L, Shcherbyna Y, Petryshyn L. Efficient
algorithms of linear optimization problems solution.
CEUR workshop proceedings 2021; 2851: 116-131.
Chernov S, Titov S, Chernova L, Piterska V, Chernova
L, Kunanets N. Three-Index Optimization
Transportation Model. 2021 IEEE 16th International
Conference on Computer Sciences and Information
Technologies (CSIT) 2021: 315-318,
https://doi.org/10.1109/CSIT52700.2021.9648807.

Holovin O, Piterska V, Shakhov A, Sherstiuk O.
Project-based management of the production
equipment maintenance and repair information

system. CEUR Workshop Proc. 2022; 3295: 76-85.

Shakhov A, Kyryllova O, Sagaydak O, Piterska V,
Sherstiuk O. Conceptual risk-oriented model of goal
setting in the implementation of concession projects in
seaports. CEUR Workshop Proc. 2022;3295:149-158.
Shakhov A, Piterska, V. Botsaniuk and O. Sherstiuk.
Mechanisms for Goal Setting and Risk Management
of Concession Projects in Seaports. 2020 IEEE 15th
International Conference on Computer Sciences and
Information Technologies (CSIT) 2020: 185-189,
https://doi.org/10.1109/CS1T49958.2020.9321963.

. Minchev D, Varbanets R, Aleksandrovskaya N,

Pisintsaly L. Marine Diesel Engines Operating Cycle
Simulation for Diagnostics Issues. Acta Polytechnica
2021; 3(61): 428-440.
http://dx.doi.org/10.14311/AP.2021.61.0435.
Yeryganov O, Varbanets R. Features of the fastest
pressure growth point during compression stroke.
Diagnostyka. 2018; 19(2): 71-76.
https://doi.org/10.29354/diag/89729.

Minchev DS, Gogorenko AO, Varbanets RA,
Moshentsev YL, Pisteék V, Kucera P, Kyrnats VI.
Prediction of centrifugal compressor instabilities for
internal  combustion engines operating cycle
simulation. Proceedings of the Institution of
Mechanical Engineers, Part D: Journal of Automobile
Engineering 2022.
https://doi.org/10.1177/09544070221075419.
Neumann S, Varbanets R, Minchev D, Malchevsky V,
Zalozh V. Vibrodiagnostics of marine diesel engines
in IMES GmbH systems. Ships Offshore Struct. 2022:
1-12.
https://doi.org/10.1080/17445302.2022.2128558.
Varbanets R, Shumylo O, Marchenko A, Minchev D.
Concept of vibroacoustic diagnostics of the fuel
injection and electronic cylinder lubrication systems of
marine diesel engines. Polish Marit. Res. 2022; 29(4):
88-96. https://doi.org/10.2478/pomr-2022-0046.
Rudenko S, Shakhov A, Piterska V, Chernova L,
Sherstiuk O. Application of balanced scorecard for
managing university development projects. 2021 IEEE
16th International Conference on Computer Sciences
and Information Technologies (CSIT) 2021: 311-314.
https://doi.org/10.1109/CSI1T52700.2021.9648580.
Nemchuk OO, Krechkovska HV. Fractographic
substantiation of the loss of resistance to brittle
fracture of steel after operation in the marine gantry
crane elements. Metallofizika i Noveishie Tekhnologii
2019; 41(6): 825-836.
https://doi.org/10.15407/mfint.41.06.0825.

Kolomiets L, Orobey V, Lymarenko A. Method of
boundary element in problems of stability of plane

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

bending beams of rectangular cross section structures.
Metallurgical and mining industry 2016; 3: 59- 65.
Nemchuk OO. Specific features of the diagnostics of
technical state of steels of the port reloading
equipment. Materials Science 2018; 53(6): 875-878.
http://dx.doi.org/10.1007/S11003-018-0148-5.
Nemchuk OO, Nesterov OA. In-service brittle fracture
resistance degradation of steel in a ship-to-shore portal
crane. Strength of Materials 2020; 52(2): 275-280.
https://doi.org/10.1007/s11223-020-00175-w.
Nemchuk O, Hredil M, Pustovoy V, Nesterov O. Role
of in-service conditions in operational degradation of
mechanical properties of portal cranes steel. Procedia
Structural Integrity 2019; 16: 245-251.
http://dx.doi.org/10.1016/j.prostr.2019.07.048.
Burmaka I, Vorokhobin I, Melnyk O, Burmaka O,
Sagin S. Method of prompt evasive maneuver
selection to alter ship's course or speed. Transactions
on maritime science 2022: 11(1).
https://doi.org/10.7225/toms.v11.n01.w01.
Onyshchenko S, Shibaev O, Melnyk O. Assessment of
potential negative impact of the system of factors on
the ship’s operational condition during transportation
of oversized and heavy cargoes. Transactions on
maritime science 2021; 10(1): 126-134.
https://doi.org/10.7225/toms.v10.n01.009.

Bondar A, Bushuyev S, Bushuieva V, Onyshchenko S.
Complementary strategic model for managing entropy
of the organization. CEUR workshop proceedings
2021; 2851: 293-302.

Girin A. Distribution of dispersed droplets in
fragmentation of the drop in a high-velocity gas flow. J
eng phys thermophy 2021; 84: 872.
https://doi.org/10.1007/s10891-011-0545-1.
lvankevich A, Piterska V, Shakhov A, Shakhov V,
Yarovenko V. A Proactive Strategy of Ship
Maintenance  Operations. 2019 IEEE  14th
International Conference on Computer Sciences and
Information Technologies (CSIT) 2019; 126-129.
http://dx.doi.org/10.1109/STC-CSIT.2019.8929741.
Varbanets R, Karianskyi S, Rudenko S, Gritsuk 1. Et
al. Improvement of diagnosing methods of the diesel
engine functioning under operating conditions. SAE
technical paper 2017; 01: 2218.
https://doi.org/10.4271/2017-01-2218.

Nemchuk OO Influence of the working loads on the
corrosion resistance of steel of a marine harbor crane.
Materials Science 2019; 54(5): 743-747.
https://doi.org/10.1007/S11003-019-00241-Y.
Yeryganov O, Varbanets, R Features of the fastest
pressure  growth  point during compression
stroke. Diagnostyka 2018; 19(2): 71-76.
https://doi.org/10.29354/diag/89729.

Viktor OROBEY - Doctor of
Sciences (Engineering),
Professor, National University
"Odesa Polytechnic", Professor
at the Department of Chair
Dynamics, Capacity of
Machines and Resistance of
Materials, Odesa, Ukraine.

e-mail: v.f.orobey@opu.ua


https://dblp.org/db/series/ceurws/index.html
https://doi.org/10.1109/CSIT52700.2021.9648807
https://www.scopus.com/authid/detail.uri?authorId=57216488858
https://www.scopus.com/authid/detail.uri?authorId=57204352571
https://www.scopus.com/authid/detail.uri?authorId=57196223408
https://www.scopus.com/authid/detail.uri?authorId=57552312800
https://www.scopus.com/sourceid/21100218356?origin=resultslist
https://www.scopus.com/authid/detail.uri?authorId=57196223408
https://www.scopus.com/authid/detail.uri?authorId=58019899000
https://www.scopus.com/authid/detail.uri?authorId=58019202600
https://www.scopus.com/authid/detail.uri?authorId=57204352571
https://www.scopus.com/authid/detail.uri?authorId=57552312800
https://www.scopus.com/sourceid/21100218356?origin=resultslist
https://doi.org/10.1109/CSIT49958.2020.9321963
http://dx.doi.org/10.14311/AP.2021.61.0435
https://doi.org/10.29354/diag/89729
https://doi.org/10.1177/09544070221075419
https://doi.org/10.1080/17445302.2022.2128558
https://doi.org/10.2478/pomr-2022-0046
https://doi.org/10.1109/CSIT52700.2021.9648580
https://doi.org/10.15407/mfint.41.06.0825
http://dx.doi.org/10.1007/s11003-018-0148-5
https://doi.org/10.1007/s11223-020-00175-w
http://dx.doi.org/10.1016/j.prostr.2019.07.048
https://doi.org/10.7225/toms.v11.n01.w01
https://doi.org/10.7225/toms.v10.n01.009
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57212622347&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57200319493&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56527420200&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85104887413&origin=resultslist&sort=cp-f&src=s&sid=5f00a5ce7a926c577a6e0236dc192d88&sot=aff&sdt=a&sl=15&s=AF-ID%2860027198%29&relpos=18&citeCnt=13&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85104887413&origin=resultslist&sort=cp-f&src=s&sid=5f00a5ce7a926c577a6e0236dc192d88&sot=aff&sdt=a&sl=15&s=AF-ID%2860027198%29&relpos=18&citeCnt=13&searchTerm=
https://dblp.org/db/series/ceurws/index.html
https://doi.org/10.1007/s10891-011-0545-1
http://dx.doi.org/10.1109/STC-CSIT.2019.8929741
https://doi.org/10.4271/2017-01-2218
https://doi.org/10.1007/S11003-019-00241-Y
https://doi.org/10.29354/diag/89729
mailto:v.f.orobey@opu.ua

12 DIAGNOSTYKA, Vol. 25, No. 1 (2024)
Orobey V, Nemchuk O, Lymarenko O, Piterska V, Sherstiuk O, Semenov P.: Consideration of shear ...

Oleksii NEMCHUK — Doctor
of Sciences (Engineering),
Docent, Odesa National
Maritime University, Odesa,
Ukraine.

e-mail: alnemchuk@gmail.com

Oleksandr LYMARENKO -
PhD (Engineering), Docent,
National University "Odesa
Polytechnic”, Head of the
Department of Chair Dynamics,
Capacity of Machines and
Resistance of Materials, Odesa,
Ukraine.

e-mail: : amlim@ukr.net

Varvara PITERSKA — Doctor
of Sciences (Engineering),
Professor, Odesa National
Maritime University, Professor
at the Department of Port
Operation and Cargo Handling
Technology, Odesa, Ukraine.
e-mail: varuwa@ukr.net

Olha SHERSTIUK - PhD
(Engineering), Docent, Odesa
National Maritime University,
Associate  Professor at the
Department  of  Philology,
Odesa, Ukraine.

e-mail: olusha972@gmail.com

Pavlo SEMENOV - PhD
(Industry engineering), Docent,
Odesa  National  Maritime
University, Associate
Professor at the Department of
Hoisting and Transport
Machines and Engineering of
Port Technological Equipment,
Odesa, Ukraine.

e-mail:
p.a.semenoff@gmail.com



mailto:alnemchuk@gmail.com
mailto:amlim@ukr.net
mailto:varuwa@ukr.net
mailto:olusha972@gmail.com

